1932

Abstract

Shear thickening is the increase of the apparent viscosity as shear rate or shear stress increases. This phenomenon is pronounced in concentrated (dense) suspensions of both colloidal-scale and larger particles, with an abrupt form, known as discontinuous shear thickening, observed as the maximum flowable solid fraction is approached. An overview of observed shear thickening behavior is presented, with a discussion of present understanding of the relationship of suspension shear thickening to granular jamming. Mechanistic arguments for the extreme change in rheological properties are outlined, and recent evidence from experiment and simulation for the role of contact forces is presented. Interactions of particles by fluid mechanical lubrication, contact, and steric and electrostatic forces, together with extreme stresses that may lead to solid deformation, require consideration of surface interactions and their tribological consequences in describing shear thickening.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060128
2020-01-05
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/fluid/52/1/annurev-fluid-010816-060128.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060128&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerson BJ 1990. Shear induced order and shear processing of model hard sphere suspensions. J. Rheol. 34:553–90
    [Google Scholar]
  2. Andreotti B, Barrat JL, Heussinger C 2012. Shear flow of non-Brownian suspensions close to jamming. Phys. Rev. Lett. 109:105901
    [Google Scholar]
  3. Ball RC, Melrose JR 1995. Lubrication breakdown in hydrodynamic simulations of concentrated colloids. Adv. Colloid Interface Sci. 59:19–30
    [Google Scholar]
  4. Banchio AJ, Brady JF 2003. Accelerated Stokesian dynamics: Brownian motion. J. Chem. Phys. 118:10323
    [Google Scholar]
  5. Barnes HA 1989. Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33:329–66
    [Google Scholar]
  6. Bashkirtseva I, Zubarev AY, Iskakova LY, Ryashko L 2009. On rheophysics of high-concentrated suspensions. Colloid J. 71:446–54
    [Google Scholar]
  7. Bender J, Wagner NJ 1996. Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J. Rheol. 40:899–916
    [Google Scholar]
  8. Bi D, Zhang J, Chakraborty B, Behringer RP 2011. Jamming by shear. Nature 480:355–58
    [Google Scholar]
  9. Bischoff White EE, Chellamuthu M, Rothstein JP 2010. Extensional rheology of a shear-thickening cornstarch and water suspension. Rheol. Acta 49:119–29
    [Google Scholar]
  10. Boersma WH, Laven J, Stein HN 1990. Shear thickening (dilatancy) in concentrated dispersions. AIChE J. 36:321–32
    [Google Scholar]
  11. Bossis G, Boustingorry P, Grasselli Y, Meunier A, Morini R et al. 2017. Discontinuous shear thickening in the presence of polymers adsorbed on the surface of calcium carbonate particles. Rheol. Acta 56:415–30
    [Google Scholar]
  12. Boyer F, Guazzelli É, Pouliquen O 2011. Unifying suspension and granular rheology. Phys. Rev. Lett. 107:188301
    [Google Scholar]
  13. Brady JF, Bossis G 1985. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J. Fluid Mech. 155:105–29
    [Google Scholar]
  14. Brady JF, Bossis G 1988. Stokesian dynamics.. Annu. Rev. Fluid Mech. 20:111–57
    [Google Scholar]
  15. Brady JF, Morris JF 1997. Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348:103–39
    [Google Scholar]
  16. Brown E, Jaeger HM 2012. The role of dilation and confining stresses in shear thickening of dense suspensions. J. Rheol. 56:875–923
    [Google Scholar]
  17. Brown E, Jaeger HM 2014. Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys. 77:046602
    [Google Scholar]
  18. Cates ME, Wittmer JP, Bouchaud JP, Claudin P 1998. Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81:1841–44
    [Google Scholar]
  19. Catherall AA, Melrose JR, Ball RC 2000. Shear thickening and order–disorder effects in concentrated colloids at high shear rates. J. Rheol. 44:1–25
    [Google Scholar]
  20. Cheng X, McCoy JH, Israelachvili JN, Cohen I 2011. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333:1276–79
    [Google Scholar]
