1932

Abstract

Every year flood events lead to thousands of casualties and significant economic damage. Mapping the areas at risk of flooding is critical to reducing these losses, yet until the last few years such information was available for only a handful of well-studied locations. This review surveys recent progress to address this fundamental issue through a novel combination of appropriate physics, efficient numerical algorithms, high-performance computing, new sources of big data, and model automation frameworks. The review describes the fluid mechanics of inundation and the models used to predict it, before going on to consider the developments that have led in the last five years to the creation of the first true fluid mechanics models of flooding over the entire terrestrial land surface.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030121-113138
2022-01-05
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-030121-113138.html?itemId=/content/journals/10.1146/annurev-fluid-030121-113138&mimeType=html&fmt=ahah

Literature Cited

  1. Addor N, Do HX, Alvarez-Garreton C, Coxon G, Fowler K, Mendoza PA 2020. Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges. Hydrol. Sci. J. 65:5712–25
    [Google Scholar]
  2. Alfieri L, Bisselink B, Dottori F, Naumann G, De Roo A et al. 2016. Global projections of river flood risk in a warmer world. Earth Future 5:2171–82
    [Google Scholar]
  3. Alfieri L, Salamon P, Bianchi A, Neal J, Bates P, Feyen L. 2013. Advances in pan-European flood hazard mapping. Hydrol. Process. 28:134067–77
    [Google Scholar]
  4. Allen GH, Pavelsky TM. 2015. Patterns of river width and surface area revealed by the satellite-derived North American River Width data set. Geophys. Res. Lett. 42:2395–402
    [Google Scholar]
  5. Allen GH, Pavelsky TM. 2018. Global extent of rivers and streams. Science 6402:585–88
    [Google Scholar]
  6. Almeida GAM, Bates P. 2013. Applicability of the local inertial approximation of the shallow water equations to flood modeling. Water Resour. Res. 49:84833–44
    [Google Scholar]
  7. Alsdorf D, Han S-C, Bates P, Melack J. 2010. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens. Environ. 114:112448–56
    [Google Scholar]
  8. Alsdorf DE, Lettenmaier DP. 2003. Tracking fresh water from space. Science 301:56391491–94
    [Google Scholar]
  9. Alsdorf DE, Melack JM, Dunne T, Mertes LAK, Hess LL, Smith LC. 2000. Interferometric radar measurements of water level changes on the Amazon flood plain. Nature 404:6774174–77
    [Google Scholar]
  10. Altenau E, Pavelsky TM, Moller DK, Pitcher LH, Bates PD et al. 2019. Temporal variations in river water surface elevation and slope captured by AirSWOT. Remote Sens. Environ. 224:304–16
    [Google Scholar]
  11. Apel H, Aronica GT, Kreibich H, Thieken AH. 2009. Flood risk analyses—how detailed do we need to be?. Nat. Hazards 49:179–98
    [Google Scholar]
  12. Arcement GJ, Schneider VR. 1989. Guide for selecting Manning's roughness coefficients for natural channels and flood plains USGS, Water Supply Paper 2339 https://doi.org/10.3133/wsp2339
    [Crossref]
  13. Archer L, Neal JC, Bates PD, House JI. 2018. Comparing TanDEM-X data with frequently used DEMs for flood inundation modeling. Water Resour. Res. 54:1210205–22
    [Google Scholar]
  14. ASFPM (Assoc. State Floodplain Managers) 2020. Flood mapping for the nation: a cost analysis for completing and maintaining the nation's NFIP flood map inventory Rep., Assoc. State Floodplain Managers Madison, WI: https://asfpm-library.s3-us-west-2.amazonaws.com/FSC/MapNation/ASFPM_MaptheNation_Report_2020.pdf
  15. Barrette J, August P, Golet F 2000. Accuracy assessment of wetland boundary delineation using aerial photography and digital orthophotography. Photogramm. Eng. Remote Sens. 66:4409–16
