1932

Abstract

Liquid-infused surfaces (LISs) are composite solid–liquid surfaces with remarkable features such as liquid repellency, self-healing, and the suppression of fouling. This review focuses on the fluid mechanics on LISs, that is, the interaction of surfaces with a flow field and the behavior of drops on such surfaces. LISs can be characterized by an effective slip length that is closely related to their drag reduction property, which makes them suitable for several applications, especially for turbulent flows. Drag reduction, however, is compromised by failure mechanisms such as the drainage of lubricant from surface textures. The flow field can also sculpt the lubricant layer in a coupled self-organization process. For drops, the lubricant reduces drop pinning and increases drop mobility, but also results in a wetting ridge and the associated concept of an apparent contact angle. Design of LIS wettability and topography can induce low-friction drop motion, and drops can dynamically shape the lubricant ridges and film thickness.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030121-113156
2022-01-05
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-030121-113156.html?itemId=/content/journals/10.1146/annurev-fluid-030121-113156&mimeType=html&fmt=ahah

Literature Cited

  1. Anand S, Paxson AT, Dhiman R, Smith JD, Varanasi KK. 2012. Enhanced condensation on lubricant-impregnated nanotextured surfaces. ACS Nano 6:10122–29
    [Google Scholar]
  2. Andreotti B, Snoeijer JH. 2020. Statics and dynamics of soft wetting. Annu. Rev. Fluid Mech. 52:285–308
    [Google Scholar]
  3. Arenas I, García E, Fu MK, Orlandi P, Hultmark M, Leonardi S. 2019. Comparison between super-hydrophobic, liquid infused and rough surfaces: a direct numerical simulation study. J. Fluid Mech. 869:500–25
    [Google Scholar]
  4. Backholm M, Molpeceres D, Vuckovac M, Nurmi H, Hokkanen MJ et al. 2020. Water droplet friction and rolling dynamics on superhydrophobic surfaces. Commun. Mater. 1:64
    [Google Scholar]
  5. Baier T, Hardt S. 2021. Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers. J. Fluid Mech. 907:A3
    [Google Scholar]
  6. Barrio-Zhang H, Ruiz-Gutiérrez É, Armstrong S, McHale G, Wells GG, Ledesma-Aguilar R 2020. Contact-angle hysteresis and contact-line friction on slippery liquid-like surfaces. Langmuir 36:15094–101
    [Google Scholar]
  7. Barthlott W, Neinhuis C. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8
    [Google Scholar]
  8. Bico J, Reyssat É, Roman B 2018. Elastocapillarity: when surface tension deforms elastic solids. Annu. Rev. Fluid Mech. 50:629–59
    [Google Scholar]
  9. Bico J, Tordeux C, Quere D. 2001. Rough wetting. Europhys. Lett. 55:214–20
    [Google Scholar]
  10. Bohn HF, Federle W. 2004. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. PNAS 101:14138–43
    [Google Scholar]
  11. Boreyko JB, Chen CH. 2009. Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103:184501
    [Google Scholar]
  12. Bormashenko E. 2010. Wetting transitions on biomimetic surfaces. Philos. Trans. R. Soc. A 368:4695–711
    [Google Scholar]
  13. Brabcova Z, McHale G, Wells GG, Brown CV, Newton MI. 2017. Electric field induced reversible spreading of droplets into films on lubricant impregnated surfaces. Appl. Phys. Lett. 110:121603
    [Google Scholar]
  14. Busse A, Sandham ND, McHale G, Newton MI. 2013. Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface. J. Fluid Mech. 727:488–508
    [Google Scholar]
  15. Chang J, Jung T, Choi H, Kim J 2019. Predictions of the effective slip length and drag reduction with a lubricated micro-groove surface in a turbulent channel flow. J. Fluid Mech. 874:797–820
    [Google Scholar]
  16. Chen H, Zhang P, Zhang L, Liu H, Jiang Y et al. 2016. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532:85–89
    [Google Scholar]