  21. Comtet J, Chatté G, Niguès A, Bocquet L, Siria A, Colin A 2017. Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nat. Commun. 8:15633
    [Google Scholar]
  22. Cundall PA, Strack ODL 1979. A discrete numerical model for granular assemblies. Geotechnique 29:47–65
    [Google Scholar]
  23. Cwalina CD, Wagner NJ 2014. Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions. J. Rheol. 58:949–67
    [Google Scholar]
  24. D'Haene P, Mewis J, Fuller GG 1993. Scattering dichroism measurements of flow-induced structure of a shear thickening suspension. J. Colloid Interface Sci. 156:350–58
    [Google Scholar]
  25. Dong J, Trulsson M 2017. Analog of discontinuous shear thickening flows under confining pressure. Phys. Rev. Fluids 2:081301
    [Google Scholar]
  26. Egres RG, Wagner NJ 2005. The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J. Rheol. 49:719–46
    [Google Scholar]
  27. Estrada N, Taboada A, Radjai F 2008. Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E 78:021301
    [Google Scholar]
  28. Fall A, Bertrand F, Hautemayou D, Mezière C, Moucheront P et al. 2015. Macroscopic discontinuous shear thickening versus local shear jamming in cornstarch. Phys. Rev. Lett. 114:098301
    [Google Scholar]
  29. Farrell GR, Martini KM, Menon N 2010. Loose packings of frictional spheres. Soft Matter 6:2925–30
    [Google Scholar]
  30. Fernandez N, Cayer-Barrioz J, Isa L, Spencer ND 2015. Direct, robust technique for the measurement of friction between microspheres. Langmuir 31:8809–17
    [Google Scholar]
  31. Fernandez N, Mani R, Rinaldi D, Kadau D, Mosquet M et al. 2013. Microscopic mechanism for shear thickening of non-Brownian suspensions. Phys. Rev. Lett. 111:108301
    [Google Scholar]
  32. Foss DR, Brady JF 2000. Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation. J. Fluid Mech. 407:167–200
    [Google Scholar]
  33. Franks GV, Zhou Z, Duin NJ, Boger DV 2000. Effect of interparticle forces on shear thickening of oxide suspensions. J. Rheol. 44:759–79
    [Google Scholar]
  34. Freundlich H, Röder HL 1938. Dilatancy and its relation to thixotropy. Trans. Faraday Soc. 34:308–16
    [Google Scholar]
  35. Gadala-Maria F, Acrivos A 1980. Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24:799–814
    [Google Scholar]
  36. Gallier S, Lemaire E, Peters F, Lobry L 2014. Rheology of sheared suspensions of rough frictional particles. J. Fluid Mech. 757:514–49
    [Google Scholar]
  37. Gamonpilas C, Morris JF, Denn MM 2016. Shear and normal stress measurements in non-Brownian monodisperse and bidisperse suspensions. J. Rheol. 60:289–96
    [Google Scholar]
  38. Garland S, Gauthier G, Martin J, Morris J 2013. Normal stress measurements in sheared non-Brownian suspensions. J. Rheol. 57:71–88
    [Google Scholar]
  39. Gopalakrishnan V, Zukoski C 2004. Effect of attractions on shear thickening in dense suspensions. J. Rheol. 48:1321–44
    [Google Scholar]
  40. Grob M, Heussinger C, Zippelius A 2014. Jamming of frictional particles: a nonequilibrium first-order phase transition. Phys. Rev. E 89:050201
    [Google Scholar]
  41. Gurnon AK, Wagner NJ 2015. Microstructure and rheology relationships for shear thickening colloidal dispersions. J. Fluid Mech. 769:242–76
    [Google Scholar]
  42. Guy B, Richards J, Hodgson D, Blanco E, Poon W 2018. Constraint-based approach to granular dispersion rheology. Phys. Rev. Lett. 121:128001
    [Google Scholar]
  43. Guy BM, Hermes M, Poon WCK 2015. Towards a unified description of the rheology of hard-particle suspensions. Phys. Rev. Lett. 115:088304
    [Google Scholar]
  44. Hermes M, Guy BM, Poon WCK, Poy G, Cates ME, Wyart M 2016. Unsteady flow and particle migration in dense, non-Brownian suspensions. J. Rheol. 60:905–16
    [Google Scholar]
  45. Heussinger C 2013. Shear thickening in granular suspensions: inter-particle friction and dynamically correlated clusters. Phys. Rev. E 88050201(R)
    [Google Scholar]
  46. Hoffman RL 1972. Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability. Trans. Soc. Rheol. 16:155–73
    [Google Scholar]
  47. Hoffman RL 1974. Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests. J. Colloid Interface Sci. 46:491–506