    [Google Scholar]
  16. Bates PD. 2012. Integrating remote sensing data with flood inundation models: How far have we got?. Hydrol. Process. 26:162515–21
    [Google Scholar]
  17. Bates PD, Dawson RJ, Hall JW, Horritt MS, Nicholls RJ et al. 2005a. Simplified two-dimensional numerical modelling of coastal flooding and example applications. Coast. Eng. 52:9793–810
    [Google Scholar]
  18. Bates PD, De Roo APJ. 2000. A simple raster-based model for flood inundation simulation. J. Hydrol. 236:154–77
    [Google Scholar]
  19. Bates PD, Horritt MS, Fewtrell TJ. 2010. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol. 387:133–45
    [Google Scholar]
  20. Bates PD, Horritt MS, Hunter NM, Mason D, Cobby D 2005b. Numerical modelling of floodplain flow. Computational Fluid Dynamics: Applications in Environmental Hydraulics PD Bates, SN Lane, RI Ferguson 271–304 Chichester, UK: Wiley
    [Google Scholar]
  21. Bates PD, Neal JC, Alsdorf D, Schumann GJ-P. 2014. Observing global surface water flood dynamics. Surv. Geophys. 35:3839–52
    [Google Scholar]
  22. Bates PD, Quinn N, Sampson C, Smith A, Wing O et al. 2021. Combined modelling of US fluvial, pluvial and coastal flood hazard under current and future climates. Water Resour. Res. 57:2e2020WR028673
    [Google Scholar]
  23. Bates PD, Wilson MD, Horritt MS, Mason DC, Holden N, Currie A. 2006. Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: data analysis and modelling. J. Hydrol. 328:1306–18
    [Google Scholar]
  24. Beven K. 2002. Towards a coherent philosophy for modelling the environment. Proc. R. Soc. A 458:20262465–84
    [Google Scholar]
  25. Beven K. 2006. A manifesto for the equifinality thesis. J. Hydrol. 320:118–36
    [Google Scholar]
  26. Biancamaria S, Lettenmaier DP, Pavelsky TM. 2016. The SWOT mission and its capabilities for land hydrology. Surv. Geophys. 37:307–37
    [Google Scholar]
  27. Birkett CM, Mertes LAK, Dunne T, Costa MH, Jasinski MJ 2002. Surface water dynamics in the Amazon Basin: application of satellite radar altimetry. J. Geophys. Res. Atmos. 107:D208059
    [Google Scholar]
  28. Bradbrook K, Waller S, Morris D. 2005. National floodplain mapping: datasets and methods –160,000 km in 12 months. Nat. Hazards 36:1–2103–23
    [Google Scholar]
  29. Carter RW, Anderson IE. 1963. Accuracy of current meter measurements. ASCE J. Hydraul. Div. 89:4105–15
    [Google Scholar]
  30. Cea L, Bladé E. 2015. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. Water Resour. Res. 51:75464–86
    [Google Scholar]
  31. Chang D-L, Yang S-H, Hsieh S-L, Wang H-J, Yeh K-C 2020. Artificial intelligence methodologies applied to prompt pluvial flood estimation and prediction. Water 12:123552
    [Google Scholar]
  32. Dai C, Durand M, Howat IM, Altenau EH, Pavelsky TM. 2018. Estimating river surface elevation from ArcticDEM. Geophys. Res. Lett. 45:73107–14
    [Google Scholar]
  33. Davis PM, Atkinson TC, Wigley TML. 2000. Longitudinal dispersion in natural channels: 2. The roles of shear flow dispersion and dead zones in the River Severn, U.K. Hydrol. Earth Syst. Sci 4:3355–71
    [Google Scholar]
  34. Day G, Dietrich WE, Rowland JC, Marshall A 2008. The depositional web on the floodplain of the Fly River, Papua New Guinea. J. Geophys. Res. Earth Surf. 113:F01S01
    [Google Scholar]
  35. de Moel H, Jongman B, Kreibich H, Merz B, Penning-Rowsell E, Ward PJ. 2015. Flood risk assessments at different spatial scales. Mitig. Adapt. Strateg. Glob. Change 20:6865–90
    [Google Scholar]
  36. Dewan TH. 2015. Societal impacts and vulnerability to floods in Bangladesh and Nepal. Weather Clim. Extremes 7:36–42
    [Google Scholar]