  17. Chen X, Wen G, Guo Z 2020. What are the design principles, from the choice of lubricants and structures to the preparation method, for a stable slippery lubricant–infused porous surface?. Mater. Horiz. 7:1697–726
    [Google Scholar]
  18. Dai X, Stogin BB, Yang S, Wong TS 2015. Slippery Wenzel state. ACS Nano 9:9260–67
    [Google Scholar]
  19. Daniel D, Timonen JVI, Li R, Velling SJ, Aizenberg J. 2017. Oleoplaning droplets on lubricated surfaces. Nat. Phys. 13:1020–25
    [Google Scholar]
  20. Daniel D, Timonen JVI, Li R, Velling SJ, Kreder MJ et al. 2018. Origins of extreme liquid repellency on structured, flat, and lubricated hydrophobic surfaces. Phys. Rev. Lett. 120:244503
    [Google Scholar]
  21. Davis SH. 1987. Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19:403–35
    [Google Scholar]
  22. Dong Z, Schumann MF, Hokkanen MJ, Chang B, Welle A et al. 2018. Superoleophobic slippery lubricant–infused surfaces: combining two extremes in the same surface. Adv. Mater. 30:1803890
    [Google Scholar]
  23. Eifert A, Paulssen D, Varanakkottu SN, Baier T, Hardt S. 2014. Simple fabrication of robust water-repellent surfaces with low contact-angle hysteresis based on impregnation. Adv. Mater. Interfaces 1:1300138
    [Google Scholar]
  24. Epstein AK, Wong TS, Belisle R, Boggs EM, Aizenberg J. 2012. Liquid-infused structured surfaces with exceptional anti-biofouling performance. PNAS 109:13182–87
    [Google Scholar]
  25. Fu MK, Arenas I, Leonardi S, Hultmark M 2017. Liquid-infused surfaces as a passive method of turbulent drag reduction. J. Fluid Mech. 824:688–700
    [Google Scholar]
  26. Furmidge CGL. 1962. Studies at phase interfaces. 1. Sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci. 17:309–24
    [Google Scholar]
  27. Gao L, McCarthy TJ. 2008. Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 24:9183–88
    [Google Scholar]
  28. Gao N, Geyer F, Pilat DW, Wooh S, Vollmer D et al. 2018. How drops start sliding over solid surfaces. Nat. Phys. 14:191–96
    [Google Scholar]
  29. Ge Z, Holmgren H, Kronbichler M, Brandt L, Kreiss G. 2018. Effective slip over partially filled microcavities and its possible failure. Phys. Rev. Fluids 3:054201
    [Google Scholar]
  30. Golovin KB, Gose JW, Perlin M, Ceccio SL, Tuteja A. 2016. Bioinspired surfaces for turbulent drag reduction. Philos. Trans. R. Soc. A 374:20160189
    [Google Scholar]
  31. Guan JH, Ruiz-Gutiérrez É, Xu B, Wood D, McHale G et al. 2017. Drop transport and positioning on lubricant-impregnated surfaces. Soft Matter 13:3404–10
    [Google Scholar]
  32. Guan JH, Wells GG, Xu B, McHale G, Wood D et al. 2015. Evaporation of sessile droplets on slippery liquid–infused porous surfaces (SLIPS). Langmuir 31:11781–89
    [Google Scholar]
  33. Hao C, Liu Y, Chen X, He Y, Li Q et al. 2014. Electrowetting on liquid-infused film (EWOLF): complete reversibility and controlled droplet oscillation suppression for fast optical imaging. Sci. Rep. 4:6846
    [Google Scholar]
  34. Hocking LM. 1976. A moving fluid interface on a rough surface. J. Fluid Mech. 76:801–17
    [Google Scholar]
  35. Hodges SR, Jensen OE, Rallison JM. 2004. The motion of a viscous drop through a cylindrical tube. . J. Fluid Mech. 501:279–301
    [Google Scholar]
  36. Howell C, Grinthal A, Sunny S, Aizenberg M, Aizenberg J 2018. Designing liquid-infused surfaces for medical applications: a review. Adv. Mater. 30:1–26
    [Google Scholar]
  37. Huang C, Guo Z. 2019. Fabrications and applications of slippery liquid–infused porous surfaces inspired from nature: a review. J. Bionic Eng. 16:769–93
    [Google Scholar]
  38. Huerre A, Theodoly O, Leshansky AM, Valignat MP, Cantat I, Jullien MC 2015. Droplets in microchannels: dynamical properties of the lubrication film. Phys. Rev. Lett. 115:064501
    [Google Scholar]
  39. Jacobi I, Wexler JS, Stone HA. 2015. Overflow cascades in liquid-infused substrates. Phys. Fluids 27:082101
    [Google Scholar]
  40. Karpitschka S, Das S, van Gorcum M, Perrin H, Andreotti B, Snoeijer JH 2015. Droplets move over viscoelastic substrates by surfing a ridge. Nat. Commun. 6:7891
