1932

Abstract

Flows of solid particles are known to exhibit a clustering instability—dynamic microstructures characterized by a dense region of highly concentrated particles surrounded by a dilute region with relatively few particles—that has no counterpart in molecular fluids. Clustering is pervasive in rapid flows. Its presence impacts momentum, heat, and mass transfer, analogous to how turbulence affects single-phase flows. Yet predicting clustering is challenging, again analogous to the prediction of turbulent flows. In this review, we focus on three key areas: () state-of-the-art mathematical tools used to study clustering, with an emphasis on kinetic theory–based continuum models, which are critical to the prediction of the larger systems found in nature and industry, () mechanisms that give rise to clustering, most of which are explained via linear stability analyses of kinetic theory–based models, and () a critical review of validation studies of kinetic theory–based models to highlight the accuracies and limitations of such theories.

Associated Article

There are media items related to this article:
The Clustering Instability in Rapid Granular and Gas-Solid Flows: Supplemental Video 1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060028
2017-01-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/fluid/49/1/annurev-fluid-010816-060028.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060028&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal K, Loezos PN, Syamlal M, Sundaresan S. 2001. The role of meso-scale structures in rapid gas-solid flows. J. Fluid Mech. 445:151–85 [Google Scholar]
  2. Alam M. 2006. Streamwise structures and density patterns in rapid granular Couette flow: a linear stability analysis. J. Fluid Mech. 553:1–32 [Google Scholar]
  3. Alam M, Nott PR. 1997. The influence of friction on the stability of unbounded granular shear flow. J. Fluid Mech. 343:267–301 [Google Scholar]
  4. Anderson K, Sundaresan S, Jackson R. 1995. Instabilities and the formation of bubbles in fluidized beds. J. Fluid Mech. 303:327–66 [Google Scholar]
  5. Anderson TB, Jackson R. 1967. A fluid mechanical description of fluidized beds: equations of motion. Ind. Eng. Chem. Fundam. 6:527–39 [Google Scholar]
  6. Anderson TB, Jackson R. 1968. Fluid mechanical description of fluidized beds: stability of state of uniform fluidization. Ind. Eng. Chem. Fundam. 7:12–21 [Google Scholar]
  7. Aranson IS, Snezhko A, Olafsen JS, Urbach JS. 2008. Comment on “Long-lived giant number fluctuations in a swarming granular nematic.”. Science 320:612 [Google Scholar]
  8. Balachandar S, Eaton JK. 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42:111–33 [Google Scholar]
  9. Batchelor GK. 1988. A new theory of the instability of a uniform fluidized bed. J. Fluid Mech. 193:75–110 [Google Scholar]
  10. Beetstra R, van der Hoef MA, Kuipers JAM. 2006. A lattice-Boltzmann simulation study of the drag coefficient of clusters of spheres. Comput. Fluids 35:966–70 [Google Scholar]
  11. Benyahia S. 2008. Verification and validation study of some polydisperse kinetic theories. Chem. Eng. Sci. 63:5672–80 [Google Scholar]
  12. Benyahia S. 2012. Fine-grid simulations of gas-solids flow in a circulating fluidized bed. AIChE J. 58:3589–92 [Google Scholar]
  13. Benyahia S, Sundaresan S. 2012. Do we need sub-grid scale corrections for both continuum and discrete gas-particle flow models?. Powder Technol. 220:2–6 [Google Scholar]
  14. Bird GA. 1994. Molecular Gas Dynamics and the Direct Simulation of Gas Flows Oxford: Clarendon
  15. Brennen CE. 2009. Fundamentals of Multiphase Flow Cambridge, UK: Cambridge Univ. Press