    [Google Scholar]
  48. Israelachvili JN 2011. Intermolecular and Surface Forces New York: Academic
  49. Jeffrey DJ, Onishi Y 1984. Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139:261–90
    [Google Scholar]
  50. Kaldasch J, Senge B 2009. Shear thickening in polymer stabilized colloidal suspensions. Colloid Polymer Sci. 287:1481–85
    [Google Scholar]
  51. Kaldasch J, Senge B, Laven J 2008. Shear thickening in electrically-stabilized colloidal suspensions. Rheol. Acta 47:319–23
    [Google Scholar]
  52. Khandavalli S, Rothstein JP 2015. Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions. Rheol. Acta 54:601–18
    [Google Scholar]
  53. Kim S, Karrila SJ 1991. Microhydrodynamics: Principles and Selected Applications Boston: Butterworth-Heinemann
  54. Kulkarni SD, Morris JF 2009. Ordering transition and structural evolution under shear in Brownian suspensions. J. Rheol. 53:417–39
    [Google Scholar]
  55. Laun HM 1994. Normal stresses in extremely shear thickening polymer dispersions. J. Non-Newton. Fluid Mech. 54:87–108
    [Google Scholar]
  56. Lee YS, Wetzel ED, Wagner NJ 2003. The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 38:2825–33
    [Google Scholar]
  57. Lim AS, Lopatnikov SL, Wagner NJ, Gillespie JW 2010. Investigating the transient response of a shear thickening fluid using the split Hopkinson pressure bar technique. Rheol. Acta 49:879–90
    [Google Scholar]
  58. Lin NYC, Guy BM, Hermes M, Ness C, Sun J et al. 2015. Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett. 115:228304
    [Google Scholar]
  59. Ling X, Butt HJ, Kappl M 2007. Quantitative measurement of friction between single microspheres by friction force microscopy. Langmuir 23:8392–99
    [Google Scholar]
  60. Liu AJ, Nagel SR 2010. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1:347–69
    [Google Scholar]
  61. Lootens D, Van Damme H, Hébraud P 2003. Giant stress fluctuations at the jamming transition. Phys. Rev. Lett. 90:178301
    [Google Scholar]
  62. Lootens D, Van Damme H, Hémar Y, Hébraud P 2005. Dilatant flow of concentrated suspensions of rough particles. Phys. Rev. Lett. 95:268302
    [Google Scholar]
  63. Maranzano BJ, Wagner NJ 2001. The effects of particle size on reversible shear thickening of concentrated colloidal dispersions. J. Chem. Phys. 114:10514–27
    [Google Scholar]
  64. Mari R, Seto R, Morris JF, Denn MM 2014. Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 58:1693–724
    [Google Scholar]
  65. Mari R, Seto R, Morris JF, Denn MM 2015a. Discontinuous shear thickening in Brownian suspensions by dynamic simulation. PNAS 112:15326–30
    [Google Scholar]
  66. Mari R, Seto R, Morris JF, Denn MM 2015b. Nonmonotonic flow curves of shear thickening suspensions. Phys. Rev. E 91:052302
    [Google Scholar]
  67. Melrose JR, Ball RC 2004a. “Contact networks” in continuously shear thickening colloids. J. Rheol. 48:961–78
    [Google Scholar]
  68. Melrose JR, Ball RC 2004b. Continuous shear thickening transitions in model concentrated colloids—the role of interparticle forces. J. Rheol. 48:937–60
    [Google Scholar]
  69. Metzner AB, Whitlock M 1958. Flow behavior of concentrated (dilatant) suspensions. Trans. Soc. Rheol. 2:239–53
    [Google Scholar]
  70. Morris JF, Boulay F 1999. Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol. 43:1213–37
    [Google Scholar]
  71. Morris JF, Katyal B 2002. Microstructure from simulated Brownian suspension flows at large shear rate. Phys. Fluids 14:1920–37
    [Google Scholar]
  72. Nazockdast E, Morris JF 2012. Microstructural theory and the rheology of concentrated colloidal suspensions. J. Fluid Mech. 713:420–52
    [Google Scholar]
  73. Ness C, Sun J 2016. Shear thickening regimes of dense non-Brownian suspensions. Soft Matter 12:914–24
    [Google Scholar]
  74. Neuville M, Bossis G, Persello J, Volkova O, Boustingorry P, Mosquet M 2012. Rheology of a gypsum suspension in the presence of different superplasticizers. J. Rheol. 56:435–51
    [Google Scholar]
  75. O'Brien VT, Mackay ME 2000. Stress components and shear thickening of concentrated hard sphere suspensions. Langmuir 16:7931–38
