1932

Abstract

Since the review of mushy layers by Worster (1997), there have been significant advances in the understanding of convective processes in mushy layers. These advances have come in the areas of () more detailed analysis, computation, and understanding of convective instabilities and chimney convection in binary alloys; () investigations of diffusive and convective transport processes in ternary alloys; and () applications of mushy layer theory in materials science, sea ice, and polar climate modeling, as well as other geophysical applications such as the convective dynamics of the Earth's core. Our objective for this review is to provide an updated account of the understanding of mushy layer convection and related applications and, in doing so, to provide a new resource to the fluid dynamics research community interested in these complex systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010719-060332
2020-01-05
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/fluid/52/1/annurev-fluid-010719-060332.html?itemId=/content/journals/10.1146/annurev-fluid-010719-060332&mimeType=html&fmt=ahah

Literature Cited

  1. Aitta A, Huppert HE, Worster MG 2001a. Diffusion-controlled solidification of a ternary melt from a cooled boundary. J. Fluid Mech. 432:201–17
    [Google Scholar]
  2. Aitta A, Huppert HE, Worster MG 2001b. Solidification in ternary systems. Interactive Dynamics of Convection and Solidification P Ehrhard, DS Riley, PH Steen113–22 Dordrecht, Neth.: Springer
    [Google Scholar]
  3. Amberg G, Homsy GM 1993. Nonlinear analysis of buoyant convection in binary solidification with application to channel formation. J. Fluid Mech. 252:79–98
    [Google Scholar]
  4. Anderson DM 2003. A model for diffusion-controlled solidification of ternary alloys in mushy layers. J. Fluid Mech. 483:165–97
    [Google Scholar]
  5. Anderson DM, McFadden GB, Coriell SR, Murray BT 2010. Convective instabilities during the solidification of an ideal ternary alloy in a mushy layer. J. Fluid Mech. 647:309–33
    [Google Scholar]
  6. Anderson DM, Schulze TP 2005. Linear and nonlinear convection in solidifying ternary alloys. J. Fluid Mech. 545:213–43
    [Google Scholar]
  7. Anderson DM, Worster MG 1995. Weakly nonlinear analysis of convection in mushy layers during the solidification of binary alloys. J. Fluid Mech. 302:307–31
    [Google Scholar]
  8. Anderson DM, Worster MG 1996. A new oscillatory instability in a mushy layer during the solidification of binary alloys. J. Fluid Mech. 307:245–67
    [Google Scholar]
  9. Aussillous P, Sederman AJ, Gladden LF, Huppert HE, Worster MG 2006. Magnetic resonance imaging of structure and convection in solidifying mushy layers. J. Fluid Mech. 552:99–125
    [Google Scholar]
  10. Beckerman C, Gu JP, Boettinger WJ 2000. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings. Metall. Mater. Trans. A 31:2545–57
    [Google Scholar]
  11. Bloomfield LJ, Huppert HE 2003. Solidification and convection of a ternary solution cooled from the side. J. Fluid Mech. 489:269–99
    [Google Scholar]
  12. Bodenschatz E, Pesch W, Ahlers G 2000. Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32:709–78
    [Google Scholar]
  13. Boettinger WJ, Kattner UR, Coriell SR, Chang YA, Mueller BA 1995. Development of multicomponent solidification micro models using a thermodynamic phase diagram data base. Modelling of Casting, Welding and Advanced Solidification Process VII M Cross, J Campbell649–56 Warrendale, PA: Miner. Metals Mater. Soc.