  16. Brereton CMH, Grace JR. 1993. Microstructural aspects of the behavior of circulating fluidized beds. Chem. Eng. Sci. 48:2565–72 [Google Scholar]
  17. Brey JJ, Ruiz-Montero MJ, Cubero D. 1999a. On the validity of linear hydrodynamics for low-density granular flows described by the Boltzmann equation. Europhys. Lett. 48:359–64 [Google Scholar]
  18. Brey JJ, Ruiz-Montero MJ, Cubero D. 1999b. Origin of density clustering in a freely evolving granular gas. Phys. Rev. E 60:3150–57 [Google Scholar]
  19. Brey JJ, Ruiz-Montero MJ, Dominguez A. 2008. Shear state of freely evolving granular gases. Phys. Rev. E 78:041301 [Google Scholar]
  20. Bridges FG, Hatzes A, Lin DNC. 1984. Structure, stability and evolution of Saturn's rings. Nature 309:333–35 [Google Scholar]
  21. Brilliantov NV, Pöschel T. 2004. Kinetic Theory of Granular Gases New York: Oxford Univ. Press
  22. Brilliantov NV, Saluena C, Schwager T, Poschel T. 2004. Transient structures in a granular gas. Phys. Rev. Lett. 93:134301 [Google Scholar]
  23. Brito R, Ernst MH. 1998. Extension of Haff's cooling law in granular flows. Europhys. Lett. 43:497–502 [Google Scholar]
  24. Capecelatro J, Desjardins O, Fox RO. 2015. On fluid-particle dynamics in fully developed cluster-induced turbulence. J. Fluid Mech. 780:578–635 [Google Scholar]
  25. Capecelatro J, Pepiot P, Desjardins O. 2014. Numerical characterization and modeling of particle clustering in wall-bounded vertical risers. Chem. Eng. J. 245:295–310 [Google Scholar]
  26. Chamorro MG, Reyes FV, Garzó V. 2015. Non-Newtonian hydrodynamics for a dilute granular suspension under uniform shear flow. Phys. Rev. E 92:052205 [Google Scholar]
  27. Chandrasekhar S. 1961. Hydrodynamic and Hydromagnetic Stability Oxford: Clarendon
  28. Chapman S, Cowling TG. 1990. The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases Cambridge, UK: Cambridge Univ. Press
  29. Chew JW, Cahyadi A, Hrenya CM, Karri R, Cocco RA. 2015. Review of entrainment correlations in gas-solid fluidization. Chem. Eng. J. 260:152–71 [Google Scholar]
  30. Chew JW, Hays R, Findlay JG, Knowlton TM, Karri SBR. et al. 2012. Cluster characteristics of Geldart Group B particles in a pilot-scale CFB riser. I. Monodisperse systems. Chem. Eng. Sci. 68:72–81 [Google Scholar]
  31. Clift R, Grace JR, Weber ME. 1978. Bubbles, Drops, and Particles New York: Academic
  32. Cloete S, Johansen ST, Amini S. 2012. An assessment of the ability of computational fluid dynamic models to predict reactive gas-solid flows in a fluidized bed. Powder Technol. 215–16:15–25 [Google Scholar]
  33. Conway SL, Glasser BJ. 2004. Density waves and coherent structures in granular Couette flows. Phys. Fluids 16:509–29 [Google Scholar]
  34. Conway SL, Shinbrot T, Glasser BJ. 2004. A Taylor vortex analogy in granular flows. Nature 431:433–37 [Google Scholar]
  35. Dasgupta S, Jackson R, Sundaresan S. 1994. Turbulent gas-particle flow in vertical risers. AIChE J. 40:215–28 [Google Scholar]
  36. Di Felice R. 1994. The voidage function for fluid particle interaction systems. Int. J. Multiphase Flow 20:153–59 [Google Scholar]
  37. Drazin PG, Reid WH. 1981. Hydrodynamic Stability Cambridge, UK: Cambridge Univ. Press
  38. Drew DA, Passman SL. 1999. Theory of Multicomponent Fluids New York: Springer
  39. Duru P, Guazzelli E. 2002. Experimental investigation on the secondary instability of liquid-fluidized beds and the formation of bubbles. J. Fluid Mech. 470:359–82 [Google Scholar]
  40. Eshuis P, van der Weele K, van der Meer D, Bos R, Lohse D. 2007. Phase diagram of vertically shaken granular matter. Phys. Fluids 19:123301 [Google Scholar]