  37. Dottori F, Salamon P, Bianchi A, Alfieri L, Hirpa FA, Feyen L. 2016. Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 94:87–102
    [Google Scholar]
  38. Edwards PN. 2011. History of climate modeling. Wiley Interdisc. Rev. Clim. Change 2:1128–39
    [Google Scholar]
  39. Elvidge CD, Tuttle BT, Sutton PS, Baugh KE, Howard AT et al. 2007. Global distribution and density of constructed impervious surfaces. Sensors 7:91962–79
    [Google Scholar]
  40. Farr TG, Rosen PA, Caro E, Crippen R, Duren R et al. 2007. The shuttle radar topography mission. Rev. Geophys. 45:2RG2004
    [Google Scholar]
  41. Ferguson RI, Parsons DR, Lane SN, Hardy RJ 2003. Flow in meander bends with recirculation at the inner bank. Water Resour. Res. 39:111322
    [Google Scholar]
  42. Fewtrell TJ, Bates PD, Horritt M, Hunter NM 2008. Evaluating the effect of scale in flood inundation modelling in urban environments. Hydrol. Process. 22:265107–18
    [Google Scholar]
  43. Fewtrell TJ, Neal JC, Bates PD, Harrison PJ. 2011. Geometric and structural river channel complexity and the prediction of urban inundation. Hydrol. Process. 25:3173–86
    [Google Scholar]
  44. Fiedler T, Pitman AJ, Mackenzie K, Wood N, Jakob C, Perkins-Kirkpatrick SE 2021. Business risk and the emergence of climate analytics. Nat. Clim. Change 11:287–94
    [Google Scholar]
  45. Field CB, Barros V, Stocker TF, Dahe Q. 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
  46. Fink S. 2019. This high-tech solution to disaster response may be too good to be true. The New York Times Aug. 9. https://www.nytimes.com/2019/08/09/us/emergency-response-disaster-technology.html
    [Google Scholar]
  47. Fleischmann AS, Paiva RCD, Collischonn W, Siqueira VA, Paris A et al. 2020. Trade-offs between 1-D and 2-D regional river hydrodynamic models. Water Resour. Res. 56:8e2019WR026812
    [Google Scholar]
  48. Forster MR. 2000. Key concepts in model selection: performance and generalizability. J. Math. Psychol. 44:1205–31
    [Google Scholar]
  49. Guha-Sapir D, Hoyois P, Wallemacq P, Below R. 2016. Annual Disaster Statistical Review 2016: The Numbers and Trends Brussels: Cent. Res. Epidemiol. Disasters https://www.emdat.be/sites/default/files/adsr_2016.pdf
  50. Guidolin M, Chen AS, Ghimire B, Keedwell EC, Djordjević S, Savić DA 2016. A weighted cellular automata 2D inundation model for rapid flood analysis. Environ. Model. Softw. 84:378–94
    [Google Scholar]
  51. Guo Z, Leitão JP, Simões NE, Moosavi V. 2021. Data-driven flood emulation: speeding up urban flood predictions by deep convolutional neural networks. J. Flood Risk Manag. 14:1e12684
    [Google Scholar]
  52. Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J. 2013. Future flood losses in major coastal cities. Nat. Clim. Change 3:9802–6
    [Google Scholar]
  53. Hamilton SK, Sippel SJ, Melack JM. 2002. Comparison of inundation patterns among major South American floodplains. J. Geophys. Res. Atmos. 107:D20 https://doi.org/10.1029/2000JD000306
    [Crossref] [Google Scholar]
  54. Hawker L, Neal J, Bates P 2019. Accuracy assessment of the TanDEM-X 90 digital elevation model for selected floodplain sites. Remote Sens. Environ. 232:111319
    [Google Scholar]
  55. Hawker L, Neal J, Tellman B, Liang J, Schumann G, Doyle C. 2020. Comparing earth observation and inundation models to map flood hazards. Environ. Res. Lett. 15:12124032
    [Google Scholar]
  56. Hervouet JM, Van Haren L 1996. Recent advances in numerical methods for fluid flows. Floodplain Processes MG Anderson, DE Walling, PD Bates 183–214 Chichester, UK: Wiley
    [Google Scholar]
  57. Highfield WE, Norman SA, Brody SD. 2013. Examining the 100-year floodplain as a metric of risk, loss, and household adjustment. Risk Anal 33:2186–91
    [Google Scholar]