    [Google Scholar]
  14. Böttger B, Schmitz GJ, Wahlers F-J, Klöwer J, Tewes J, Gehrmann B 2014. Development and application of a new freckle criterion for technical remelting processes. MATEC Web Conf. 14:05002
    [Google Scholar]
  15. Butler SL, Huppert HE, Worster MG 2006. Numerical modeling of convection in a reactive porous medium with a mobile mush–liquid interface. J. Fluid Mech. 549:99–129
    [Google Scholar]
  16. Chang MH, Chen F 2003. Stability characteristics of the mush affected by the solid layer below. J. Cryst. Growth 255:369–78
    [Google Scholar]
  17. Chen CF 1995. Experimental study of convection in a mushy layer during directional solidification. J. Fluid Mech. 293:81–98
    [Google Scholar]
  18. Chen F, Chung CA, Lai MH 2002. Stability of convection in the mush under rocking motion. Phys. Fluids 14:1295–98
    [Google Scholar]
  19. Chen F, Lu JW, Yang TL 1994. Convective instability in ammonium chloride solution directionally solidified from below. J. Fluid Mech. 276:163–87
    [Google Scholar]
  20. Chung CA, Chen F 1999. The flow induced by yawing motion in unidirectionally solidifying alloys. J. Cryst. Growth 206:119–34
    [Google Scholar]
  21. Chung CA, Chen F 2000. Convection in directionally solidifying alloys under inclined rotation. J. Fluid Mech. 412:93–123
    [Google Scholar]
  22. Chung CA, Chen F 2001. Morphological instability in a directionally solidifying binary solution with an imposed shear flow. J. Fluid Mech. 436:85–106
    [Google Scholar]
  23. Chung CA, Worster MG 2002. Steady-state chimneys in a mushy layer. J. Fluid Mech. 455:387–411
    [Google Scholar]
  24. Copley SM, Giamei AF, Johnson SM, Hornbecker MF 1970. The origin of freckles in unidirectionally solidified castings. Metall. Trans. 1:2193–204
    [Google Scholar]
  25. Dangelmayr G, Knobloch E 1987. The Takens–Bogdanov bifurcation with O(2)-symmetry. Philos. Trans. R. Soc. A 322:243–79
    [Google Scholar]
  26. Davis SH 2001. Theory of Solidification Cambridge, UK: Cambridge Univ. Press
  27. Deguen R 2012. Structure and dynamics of Earth's inner core. Earth Planet. Sci. Lett. 333–334:211–25
    [Google Scholar]
  28. Fearn DR, Loper DE, Roberts PH 1981. Structure of the Earth's inner core. Nature 292:232–33
    [Google Scholar]
  29. Felicelli SD, Heinrich JC, Poirier DR 1998a. Three-dimensional simulations of freckles in binary alloys. J. Cryst. Growth 191:879–88
    [Google Scholar]
  30. Felicelli SD, Poirier DR, Heinrich JC 1997. Macrosegregation patterns in multicomponent Ni-base alloys. J. Cryst. Growth 177:145–61
    [Google Scholar]
  31. Felicelli SD, Poirier DR, Heinrich JC 1998b. Modeling freckle formation in three dimensions during solidification of multicomponent alloys. Metall. Mater. Trans. B 29:847–55
    [Google Scholar]
  32. Feltham D 2015. Arctic sea-ice reduction: the evidence, models and impacts. Philos. Trans. R. Soc. A 373:20140171
    [Google Scholar]
  33. Feltham DL, Untersteiner N, Wettlaufer JS, Worster MG 2006. Sea ice is a mushy layer. Geophys. Res. Lett. 33:L14501
    [Google Scholar]
  34. Feltham DL, Worster MG 1999. Flow-induced morphological instability of a mushy layer. J. Fluid Mech. 391:337–57. Corrigendum. Neufeld JA, Wettlaufer JS, Feltham DL, Worster MG. 2006. J. Fluid Mech. 549:442–43
    [Google Scholar]
  35. Feltham DL, Worster MG, Wettlaufer JS 2002. The influence of ocean flow on newly forming sea ice. J. Geophys. Res. 107:C23009
    [Google Scholar]