  41. Foerster SF, Louge MY, Chang H, Allia K. 1994. Measurements of the collision properties of small spheres. Phys. Fluids 6:1108–15 [Google Scholar]
  42. Fox RO. 2008. A quadrature-based third-order moment method for dilute gas-particle flows. J. Comput. Phys. 227:6313–50 [Google Scholar]
  43. Fox RO. 2014. On multiphase turbulence models for collisional fluid-particle flows. J. Fluid Mech. 742:368–424 [Google Scholar]
  44. Fullmer WD, Hrenya CM. 2016. Quantitative assessment of fine-grid kinetic-theory-based predictions of mean-slip in unbounded fluidization. AIChE J. 62:11–17 [Google Scholar]
  45. Galvin JE, Hrenya CM, Wildman RD. 2007. On the role of the Knudsen layer in rapid granular flows. J. Fluid Mech. 585:73–92 [Google Scholar]
  46. Garzó V. 2005. Instabilities in a free granular fluid described by the Enskog equation. Phys. Rev. E 72:021106 [Google Scholar]
  47. Garzó V. 2006. Transport coefficients for an inelastic gas around uniform shear flow: linear stability analysis. Phys. Rev. E 73:021304 [Google Scholar]
  48. Garzó V, Dufty JW, Hrenya CM. 2007. Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport. Phys. Rev. E 76:031303 [Google Scholar]
  49. Garzó V, Fullmer WD, Hrenya CM, Yin XL. 2016. Transport coefficients of solid particles immersed in a viscous gas. Phys. Rev. E 93:012905 [Google Scholar]
  50. Garzó V, Tenneti S, Subramaniam S, Hrenya CM. 2012. Enskog kinetic theory for monodisperse gas-solid flows. J. Fluid Mech. 712:129–68 [Google Scholar]
  51. Gidaspow D. 1994. Multiphase Flow and Fluidization San Diego: Academic
  52. Glasser B, Kevrekidis I, Sundaresan S. 1996. One-and two-dimensional travelling wave solutions in gas-fluidized beds. J. Fluid Mech. 306:183–221 [Google Scholar]
  53. Glasser B, Kevrekidis I, Sundaresan S. 1997. Fully developed travelling wave solutions and bubble formation in fluidized beds. J. Fluid Mech. 334:157–88 [Google Scholar]
  54. Glasser B, Sundaresan S, Kevrekidis I. 1998. From bubbles to clusters in fluidized beds. Phys. Rev. Lett. 81:1849–52 [Google Scholar]
  55. Goddard JD, Alam M. 1999. Shear-flow and material instabilities in particulate suspensions and granular media. Part. Sci. Technol. 17:69–96 [Google Scholar]
  56. Goldfarb DJ, Glasser BJ, Shinbrot T. 2002. Shear instabilities in granular flows. Nature 415:302–5 [Google Scholar]
  57. Goldhirsch I. 2003. Rapid granular flows. Annu. Rev. Fluid Mech. 35:267–93 [Google Scholar]
  58. Goldhirsch I, Tan M-L, Zanetti G. 1993. A molecular dynamical study of granular fluids I: the unforced granular gas in two dimensions. J. Sci. Comput. 8:1–40 [Google Scholar]
  59. Goldhirsch I, Zanetti G. 1993. Clustering instability in dissipative gases. Phys. Rev. Lett. 70:1619–22 [Google Scholar]
  60. Goldshtein A, Shapiro M. 1995. Mechanics of collisional motion of granular materials. 1. General hydrodynamic equations. J. Fluid Mech. 282:75–114 [Google Scholar]
  61. Goldsmith W. 1960. Results of impact experiments. Impact: The Theory and Physical Behavior of Colliding Solids249–307 London: E. Arnold [Google Scholar]
  62. Goldstein S. 1969. Fluid mechanics in first half of this century. Annu. Rev. Fluid Mech. 1:1–29 [Google Scholar]
  63. Guazzelli E, Hinch J. 2011. Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech. 43:97–116 [Google Scholar]
  64. Guo Y, Curtis JS. 2015. Discrete element method simulations for complex granular flows. Annu. Rev. Fluid Mech. 47:21–46 [Google Scholar]
  65. Haff PK. 1983. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134:401–30 [Google Scholar]