  58. Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D et al. 2013. Global flood risk under climate change. Nat. Clim. Change 3:9816–21
    [Google Scholar]
  59. Hirabayashi Y, Tanoue M, Sasaki O, Zhou X, Yamazaki D. 2021. Global exposure to flooding from the new CMIP6 climate model projections. Sci. Rep. 11:13740
    [Google Scholar]
  60. Hirt CW, Nichols BD. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39:1201–25
    [Google Scholar]
  61. Hocini N, Payrastre O, Bourgin F, Gaume E, Davy P et al. 2020. Performance of automated flood inundation mapping methods in a context of flash floods: a comparison of a digital terrain model (DTM) filling and two hydrodynamic methods. Hydrol. Earth Syst. Sci. 25:2979–95
    [Google Scholar]
  62. Horritt MS, Bates PD. 2001. Predicting floodplain inundation: raster-based modelling versus the finite-element approach. Hydrol. Process. 15:5825–42
    [Google Scholar]
  63. Horritt MS, Bates PD. 2002. Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol. 268:187–99
    [Google Scholar]
  64. Horritt MS, Di Baldassarre G, Bates PD, Brath A. 2007. Comparing the performance of a 2-D finite element and a 2-D finite volume model of floodplain inundation using airborne SAR imagery. Hydrol. Process. 21:202745–59
    [Google Scholar]
  65. Horritt MS, Mason DC, Luckman AJ. 2001. Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. Int. J. Remote Sens. 22:132489–507
    [Google Scholar]
  66. Huizinga J, de Moel H, Szewczyk W. 2017. Global flood depth-damage functions: methodology and the database with guidelines JRC Work. PapJRC105688
  67. Hunter NM, Bates PD, Neelz S, Pender G, Villanueva I et al. 2008. Benchmarking 2D hydraulic models for urban flooding. Proc. Inst. Civil Eng. Water Manag. 161:113–30
    [Google Scholar]
  68. Jarihani AA, Callow JN, Johansen K, Gouweleeuw B. 2013. Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods. J. Hydrol. 505:78–90
    [Google Scholar]
  69. Jing H, Guo Y, Li C, Zhang J 2009. Three-dimensional numerical simulation of compound meandering open channel flow by the Reynolds stress model. Int. J. Numer. Methods Fluids 59:8927–43
    [Google Scholar]
  70. Jirka GH. 2001. Large scale flow structures and mixing processes in shallow flows. J. Hydraul. Res. 39:6567–73
    [Google Scholar]
  71. Jongman B, Ward PJ, Aerts JCJH. 2012. Global exposure to river and coastal flooding: long term trends and changes. Glob. Environ. Change 22:4823–35
    [Google Scholar]
  72. Jongman B, Winsemius HC, Aerts JCJH, de Perez EC, van Aalst MK et al. 2015. Declining vulnerability to river floods and the global benefits of adaptation. PNAS 112:18E2271–80
    [Google Scholar]
  73. Jung HC, Jasinski M, Kim J-W, Shum CK, Bates P et al. 2012. Calibration of two-dimensional floodplain modelling in the Atchafalaya River Basin using SAR interferometry. Water Resour. Res. 48:W07511
    [Google Scholar]
  74. Kabir S, Patidar S, Xia X, Liang Q, Neal J, Pender G 2020. A deep convolutional neural network model for rapid prediction of fluvial flood inundation. J. Hydrol. 590:125481
    [Google Scholar]
  75. Kalyanapu AJ, Shankar S, Pardyjak ER, Judi DR, Burian SJ 2011. Assessment of GPU computational enhancement to a 2D flood model. Environ. Model. Softw. 26:81009–16
    [Google Scholar]
  76. Keenan JM. 2019. A climate intelligence arms race in financial markets. Science 365:64591240–43
    [Google Scholar]
  77. Kesserwani G, Liang Q. 2012. Dynamically adaptive grid based discontinuous Galerkin shallow water model. Adv. Water Resour. 37:23–39
    [Google Scholar]
  78. Knight DW, Demetriou JD. 1983. Flood plain and main channel flow interaction. J. Hydraul. Eng. 109:81073–92
    [Google Scholar]