  36. Flocco D, Feltham DL, Bailey E, Schroeder D 2015. The refreezing of melt ponds on Arctic sea ice. J. Geophys. Res. Oceans 120:647–59
    [Google Scholar]
  37. Flynn TJ 2009. Linear stability analysis of a solidifying ternary alloy. Master's Thesis, George Mason Univ., Fairfax, Virginia
  38. Galley RJ, Else BGT, Geilfus N-X, Hare AA, Isleifson D et al. 2015. Imaged brine inclusions in young sea ice—shape, distribution and formation timing. Cold Reg. Sci. Technol. 111:39–48
    [Google Scholar]
  39. Gewecke NR, Schulze TP 2011a. Solid-mush interface conditions for mushy layers. J. Fluid Mech. 689:357–75
    [Google Scholar]
  40. Gewecke NR, Schulze TP 2011b. The rapid advance and slow retreat of a mushy zone. J. Fluid Mech. 674:227–43
    [Google Scholar]
  41. Giamei AF, Kear BH 1970. On the nature of freckles in nickel base superalloys. Metall. Trans. 1:2185–92
    [Google Scholar]
  42. Govender S 2008. Linear stability of solutal convection in rotating solidifying mushy layers: permeable mush–melt interface. J. Porous Media 11:683–90
    [Google Scholar]
  43. Govender S, Vadasz P 2002. Weak non-linear analysis of moderate Stefan number stationary convection in rotating mushy layers. Transp. Porous Media 49:247–63
    [Google Scholar]
  44. Griewank PJ, Notz D 2013. Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage. J. Geophys. Res. Oceans 118:3370–86
    [Google Scholar]
  45. Guba P 2001. On the finite-amplitude steady convection in rotating mushy layers. J. Fluid Mech. 437:337–65
    [Google Scholar]
  46. Guba P, Anderson DM 2014. Diffusive and phase change instabilities in a ternary mushy layer. J. Fluid Mech. 760:634–69
    [Google Scholar]
  47. Guba P, Anderson DM 2017. Pattern selection in ternary mushy layers. J. Fluid Mech. 825:853–86
    [Google Scholar]
  48. Guba P, Boda J 1998. The effect of uniform rotation on convective instability of a mushy layer during binary alloys solidification. Stud. Geophys. Geod. 42:289–96
    [Google Scholar]
  49. Guba P, Worster MG 2006a. Free convection in laterally solidifying mushy regions. J. Fluid Mech. 558:69–78
    [Google Scholar]
  50. Guba P, Worster MG 2006b. Nonlinear oscillatory convection in mushy layers. J. Fluid Mech. 553:419–43
    [Google Scholar]
  51. Guba P, Worster MG 2010. Interactions between steady and oscillatory convection in mushy layers. J. Fluid Mech. 645:411–34
    [Google Scholar]
  52. Hallworth M, Huppert HE, Woods AW 2004a. Crystallization and layering induced by heating a reactive porous medium. Geophys. Res. Lett. 31:L13605
    [Google Scholar]
  53. Hallworth M, Huppert HE, Woods AW 2004b. Dissolution-driven convection in a reactive porous medium. J. Fluid Mech. 535:255–85
    [Google Scholar]
  54. Heinrich JC, Poirier DR 2004. Convection modeling in directional solidification. C.R. Méc. 332:429–45
    [Google Scholar]
  55. Hills RN, Loper DE, Roberts PH 1983. A thermodynamically consistent model of a mushy zone. Q. J. Mech. Appl. Math. 36:505–39
    [Google Scholar]
  56. Holness MB, Tegner C, Nielsen TFD, Charlier B 2017. The thickness of the mushy layer on the floor of the Skaergaard magma chamber at apatite saturation. J. Petrol. 58:909–32
    [Google Scholar]
  57. Hunke EC, Notz D, Turner AK, Vancoppenolle M 2011. The multi physics of sea ice: a review for model developers. Cryosphere 5:989–1009
    [Google Scholar]
  58. Huppert HE, Hallworth MA 1993. Solidification of NH4Cl and NH4Br from aqueous solutions contaminated by CuSO4: the extinction of chimneys. J. Cryst. Growth 130:495–506