  66. Hill RJ, Koch DL, Ladd AJC. 2001. Moderate-Reynolds-number flows in ordered and random arrays of spheres. J. Fluid Mech. 448:243–78 [Google Scholar]
  67. Holloway W, Sun J, Sundaresan S. 2012. Effect of microstructural anisotropy on the fluid-particle drag force and the stability of the uniformly fluidized state. J. Fluid Mech. 713:27–49 [Google Scholar]
  68. Hopkins MA, Jenkins JT, Louge MY. 1993. On the structure of three-dimensional shear flows. Mech. Mater. 16:179–87 [Google Scholar]
  69. Hopkins MA, Louge M. 1991. Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A 3:47–57 [Google Scholar]
  70. Horio M, Kuroki H. 1994. Three-dimensional flow visualization of dilutely dispersed solids in bubbling and circulating fluidized beds. Chem. Eng. Sci. 49:2413–21 [Google Scholar]
  71. Hrenya CM. 2011. Kinetic theory for granular materials: polydispersity. Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice S Pannala, M Syamlal, T O'Brien 102–27 Hershey, PA: IGI Glob. [Google Scholar]
  72. Hrenya CM, Sinclair JL. 1997. Effects of particle-phase turbulence in gas-solid flows. AIChE J. 43:853–69 [Google Scholar]
  73. Igci Y, Andrews AT, Sundaresan S, Pannala S, O'Brien T. 2008. Filtered two-fluid models for fluidized gas-particle suspensions. AIChE J. 54:1431–48 [Google Scholar]
  74. Igci Y, Sundaresan S. 2011. Verification of filtered two-fluid models for gas-particle flows in risers. AIChE J. 57:2691–707 [Google Scholar]
  75. Ishii M, Hibiki T. 2011. Thermo-Fluid Dynamics of Two-Phase Flow New York: Springer, 2nd ed..
  76. Jackson R. 2000. The Dynamics of Fluidized Particles Cambridge, UK: Cambridge Univ. Press
  77. Kajishima T, Takiguchi S. 2002. Interaction between particle clusters and particle-induced turbulence. Int. J. Heat Fluid Flow 23:639–46 [Google Scholar]
  78. Kasbaoui MH, Koch DL, Subramanian G, Desjardins O. 2015. Preferential concentration driven instability of sheared gas-solid suspensions. J. Fluid Mech. 770:85–123 [Google Scholar]
  79. Kashyap M, Chalermsinsuwan B, Gidaspow D. 2011. Measuring turbulence in a circulating fluidized bed using PIV techniques. Particuology 9:572–88 [Google Scholar]
  80. Kashyap M, Gidaspow D. 2010. Computation and measurements of mass transfer and dispersion coefficients in fluidized beds. Powder Technol. 203:40–56 [Google Scholar]
  81. Kobayashi H, Yamamoto R. 2011. Implementation of Lees-Edwards periodic boundary conditions for direct numerical simulations of particle dispersions under shear flow. J. Chem. Phys. 134:064110 [Google Scholar]
  82. Koch DL. 1990. Kinetic theory for a monodisperse gas-solid suspension. Phys. Fluids A 2:1711–23 [Google Scholar]
  83. Koch DL, Sangani AS. 1999. Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulations. J. Fluid Mech. 400:229–63 [Google Scholar]
  84. Kremer GM, Santos A, Garzó V. 2014. Transport coefficients of a granular gas of inelastic rough hard spheres. Phys. Rev. E 90:022205 [Google Scholar]
  85. Kruggel-Emden H, Simsek E, Rickelt S, Wirtz S, Scherer V. 2007. Review and extension of normal force models for the discrete element method. Powder Technol. 171:157–73 [Google Scholar]
  86. Kruggel-Emden H, Wirtz S, Scherer V. 2008. A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior. Chem. Eng. Sci. 63:1523–41 [Google Scholar]
  87. Kudrolli A, Wolpert M, Gollub JP. 1997. Cluster formation due to collisions in granular material. Phys. Rev. Lett. 78:1383–86 [Google Scholar]
  88. Labous L, Rosato AD, Dave RN. 2000. Measurement of collisional properties of spheres using high-speed video analysis. Phys. Rev. E 56:5717–25 [Google Scholar]