  79. Krajewski WF, Ceynar D, Demir I, Goska R, Kruger A et al. 2017. Real-time flood forecasting and information system for the state of Iowa. Bull. Am. Meteorol. Soc. 98:3539–54
    [Google Scholar]
  80. Kreibich H, Piroth K, Seifert I, Maiwald H, Kunert U et al. 2009. Is flow velocity a significant parameter in flood damage modelling?. Nat. Hazards Earth Syst. Sci. 9:51679–92
    [Google Scholar]
  81. Kulp SA, Strauss BH. 2019. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10:14844
    [Google Scholar]
  82. Kundzewicz ZW, Kanae S, Seneviratne SI, Handmer J, Nicholls N et al. 2014. Flood risk and climate change: global and regional perspectives. Hydrol. Sci. J. 59:11–28
    [Google Scholar]
  83. Lambert MF, Sellin RHJ. 1996. Velocity distribution in a large-scale model of a doubly meandering compound river channel. Proc. Inst. Civ. Eng. Water Marit. Energy 118:110–20
    [Google Scholar]
  84. Lane SN, Bradbrook KF, Richards KS, Biron PA, Roy AG. 1999. The application of computational fluid dynamics to natural river channels: three-dimensional versus two-dimensional approaches. Geomorphology 29:11–20
    [Google Scholar]
  85. Leedal D, Neal J, Beven K, Young P, Bates P 2010. Visualization approaches for communicating real-time flood forecasting level and inundation information. J. Flood Risk Manag. 3:2140–50
    [Google Scholar]
  86. Lehner B, Grill G. 2013. Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems. Hydrol. Process. 27:152171–86
    [Google Scholar]
  87. Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B et al. 2011. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9:9494–502
    [Google Scholar]
  88. Lewin J. 1978. Floodplain geomorphology. Prog. Phys. Geogr. Earth Environ. 2:3408–37
    [Google Scholar]
  89. Liang Q, Smith L, Xia X 2016. New prospects for computational hydraulics by leveraging high-performance heterogeneous computing techniques. J. Hydrodyn. Ser. B 28:6977–85
    [Google Scholar]
  90. Liu YY, Maidment DR, Tarboton DG, Zheng X, Wang S 2018. A cyberGIS integration and computation framework for high-resolution continental-scale flood inundation mapping. J. Am. Water Resour. Assoc. 54:4770–84
    [Google Scholar]
  91. Luo H, Fytanidis DK, Schmidt AR, García MH. 2018. Comparative 1D and 3D numerical investigation of open-channel junction flows and energy losses. Adv. Water Resour. 117:120–39
    [Google Scholar]
  92. Lynch DR, Gray WG. 1980. Finite element simulation of flow in deforming regions. J. Comput. Phys. 36:2135–53
    [Google Scholar]
  93. Mason DC, Cobby DM, Horritt MS, Bates PD. 2003. Floodplain friction parameterization in two-dimensional river flood models using vegetation heights derived from airborne scanning laser altimetry. Hydrol. Process. 17:91711–32
    [Google Scholar]
  94. McMillan H, Krueger T, Freer J. 2012. Benchmarking observational uncertainties for hydrology: rainfall, river discharge and water quality. Hydrol. Process. 26:264078–111
    [Google Scholar]
  95. Mechler R, Bouwer LM. 2015. Understanding trends and projections of disaster losses and climate change: Is vulnerability the missing link?. Clim. Change 133:123–35
    [Google Scholar]
  96. Mertes LAK, Daniel DL, Melack JM, Nelson B, Martinelli LA, Forsberg BR 1995. Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of the Amazon river in Brazil from a remote sensing perspective. Geomorphology 13:1215–32
    [Google Scholar]
  97. Mertes LAK, Dunne T, Martinelli LA. 1996. Channel-floodplain geomorphology along the Solimões-Amazon River, Brazil. Geol. Soc. Am. Bull. 108:91089–107
    [Google Scholar]
  98. Merz B, Aerts JCJH, Arnbjerg-Nielsen K, Baldi M, Becker A et al. 2014. Floods and climate: emerging perspectives for flood risk assessment and management. Nat. Hazards Earth Syst. Sci. 14:71921–42