    [Google Scholar]
  59. Huppert HE, Turner JS 1981. Double-diffusive convection. J. Fluid Mech. 106:299–329
    [Google Scholar]
  60. Huppert HE, Worster MG 1985. Dynamic solidification of a binary melt. Nature 314:703–7
    [Google Scholar]
  61. Hwang IG 2013. Stability analysis of compositional convection in a mushy layer in the time-dependent solidification system. Korean J. Chem. Eng. 30:1023–28
    [Google Scholar]
  62. Jardon FP, Vivier F, Vancoppenolle M, Lourenco A, Bouruet-Aubertot P, Cuypers Y 2013. Full-depth desalination of warm sea ice. J. Geophys. Res. Oceans 118:435–47
    [Google Scholar]
  63. Katz RF, Worster MG 2008. Simulation of directional solidification, thermochemical convection, and chimney formation in a Hele-Shaw cell. J. Comput. Phys. 227:9823–40
    [Google Scholar]
  64. Keating SR, Spiegel EA, Worster MG 2011. Patterns of convection in solidifying binary solutions. Geophys. Astrophys. Fluid Dyn. 105:304–28
    [Google Scholar]
  65. Krane MJM, Incropera FP 1997. Solidification of ternary metal alloys—II. Prediction of convective phenomena and solidification behavior of Pb–Sb–Sn alloys. Int. J. Heat Mass Transf. 40:3837–47
    [Google Scholar]
  66. Krane MJM, Incropera FP, Gaskell DR 1997. Solidification of ternary metal alloys—I. Model development. Int. J. Heat Mass Transf. 40:3827–35
    [Google Scholar]
  67. Krane MJM, Incropera FP, Gaskell DR 1998. Solidification of a ternary metal alloy: a comparison of experimental measurements and model predictions in a Pb–Sb–Sn system. Metall. Mater. Trans. A 29:843–53
    [Google Scholar]
  68. Loper DE 2001. On the boundary conditions at a mush–melt interface. J. Cryst. Growth 222:655–66
    [Google Scholar]
  69. Loper DE, Roberts PH 1981. A study of conditions at the inner core boundary of the Earth. Phys. Earth Planet. Inter. 24:302–7
    [Google Scholar]
  70. Lu JW, Chen F 1996. Stability of double-diffusive convection in a freckle-free solidification system. J. Cryst. Growth 165:137–46
    [Google Scholar]
  71. Lu JW, Chen F 1997. Rotation effects on the convection of binary alloys unidirectionally solidified from below. Int. J. Heat Mass. Transfer 40:237–46
    [Google Scholar]
  72. McDonald RJ, Hunt JD 1969. Fluid motion through the partially solid regions of a casting and its importance in understanding A type segregation. Trans. Am. Inst. Min. Metall. Pet. Eng. 245:1993–97
    [Google Scholar]
  73. McDonald RJ, Hunt JD 1970. Convective fluid motion within the interdendritic liquid of a casting. Metall. Trans. 1:1787–88
    [Google Scholar]
  74. Mehrabian R, Flemings MC 1970. Macrosegregation in ternary alloys. Metall. Trans. 1:455–64
    [Google Scholar]
  75. Mehrabian R, Keane MA, Flemings MC 1970. Experiments on macrosegregation and freckle formation. Metall. Trans. 1:3238–41
    [Google Scholar]
  76. Middleton CA, Thomas C, De Wit A, Tison J-L 2016. Visualizing brine channel development and convective processes during artificial sea-ice growth using Schlieren optical methods. J. Glaciol. 62:1–17
    [Google Scholar]
  77. Neufeld JA, Wettlaufer JS 2008a. An experimental study of shear-enhanced convection in a mushy layer. J. Fluid Mech. 612:363–85
    [Google Scholar]
  78. Neufeld JA, Wettlaufer JS 2008b. Shear-enhanced convection in a mushy layer. J. Fluid Mech. 612:339–61
    [Google Scholar]
  79. Neufeld JA, Wettlaufer JS 2011. Shear flow, phase change and matched asymptotic expansions: pattern formation in mushy layers. Physica D 240:140–49
    [Google Scholar]