  89. LaMarche CQ, Liu PY, Kellogg KM, Weimer AW, Hrenya CM. 2015. A system-size independent validation of CFD-DEM for noncohesive particles. AIChE J. 61:4051–58 [Google Scholar]
  90. LaMarche CQ, Miller A, Liu P, Hrenya CM. 2016. Linking micro-scale predictions of capillary forces to macro-scale fluidization experiments in humid environments. AIChE J. 623585–97
  91. Lasinski ME, Curtis JS, Pekny JF. 2004. Effect of system size on particle-phase stress and microstructure formation. Phys. Fluids 16:265–73 [Google Scholar]
  92. Lees AW, Edwards SF. 1972. The computer study of transport processes under extreme conditions. J. Phys. C 5:1921–29 [Google Scholar]
  93. Li HZ, Xia YS, Tung YK, Kwauk M. 1991. Microvisualization of clusters in a fast fluidized bed. Powder Technol. 66:231–35 [Google Scholar]
  94. Li J, Ge W, Wang W, Yang N, Liu X. et al. 2013. From Multiscale Modeling to Meso-Science: A Chemical Engineering Perspective New York: Springer
  95. Li TW, Pannala S, Shahnam M. 2014. CFD simulations of circulating fluidized bed risers, part II: evaluation of differences between 2D and 3D simulations. Powder Technol. 254:115–24 [Google Scholar]
  96. Lighthill MJ, Whitham GB. 1955. On kinematic waves. 1. Flood movement in long rivers. Proc. R. Soc. Lond. A 229:281–316 [Google Scholar]
  97. Liss ED, Glasser BJ. 2001. The influence of clusters on the stress in a sheared granular material. Powder Technol. 116:116–32 [Google Scholar]
  98. Liu P, Hrenya CM. 2014. Challenges of DEM: I. Competing bottlenecks in parallelization of gas-solid flows. Powder Technol. 264:620–26 [Google Scholar]
  99. Liu P, LaMarche CQ, Kellogg KM, Hrenya CM. 2016. Fine-particle defluidization: interaction between cohesion, Young's modulus and static bed height. Chem. Eng. Sci. 145:266–78 [Google Scholar]
  100. Mandich K, Cattolica RJ. 2013. Longitudinal and transverse disturbances in unbounded, gas-fluidized beds. Phys. Fluids 25:023301 [Google Scholar]
  101. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J. et al. 2013. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85:1143–89 [Google Scholar]
  102. Mitrano PP, Dahl SR, Cromer DJ, Pacella MS, Hrenya CM. 2011. Instabilities in the homogeneous cooling of a granular gas: a quantitative assessment of kinetic-theory predictions. Phys. Fluids 23:093303 [Google Scholar]
  103. Mitrano PP, Dahl SR, Hilger AM, Ewasko CJ, Hrenya CM. 2013. Dual role of friction in granular flows: attenuation versus enhancement of instabilities. J. Fluid Mech. 729:484–95 [Google Scholar]
  104. Mitrano PP, Garzo V, Hilger AM, Ewasko CJ, Hrenya CM. 2012. Assessing a hydrodynamic description for instabilities in highly dissipative, freely cooling granular gases. Phys. Rev. E 85:041303 [Google Scholar]
  105. Mitrano PP, Zenk JR, Benyahia S, Galvin JE, Dahl SR, Hrenya CM. 2014. Kinetic-theory predictions of clustering instabilities in granular flows: beyond the small-Knudsen-number regime. J. Fluid Mech. 738:R2 [Google Scholar]
  106. Nie XB, Ben-Naim E, Chen SY. 2002. Dynamics of freely cooling granular gases. Phys. Rev. Lett. 89:204301 [Google Scholar]
  107. Noymer PD, Glicksman LR. 1998. Cluster motion and particle-convective heat transfer at the wall of a circulating fluidized bed. Int. J. Heat Mass Transf. 41:147–58 [Google Scholar]
  108. O'Brien TJ. 2014. A multiphase turbulence theory for gas-solid flows: I. Continuity and momentum equations with Favre-averaging. Powder Technol. 265:83–87 [Google Scholar]
  109. Onuki A. 1997. A new computer method of solving dynamic equations under externally applied deformations. J. Phys. Soc. Jpn. 66:1836–37 [Google Scholar]
  110. Ottino JM, Khakhar DV. 2000. Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32:55–91 [Google Scholar]