    [Google Scholar]
  99. Moin P, Mahesh K. 1998. Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30:539–78
    [Google Scholar]
  100. Moncho-Esteve IJ, García-Villalba M, Muto Y, Shiono K, Palau-Salvador G. 2018. A numerical study of the complex flow structure in a compound meandering channel. Adv. Water Resour. 116:95–116
    [Google Scholar]
  101. Morales-Hernández M, Sharif MB, Gangrade S, Dullo TT, Kao S-C et al. 2020. High-performance computing in water resources hydrodynamics. J. Hydroinformatics 22:51217–35
    [Google Scholar]
  102. Nanson GC, Croke JC. 1992. A genetic classification of floodplains. Geomorphology 4:6459–86
    [Google Scholar]
  103. Neal J, Fewtrell T, Trigg M. 2009a. Parallelisation of storage cell flood models using OpenMP. Environ. Model. Softw. 24:7872–77
    [Google Scholar]
  104. Neal J, Keef C, Bates P, Beven K, Leedal D. 2012a. Probabilistic flood risk mapping including spatial dependence. Hydrol. Process. 27:91349–63
    [Google Scholar]
  105. Neal J, Schumann G, Bates P. 2012b. A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resour. Res. 48:W11506
    [Google Scholar]
  106. Neal J, Villanueva I, Wright N, Willis T, Fewtrell T, Bates P. 2011. How much physical complexity is needed to model flood inundation?. Hydrol. Process. 26:152264–82
    [Google Scholar]
  107. Neal JC, Bates PD, Fewtrell TJ, Hunter NM, Wilson MD, Horritt MS. 2009b. Distributed whole city water level measurements from the Carlisle 2005 urban flood event and comparison with hydraulic model simulations. J. Hydrol. 368:142–55
    [Google Scholar]
  108. Nepf HM. 2012. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44:123–42
    [Google Scholar]
  109. Nezu I, Nakagawa H. 2017. Turbulence in Open-Channel Flows London: Routledge. , 1st ed..
  110. Nicholas AP, Mitchell CA. 2003. Numerical simulation of overbank processes in topographically complex floodplain environments. Hydrol. Process. 17:4727–46
    [Google Scholar]
  111. Nobre AD, Cuartas LA, Hodnett M, Rennó CD, Rodrigues G et al. 2011. Height Above the Nearest Drainage – a hydrologically relevant new terrain model. J. Hydrol. 404:113–29
    [Google Scholar]
  112. O'Loughlin FE, Neal J, Schumann GJP, Beighley E, Bates PD 2020. A LISFLOOD-FP hydraulic model of the middle reach of the Congo. J. Hydrol. 580:124203
    [Google Scholar]
  113. O'Loughlin FE, Neal J, Yamazaki D, Bates PD. 2016. ICESat-derived inland water surface spot heights. Water Resour. Res. 52:43276–84
    [Google Scholar]
  114. Parsons DR, Best JL, Orfeo O, Hardy RJ, Kostaschuk R, Lane SN 2005. Morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. J. Geophys. Res. Earth Surf. 110:F04S03
    [Google Scholar]
  115. Proust S, Nikora VI. 2020. Compound open-channel flows: effects of transverse currents on the flow structure. J. Fluid Mech. 885:A24
    [Google Scholar]
  116. Rameshwaran P, Naden PS. 2003. Three-dimensional numerical simulation of compound channel flows. J. Hydraul. Eng. 129:8645–52
    [Google Scholar]
  117. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:6881617–20
    [Google Scholar]
  118. Rizzoli P, Martone M, Gonzalez C, Wecklich C, Borla Tridon D et al. 2017. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 132:119–39
    [Google Scholar]
  119. Rodi W. 1993. Turbulence Models and Their Application in Hydraulics: A State of the Art Review Rotterdam, Neth: A.A. Balkema
  120. Rodríguez E, Morris CS, Belz JE. 2006. A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens. 72:3249–60
    [Google Scholar]
  121. Sampson CC, Smith AM, Bates PD, Neal JC, Alfieri L, Freer JE. 2015. A high-resolution global flood hazard model. Water Resour. Res. 51:97358–81
    [Google Scholar]