    [Google Scholar]
  76. Pan W, Caswell B, Karniadakis GE 2009. Rheology, microstructure and migration in Brownian colloidal suspensions. Langmuir 26:133–42
    [Google Scholar]
  77. Pan Z, de Cagny H, Habibi M, Bonn D 2017. Normal stresses in shear thickening granular suspensions. Soft Matter 13:3734–40
    [Google Scholar]
  78. Pan Z, de Cagny H, Weber B, Bonn D 2015. S-shaped flow curves of shear thickening suspensions: direct observation of frictional rheology. Phys. Rev. E 92:032202
    [Google Scholar]
  79. Pednekar S, Chun J, Morris JF 2017. Simulation of shear thickening in attractive colloidal suspensions. Soft Matter 13:1773–79
    [Google Scholar]
  80. Peters IR, Majumdar S, Jaeger HM 2016. Direct observation of dynamic shear jamming in dense suspensions. Nature 532:214–17
    [Google Scholar]
  81. Rathee V, Blair DL, Urbach JS 2017. Localized stress fluctuations drive shear thickening in dense suspensions. PNAS 114:8740–45
    [Google Scholar]
  82. Raviv U, Giasson S, Kampf N, Gohy JF, Jérôme R, Klein J 2003. Lubrication by charged polymers. Nature 425:163–65
    [Google Scholar]
  83. Reynolds O 1885. On the dilatancy of media composed of rigid particles in contact. With experimental illustrations. Philos. Mag. 20:469–81
    [Google Scholar]
  84. Roussel N, Lemaître A, Flatt RJ, Coussot P 2010. Steady state flow of cement suspensions: a micromechanical state of the art. Cement Concrete Res. 40:77–84
    [Google Scholar]
  85. Royer JR, Blair DL, Hudson SD 2016. Rheological signature of frictional interactions in shear thickening suspensions. Phys. Rev. Lett. 116:188301
    [Google Scholar]
  86. Saint-Michel B, Gibaud T, Manneville S 2018. Uncovering instabilities in the spatiotemporal dynamics of a shear-thickening cornstarch suspension. Phys. Rev. X 8:031006
    [Google Scholar]
  87. Seto R, Giusteri GG, Martiniello A 2017. Microstructure and thickening of dense suspensions under extensional and shear flows. J. Fluid Mech. 825:R3
    [Google Scholar]
  88. Seto R, Mari R, Morris JF, Denn MM 2013. Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111:218301
    [Google Scholar]
  89. Sierou A, Brady JF 2001. Accelerated Stokesian Dynamics simulations. J. Fluid Mech. 448:115–46
    [Google Scholar]
  90. Sierou A, Brady JF 2002. Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol. 46:1031–56
    [Google Scholar]
  91. Singh A, Mari R, Denn MM, Morris JF 2018a. A constitutive model for simple shear of dense frictional suspensions. J. Rheol. 62:457–68
    [Google Scholar]
  92. Singh A, Pednekar S, Chun J, Denn MM, Morris JF 2018b. From yielding to jamming in a cohesive frictional suspension. Phys. Rev. Lett. 122:098004
    [Google Scholar]
  93. Thomas JE, Ramola K, Singh A, Mari R, Morris JF, Chakraborty B 2018. Microscopic origin of frictional rheology in dense suspensions: correlations in force space. Phys. Rev. Lett. 121:128002
    [Google Scholar]
  94. Toussaint F, Roy C, Jézéquel PH 2009. Reducing shear thickening of cement-based suspensions. Rheol. Acta 48:883–95
    [Google Scholar]
  95. Townsend AK, Wilson HJ 2017. Frictional shear thickening in suspensions: the effect of rigid asperities. Phys. Fluids 29:121607
    [Google Scholar]
  96. Wagner NJ, Brady JF 2009. Shear thickening in colloidal dispersions. Phys. Today 62:27–32
    [Google Scholar]
  97. Wilson HJ 2005. An analytic form for the pair distribution function and rheology of a dilute suspension of rough spheres in plane strain flow. J. Fluid Mech. 534:97–114
    [Google Scholar]
  98. Wyart M, Cates ME 2014. Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 112:098302
    [Google Scholar]
  99. Xu B, Gilchrist JF 2014. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions. J. Chem. Phys. 140:204903
    [Google Scholar]
  100. Yurkovetsky Y, Morris JF 2008. Particle pressure in sheared Brownian suspensions. J. Rheol. 52:141–64
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060128
Loading
/content/journals/10.1146/annurev-fluid-010816-060128
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error