  111. Ozarkar SS, Yan XK, Wang SY, Milioli CC, Milioli FE, Sundaresan S. 2015. Validation of filtered two-fluid models for gas-particle flows against experimental data from bubbling fluidized bed. Powder Technol. 284:159–69 [Google Scholar]
  112. Parmentier JF, Simonin O, Delsart O. 2012. A functional subgrid drift velocity model for filtered drag prediction in dense fluidized bed. AIChE J. 58:1084–98 [Google Scholar]
  113. Patankar NA, Joseph DD. 2001. Modeling and numerical simulation of particulate flows by the Eulerian-Lagrangian approach. Int. J. Multiphase Flow 27:1659–84 [Google Scholar]
  114. Pathak SN, Jabeen Z, Das D, Rajesh R. 2014. Energy decay in three-dimensional freely cooling granular gas. Phys. Rev. Lett. 112:038001 [Google Scholar]
  115. Pöschel T, Schwager T. 2005. Computational Granular Dynamics: Models and Algorithms Berlin: Springer-Verlag
  116. Radl S, Sundaresan S. 2014. A drag model for filtered Euler-Lagrange simulations of clustered gas-particle suspensions. Chem. Eng. Sci. 117:416–25 [Google Scholar]
  117. Ramaprabhu P, Andrews MJ. 2004. Experimental investigation of Rayleigh-Taylor mixing at small Atwood numbers. J. Fluid Mech. 502:233–71 [Google Scholar]
  118. Rice RB, Hrenya CM. 2009. Characterization of clusters in rapid granular flows. Phys. Rev. E 79:021304 [Google Scholar]
  119. Royer JR, Evans DJ, Oyarte L, Guo Q, Kapit E. et al. 2009. High-speed tracking of rupture and clustering in freely falling granular streams. Nature 459:1110–13 [Google Scholar]
  120. Savage SB. 1992. Instability of unbounded uniform granular shear flow. J. Fluid Mech. 241:109–23 [Google Scholar]
  121. Schneiderbauer S, Pirker S. 2014. Filtered and heterogeneity-based subgrid modifications for gas-solid drag and solid stresses in bubbling fluidized beds. AIChE J. 60:839–54 [Google Scholar]
  122. Seville JPK, Willett CD, Knight PC. 2000. Interparticle forces in fluidisation: a review. Powder Technol. 113:261–68 [Google Scholar]
  123. Shaffer F, Gopalan B, Breault RW, Cocco R, Karri SBR. et al. 2013. High speed imaging of particle flow fields in CFB risers. Powder Technol. 242:86–99 [Google Scholar]
  124. Shah MT, Utikar RP, Tade MO, Evans GM, Pareek VK. 2013. Effect of a cluster on gas-solid drag from lattice Boltzmann simulations. Chem. Eng. Sci. 102:365–72 [Google Scholar]
  125. Snider D. 2001. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J. Comput. Phys. 170:523–49 [Google Scholar]
  126. Sorace CM, Louge MY, Crozier MD, Law VHC. 2009. High apparent adhesion energy in the breakdown of normal restitution for binary impacts of small spheres at low speed. Mech. Res. Commun. 36:364–68 [Google Scholar]
  127. Soto R, Mareschal M, Mansour MM. 2000. Nonlinear analysis of the shearing instability in granular gases. Phys. Rev. E 62:3836–42 [Google Scholar]
  128. Stevens AB, Hrenya CM. 2005. Comparison of soft-sphere models to measurements of collision properties during normal impacts. Powder Technol. 154:99–109 [Google Scholar]
  129. Sundaresan S. 2003. Instabilities in fluidized beds. Annu. Rev. Fluid Mech. 35:63–88 [Google Scholar]
  130. Tan ML, Goldhirsch I. 1997. Intercluster interactions in rapid granular shear flows. Phys. Fluids 9:856–69 [Google Scholar]
  131. Tanaka T, Yonemura S, Kiribayashi K, Tsuji Y. 1996. Cluster formation and particle-induced instability in gas-solid flows predicted by the DSMC method. JSME Int. J. B 39:239–45 [Google Scholar]
  132. Tang Y, Peters EAJF, Kuipers JAM, Kriebitzsch SHL, van der Hoef MA. 2015. A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres. AIChE J. 61:688–98 [Google Scholar]