  122. Sanders BF. 2007. Evaluation of on-line DEMs for flood inundation modeling. Adv. Water Resour. 30:81831–43
    [Google Scholar]
  123. Sanders BF, Schubert JE. 2019. PRIMo: parallel raster inundation model. Adv. Water Resour. 126:79–95
    [Google Scholar]
  124. Sanders BF, Schubert JE, Detwiler RL. 2010. ParBreZo: a parallel, unstructured grid, Godunov-type, shallow-water code for high-resolution flood inundation modeling at the regional scale. Adv. Water Resour. 33:121456–67
    [Google Scholar]
  125. Savage JTS, Bates P, Freer J, Neal J, Aronica G 2016. When does spatial resolution become spurious in probabilistic flood inundation predictions?. Hydrol. Process. 30:132014–32
    [Google Scholar]
  126. Schneider R, Tarpanelli A, Nielsen K, Madsen H, Bauer-Gottwein P. 2018. Evaluation of multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic model. Adv. Water Resour. 112:17–26
    [Google Scholar]
  127. Schumann GJ-P, Stampoulis D, Smith AM, Sampson CC, Andreadis KM et al. 2016. Rethinking flood hazard at the global scale. Geophys. Res. Lett. 43:1910249–56
    [Google Scholar]
  128. Scussolini P, Aerts JCJH, Jongman B, Bouwer LM, Winsemius HC et al. 2016. FLOPROS: an evolving global database of flood protection standards. Nat. Hazards Earth Syst. Sci. 16:51049–61
    [Google Scholar]
  129. Sellin RHJ. 1964. A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain. La Houille Blanche 7:793–802
    [Google Scholar]
  130. Sellin RHJ, Willets B 1996. Three-dimensional structures, memory and energy dissipation in meandering compound channel flow. Floodplain Processes MG Anderson, DE Walling, PD Bates 255–97 Chichester, UK: Wiley
    [Google Scholar]
  131. Shiono K, Knight DW. 1991. Turbulent open-channel flows with variable depth across the channel. J. Fluid Mech. 222:617–46
    [Google Scholar]
  132. Smith A, Bates PD, Wing O, Sampson C, Quinn N, Neal J 2019. New estimates of flood exposure in developing countries using high-resolution population data. Nat. Commun. 10:11814
    [Google Scholar]
  133. Stevens FR, Gaughan AE, Linard C, Tatem AJ. 2015. Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PLOS ONE 10:2e0107042
    [Google Scholar]
  134. Stoesser T, Wilson CAME, Bates PD, Dittrich A. 2003. Application of a 3D numerical model to a river with vegetated floodplains. J. Hydroinformatics 5:299–112
    [Google Scholar]
  135. Straatsma MW, Baptist MJ. 2008. Floodplain roughness parameterization using airborne laser scanning and spectral remote sensing. Remote Sens. Environ. 112:31062–80
    [Google Scholar]
  136. Swain DL, Wing OEJ, Bates PD, Done JM, Johnson KA, Cameron DR 2020. Increased flood exposure due to climate change and population growth in the United States. Earth Future 8:11e2020EF001778
    [Google Scholar]
  137. Tatem AJ, Noor AM, von Hagen C, Di Gregorio A, Hay SI. 2007. High resolution population maps for low income nations: combining land cover and census in East Africa. PLOS ONE 2:12e1298
    [Google Scholar]
  138. Tellman B, Sullivan J, Doyle C, Brakenridge GR, Erickson T, Slayback DA. 2017. A global geospatial database of 5000+ historic flood event extents Paper presented at 2017 AGU Fall Meeting New Orleans, LA: Dec 11–15 https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/263559
  139. Tominaga A, Nezu I. 1991. Turbulent structure in compound open-channel flows. J. Hydraul. Eng. 117:121–41
    [Google Scholar]
  140. Tomsett C, Leyland J. 2019. Remote sensing of river corridors: a review of current trends and future directions. River Res. Appl. 35:7779–803
    [Google Scholar]
  141. Trigg MA, Bates PD, Wilson MD, Schumann G, Baugh C. 2012. Floodplain channel morphology and networks of the middle Amazon River. Water Resour. Res. 48:10W10504
    [Google Scholar]