  80. Nield DA, Bejan A 2017.Convection in Porous Media. Cham, Switz.: Springer Int. 5th ed.
  81. Notz D 2012. Challenges in simulating sea ice in Earth system models. Wiley Interdiscip. Rev. Clim. Change 3:509–26
    [Google Scholar]
  82. Notz D, Worster MG 2006. A one-dimensional enthalpy model of sea ice. Ann. Glaciol. 44:123–28
    [Google Scholar]
  83. Notz D, Worster MG 2008. In-situ measurements of the evolution of young sea ice. J. Geophys. Res. 113:C03001
    [Google Scholar]
  84. Notz D, Worster MG 2009. Desalination processes of sea ice revisited. J. Geophys. Res. 114:C05006
    [Google Scholar]
  85. O'Rourke JG, Riggs AJE, Guertler CA, Miller PW, Padhi CM et al. 2012. Mushy-layer dynamics in micro and hyper gravity. Phys. Fluids 23:103305
    [Google Scholar]
  86. Peppin SSL, Aussillous P, Huppert HE, Worster MG 2007. Steady-state mushy layers: experiments and theory. J. Fluid Mech. 570:69–77
    [Google Scholar]
  87. Peppin SSL, Huppert HE, Worster MG 2008. Steady-state solidification of aqueous ammonium chloride. J. Fluid Mech. 599:465–76
    [Google Scholar]
  88. Perovich DK, Richter-Menge JA 2009. Loss of sea ice in the Arctic. Annu. Rev. Mar. Sci. 1:417–41
    [Google Scholar]
  89. Plotkowski A, Krane MJM 2016. On the numerical prediction of channel segregation. Int. J. Heat Mass Transf. 100:11–23
    [Google Scholar]
  90. Rees Jones DW, Worster MG 2013a. A simple dynamical model for gravity drainage of brine from growing sea ice. Geophys. Res. Lett. 40:307–11
    [Google Scholar]
  91. Rees Jones DW, Worster MG 2013b. Fluxes through steady chimneys in a mushy layer during binary alloy solidification. J. Fluid Mech. 714:127–51
    [Google Scholar]
  92. Rees Jones DW, Worster MG 2014. A physically based parameterization of gravity drainage for sea-ice modelling. J. Geophys. Res. Oceans 119:5599–621
    [Google Scholar]
  93. Rees Jones DW, Worster MG 2015. On the thermodynamic boundary conditions of a solidifying mushy layer with outflow. J. Fluid Mech. 762:R1
    [Google Scholar]
  94. Riahi DN 2006. Nonlinear oscillatory convection in rotating mushy layers. J. Fluid Mech. 553:389–400
    [Google Scholar]
  95. Riahi DN 2007. Inertial and Coriolis effects on oscillatory flow in a horizontal dendrite layer. Transp. Porous Media 69:301–12
    [Google Scholar]
  96. Roberts PH, Loper DE, Roberts MF 2003. Convective instability of a mushy layer—I: uniform permeability. Geophys. Astrophys. Fluid Dyn. 97:97–134
    [Google Scholar]
  97. Roper SM, Davis SH, Voorhees PW 2007. Convection in a mushy zone forced by sidewall heat losses. Metall. Mat. Trans. A 38:1069–79
    [Google Scholar]
  98. Salloum-Abou-Jaoude G, Reinhart G, Combeau H, Zaloznik M, Lafford TA, Nguyen-Thi H 2015. Quantitative analysis by in situ synchrotron X-ray radiography of the evolution of the mushy zone in a fixed temperature gradient. J. Cryst. Growth 411:88–95
    [Google Scholar]
  99. Sarkar S, Ganguly S, Dutta P 2017. Magnetohydrodynamic stationary and oscillatory convective stability in a mushy layer during binary alloy solidification. Appl. Math. Model. 48:233–49
    [Google Scholar]
  100. Schneider MC, Beckermann C 1995. Formation of macro segregation by multicomponent thermosolutal convection during the solidification of steel. Metall. Mater. Trans. A 26:2373–88