  133. Tenneti S, Garg R, Subramaniam S. 2011. Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int. J. Multiphase Flow 37:1072–92 [Google Scholar]
  134. Tenneti S, Mehrabadi M, Subramaniam S. 2016. Stochastic Lagrangian model for hydrodynamic acceleration of inertial particles in gas-solid suspensions. J. Fluid Mech. 788:695–729 [Google Scholar]
  135. Tenneti S, Subramaniam S. 2014. Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46:199–230 [Google Scholar]
  136. Thorpe SA. 1971. Experiments on instability of stratified shear flows: miscible fluids. J. Fluid Mech. 46:299–319 [Google Scholar]
  137. Tsuo YP, Gidaspow D. 1990. Computation of flow patterns in circulating fluidized beds. AIChE J. 36:885–96 [Google Scholar]
  138. Tuzla K, Sharma AK, Chen JC, Schiewe T, Wirth KE, Molerus O. 1998. Transient dynamics of solid concentration in downer fluidized bed. Powder Technol. 100:166–72 [Google Scholar]
  139. Uhlmann M, Doychev T. 2014. Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. J. Fluid Mech. 752:310–48 [Google Scholar]
  140. Valverde JM, Castellanos A. 2008. Fluidization of nanoparticles: a simple equation for estimating the size of agglomerates. Chem. Eng. J. 140:296–304 [Google Scholar]
  141. van der Hoef MA, Annaland MV, Kuipers JAM. 2004. Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy. Chem. Eng. Sci. 59:5157–65 [Google Scholar]
  142. van der Hoef MA, van Sint Annaland M, Deen N, Kuipers J. 2008. Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40:47–70 [Google Scholar]
  143. Vicsek T, Zafeiris A. 2012. Collective motion. Phys. Rep. 517:71–140 [Google Scholar]
  144. Vinningland JL, Johnsen O, Flekkoy EG, Toussaint R, Maloy KJ. 2007. Experiments and simulations of a gravitational granular flow instability. Phys. Rev. E 76:051306 [Google Scholar]
  145. Wallis GB. 1969. One-Dimensional Two-Phase Flow New York: McGraw-Hill
  146. Wang CH, Jackson R, Sundaresan S. 1996. Stability of bounded rapid shear flows of a granular material. J. Fluid Mech. 308:31–62 [Google Scholar]
  147. Wang JW. 2008. High-resolution Eulerian simulation of RMS of solid volume fraction fluctuation and particle clustering characteristics in a CFB riser. Chem. Eng. Sci. 63:3341–47 [Google Scholar]
  148. Wen CY, Yu YH. 1966. Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 62:100–11 [Google Scholar]
  149. Whitham GB. 1974. Linear and Nonlinear Waves New York: Wiley
  150. Wylie JJ, Koch DL. 2000. Particle clustering due to hydrodynamic interactions. Phys. Fluids 12:964–70 [Google Scholar]
  151. Wylie JJ, Koch DL, Ladd AJ. 2003. Rheology of suspensions with high particle inertia and moderate fluid inertia. J. Fluid Mech. 480:95–118 [Google Scholar]
  152. Xie N, Battaglia F, Pannala S. 2008. Effects of using two- versus three-dimensional computational modeling of fluidized beds—Part I, hydrodynamics. Powder Technol. 182:1–13 [Google Scholar]
  153. Yang TY, Leu LP. 2009. Multiresolution analysis on identification and dynamics of clusters in a circulating fluidized bed. AIChE J. 55:612–29 [Google Scholar]
  154. Yin X, Zenk JR, Mitrano PP, Hrenya CM. 2013. Impact of collisional versus viscous dissipation on flow instabilities in gas–solid systems. J. Fluid Mech. 727:R2 [Google Scholar]
  155. Zhou GF, Xiong QG, Wang LM, Wang XW, Ren XX, Ge W. 2014. Structure-dependent drag in gas-solid flows studied with direct numerical simulation. Chem. Eng. Sci. 116:9–22 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060028
Loading
/content/journals/10.1146/annurev-fluid-010816-060028
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error