  142. Trigg MA, Birch CE, Neal JC, Bates PD, Smith A et al. 2016. The credibility challenge for global fluvial flood risk analysis. Environ. Res. Lett. 11:9094014
    [Google Scholar]
  143. van Prooijen BC, Battjes JA, Uijttewaal WSJ. 2005. Momentum exchange in straight uniform compound channel flow. J. Hydraul. Eng. 131:3175–83
    [Google Scholar]
  144. Vousdoukas MI, Voukouvalas E, Mentaschi L, Dottori F, Giardino A et al. 2016. Developments in large-scale coastal flood hazard mapping. Nat. Hazards Earth Syst. Sci. 16:81841–53
    [Google Scholar]
  145. Ward PJ, Jongman B, Salamon P, Simpson A, Bates P et al. 2015. Usefulness and limitations of global flood risk models. Nat. Clim. Change 5:8712–15
    [Google Scholar]
  146. Wilson M, Bates P, Alsdorf D, Forsberg B, Horritt M et al. 2007. Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophys. Res. Lett. 34:15L15404
    [Google Scholar]
  147. Wing OEJ, Bates PD, Neal JC, Sampson CC, Smith AM et al. 2019. A new automated method for improved flood defense representation in large-scale hydraulic models. Water Resour. Res. 55:1211007–34
    [Google Scholar]
  148. Wing OEJ, Bates PD, Sampson CC, Smith AM, Johnson KA, Erickson TA 2017. Validation of a 30 m resolution flood hazard model of the conterminous United States. Water Resour. Res. 53:97968–86
    [Google Scholar]
  149. Wing OEJ, Bates PD, Smith AM, Sampson CC, Johnson KA et al. 2018. Estimates of present and future flood risk in the conterminous United States. Environ. Res. Lett. 13:3034023
    [Google Scholar]
  150. Wing OEJ, Pinter N, Bates PD, Kousky C. 2020. New insights into US flood vulnerability revealed from flood insurance big data. Nat. Commun. 11:11444
    [Google Scholar]
  151. Wood EF, Roundy JK, Troy TJ, van Beek LPH, Bierkens MFP et al. 2011. Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth's terrestrial water. Water Resour. Res. 47:5W05301
    [Google Scholar]
  152. Woznicki SA, Baynes J, Panlasigui S, Mehaffey M, Neale A 2019. Development of a spatially complete floodplain map of the conterminous United States using random forest. Sci. Total Environ. 647:942–53
    [Google Scholar]
  153. Yamazaki D, Ikeshima D, Sosa J, Bates PD, Allen GH, Pavelsky TM 2019. MERIT Hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55:65053–73
    [Google Scholar]
  154. Yamazaki D, Ikeshima D, Tawatari R, Yamaguchi T, O'Loughlin F et al. 2017. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44:115844–53
    [Google Scholar]
  155. Yamazaki D, O'Loughlin F, Trigg MA, Miller ZF, Pavelsky TM, Bates PD. 2014. Development of the Global Width Database for Large Rivers. Water Resour. Res. 50:43467–80
    [Google Scholar]
  156. Yeung PK, Ravikumar K. 2020. Advancing understanding of turbulence through extreme-scale computation: intermittency and simulations at large problem sizes. Phys. Rev. Fluids 5:11110517
    [Google Scholar]
  157. Young P, Parkinson S, Lees M. 1996. Simplicity out of complexity in environmental modelling: Occam's razor revisited. J. Appl. Stat. 23:2–3165–210
    [Google Scholar]
  158. Zanobetti D, Lorgeré H, Preissmann A, Cunge JA. 1970. Mékong Delta mathematical model program construction. ASCE J. Waterw. Harb. Div. 96:2181–99
    [Google Scholar]
  159. Zhuang Q, Melack JM, Zimov S, Walter KM, Butenhoff CL, Khalil MAK. 2011. Global methane emissions from wetlands, rice paddies, and lakes. Eos Trans. Am. Geophys. Union 90:537–38
    [Google Scholar]
  160. Zischg AP, Mosimann M, Bernet DB, Röthlisberger V. 2018. Validation of 2D flood models with insurance claims. J. Hydrol. 557:350–61
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-030121-113138
Loading
/content/journals/10.1146/annurev-fluid-030121-113138
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error