    [Google Scholar]
  101. Schneider MC, Gu JP, Beckermann C, Boettinger WJ, Kattner UR 1997. Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification. Metall. Mater. Trans. A 28:1517–31
    [Google Scholar]
  102. Schulze TP, Worster MG 1998. A numerical investigation of steady convection in mushy layers during the directional solidification of binary alloys. J. Fluid Mech. 356:199–220
    [Google Scholar]
  103. Schulze TP, Worster MG 1999. Weak convection, liquid inclusions and the formation of chimneys in mushy layers. J. Fluid Mech. 388:197–215
    [Google Scholar]
  104. Schulze TP, Worster MG 2001. Mushy zones with fully developed chimneys. Interactive Dynamics of Convection and Solidification P Ehrhard, DS Riley, PH Steen71–80 Dordrecht, Neth.: Springer
    [Google Scholar]
  105. Schulze TP, Worster MG 2005. A time-dependent formulation of the mushy-zone free-boundary problem. J. Fluid Mech. 541:193–202
    [Google Scholar]
  106. Shevchenko N, Boden S, Gerbeth G, Eckert S 2013. Chimney formation in solidifying Ga-25wt pct In alloys under the influence of thermosolutal melt convection. Metall. Mater. Trans. A 44:3797–808
    [Google Scholar]
  107. Shih Y-C, Tu S-M, Chiu C-C 2013. Suppressing freckles during solidification due to periodic motion of top liquid layer. Appl. Therm. Eng. 50:1055–69
    [Google Scholar]
  108. Smallman RE, Bishop RJ 1999. Modern Physical Metallurgy & Materials Engineering Boston: Butterworth-Heinemann
  109. Solomon TH, Hartley RR 1998. Measurements of the temperature field of mushy and liquid regions during solidification of aqueous ammonium chloride. J. Fluid Mech. 358:87–106
    [Google Scholar]
  110. Srivastava AK, Bhaduaria BS 2011. Linear stability of solutal convection in a mushy layer subjected to gravity modulation. Commun. Nonlinear Sci. Numer. Simul. 16:3548–58
    [Google Scholar]
  111. Stacey FD, Davis PM 2008. Physics of the Earth Cambridge, UK: Cambridge Univ. Press
  112. Sumita I, Bergman M 2015. Inner core dynamics. Treatise on Geophysics G Schubert297–316 Amsterdam: Elsevier
    [Google Scholar]
  113. Taylor PD, Feltham DL 2004. A model of melt pond evolution on sea ice. J. Geophys. Res. 109C12007
  114. Thompson AF, Huppert HE, Worster MG 2003a. A global conservation model for diffusion-controlled solidification of a ternary alloy. J. Fluid Mech. 483:191–97
    [Google Scholar]
  115. Thompson AF, Huppert HE, Worster MG, Aitta A 2003b. Solidification and compositional convection of a ternary alloy. J. Fluid Mech. 497:167–99
    [Google Scholar]
  116. Tian D, Wen L 2017. Seismological evidence for a localized mushy zone at the Earth's inner core boundary. Nat. Commun. 8:165–70
    [Google Scholar]
  117. Tkalčić H 2015. Complex inner core of the Earth: the last frontier of global seismology. Rev. Geophys. 53:59–94
    [Google Scholar]
  118. Tkalčić H, Kennett BLN 2008. Core structure and heterogeneity: a seismological perspective. Austral. J. Earth Sci. 55:419–31
    [Google Scholar]
  119. Torabi Rad M, Kotas P, Beckermann C 2013. Rayleigh number criterion for formation of A-segregates in steel castings and ingots. Metall. Mater. Trans. A 44:4266–81
    [Google Scholar]
  120. Turner AK, Hunke EC 2015. Impacts of a mushy-layer thermodynamic approach in global sea-ice simulations using the CICE sea-ice model. J. Geophys. Res. Oceans 120:1253–75
    [Google Scholar]
  121. Turner AK, Hunke EC, Bitz CM 2013. Two modes of sea-ice gravity drainage: a parameterization for large-scale modeling. J. Geophys. Res. Oceans 118:2279–94
    [Google Scholar]
  122. Valdés J, King P, Liu X 2010. On the formulation of a freckling criterion for Ni-based superalloy vacuum arc remelting ingots. Metall. Mater. Trans. A 41:2408–16
    [Google Scholar]
  123. Wells AJ, Hitchen JR, Parkinson JRG 2019. Mushy-layer growth and convection, with application to sea ice. Philos. Trans. R. Soc. A 377:20180165
    [Google Scholar]
  124. Wells AJ, Wettlaufer JS, Orszag SA 2010. Maximal potential energy transport: a variational principle for solidification problems. Phys. Rev. Lett. 105:254502
    [Google Scholar]
  125. Wells AJ, Wettlaufer JS, Orszag SA 2011. Brine fluxes from growing sea ice. Geophys. Res. Lett. 38:L04501
    [Google Scholar]
  126. Wells AJ, Wettlaufer JS, Orszag SA 2013. Nonlinear mushy-layer convection with chimneys: stability and optimal solute fluxes. J. Fluid Mech. 716:203–27
    [Google Scholar]
  127. Wettlaufer JS, Worster MG, Huppert HE 1997. The phase evolution of young sea ice. Geophys. Res. Lett. 24:1251–54
    [Google Scholar]
  128. Wettlaufer JS, Worster MG, Huppert HE 2000. Solidification of leads: theory, experiment and field observations. J. Geophys. Res. 105:1123–34
    [Google Scholar]
  129. Widell K, Fer I, Haugan PM 2006. Salt release from warming sea ice. Geophys. Res. Lett. 33:L12501
    [Google Scholar]
  130. Worster MG 1986. Solidification of an alloy from a cooled boundary. J. Fluid Mech. 167:481–501
    [Google Scholar]
  131. Worster MG 1991. Natural convection in a mushy layer. J. Fluid Mech. 224:335–59
    [Google Scholar]
  132. Worster MG 1992a. Instabilities of the liquid and mushy regions during solidification of alloys. J. Fluid Mech. 237:649–69
    [Google Scholar]
  133. Worster MG 1992b. The dynamics of mushy layers. Interactive Dynamics of Convection and Solidification SH Davis, HE Huppert, U Muller, MG Worster113–38 Dordrecht, Neth.: Springer
    [Google Scholar]
  134. Worster MG 1997. Convection in mushy layers. Annu. Rev. Fluid Mech. 29:91–122
    [Google Scholar]
  135. Worster MG 2000. Solidification of fluids. Perspectives in Fluid Dynamics GK Batchelor, HK Moffatt, MG Worster393–446 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  136. Worster MG 2002. Interfaces on all scales during solidification and melting. Interfaces for the Twenty-First Century MK Smith, MJ Miksis, GB McFadden, GP Neitzel, DR Canright187–201 London: Imp. Coll. Press
    [Google Scholar]
  137. Worster MG, Kerr RC 1994. The transient behavior of alloys solidified from below prior to the formation of chimneys. J. Fluid Mech. 269:23–44
    [Google Scholar]
  138. Worster MG, Rees Jones DW 2015. Sea-ice thermodynamics and brine drainage. Philos. Trans. R. Soc. A 373:20140166
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010719-060332
Loading
/content/journals/10.1146/annurev-fluid-010719-060332
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error