    [Google Scholar]
  41. Karpitschka S, Pandey A, Lubbers LA, Weijs JH, Botto L et al. 2016. Liquid drops attract or repel by the inverted Cheerios effect. PNAS 113:7403–7
    [Google Scholar]
  42. Keiser A. 2018. Dynamiques sur des surfaces texturées et imprégnées. PhD Thesis Sorbonne Univ. Paris:
    [Google Scholar]
  43. Keiser A, Baumli P, Vollmer D, Quéré D. 2020. Universality of friction laws on liquid-infused materials. Phys. Rev. Fluids 5:014005
    [Google Scholar]
  44. Keiser A, Keiser L, Clanet C, Quéré D 2017. Drop friction on liquid-infused materials. Soft Matter 13:6981–87
    [Google Scholar]
  45. Keiser L, Jaafar K, Bico J, Reyssat É 2018. Dynamics of non-wetting drops confined in a Hele-Shaw cell. J. Fluid Mech. 845:245–62
    [Google Scholar]
  46. Kim P, Kreder MJ, Alvarenga J, Aizenberg J 2013. Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett 13:1793–99
    [Google Scholar]
  47. Kreder MJ, Alvarenga J, Kim P, Aizenberg J 2016. Design of anti-icing surfaces: smooth, textured or slippery?. Nat. Rev. Mater. 1:15003
    [Google Scholar]
  48. Kreder MJ, Daniel D, Tetreault A, Cao Z, Lemaire B et al. 2018. Film dynamics and lubricant depletion by droplets moving on lubricated surfaces. Phys. Rev. X 8:31053
    [Google Scholar]
  49. Lafuma A, Quéré D. 2003. Superhydrophobic states. Nat. Mater. 2:457–60
    [Google Scholar]
  50. Lafuma A, Quéré D. 2011. Slippery pre-suffused surfaces. Europhys. Lett. 96:56001
    [Google Scholar]
  51. Landel JR, Peaudecerf FJ, Temprano-Coleto F, Gibou F, Goldstein RE, Luzzatto-Fegiz P. 2020. A theory for the slip and drag of superhydrophobic surfaces with surfactant. J. Fluid Mech. 883:A18
    [Google Scholar]
  52. Latthe SS, Sutar RS, Bhosale AK, Nagappan S, Ha CS et al. 2019. Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application. Prog. Org. Coat. 137:105373
    [Google Scholar]
  53. Launay G, Sadullah MS, McHale G, Ledesma-Aguilar R, Kusumaatmaja H, Wells GG 2020. Self-propelled droplet transport on shaped-liquid surfaces. Sci. Rep. 10:14987
    [Google Scholar]
  54. Lei W, Rigozzi MK, McKenzie DR. 2016. The physics of confined flow and its application to water leaks, water permeation and water nanoflows: a review. Rep. Prog. Phys. 79:025901
    [Google Scholar]
  55. Leonardi S, Castro IP. 2010. Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651:519–39
    [Google Scholar]
  56. Liu Y, Wexler JS, Schönecker C, Stone HA. 2016. Effect of viscosity ratio on the shear-driven failure of liquid-infused surfaces. Phys. Rev. Fluids 1:074003
    [Google Scholar]
  57. Lou X, Huang Y, Yang X, Zhu H, Heng L, Xia F. 2020. External stimuli responsive liquid-infused surfaces switching between slippery and nonslippery states: fabrications and applications. Adv. Funct. Mater. 30:1901130
    [Google Scholar]
  58. Luo JT, Geraldi NR, Guan JH, McHale G, Wells GG, Fu Y. 2017. Slippery liquid-infused porous surfaces and droplet transportation by surface acoustic waves. Phys. Rev. Appl. 7:014017
    [Google Scholar]
  59. Manukyan G, Oh JM, van den Ende D, Lammertink RGH, Mugele F. 2011. Electrical switching of wetting states on superhydrophobic surfaces: a route towards reversible Cassie-to-Wenzel transitions. Phys. Rev. Lett. 106:014501
    [Google Scholar]
  60. McCarthy J, Vella D, Castrejón-Pita AA. 2019. Dynamics of droplets on cones: self-propulsion due to curvature gradients. Soft Matter 15:9997–10004
    [Google Scholar]
  61. McHale G, Flynn MR, Newton MI 2011. Plastron induced drag reduction and increased slip on a superhydrophobic sphere. Soft Matter 7:10100
    [Google Scholar]
  62. McHale G, Newton MI, Shirtcliffe NJ 2010. Immersed superhydrophobic surfaces: gas exchange, slip and drag reduction properties. Soft Matter 6:714–19
    [Google Scholar]
  63. McHale G, Orme BV, Wells GG, Ledesma-Aguilar R. 2019. Apparent contact angles on lubricant-impregnated surfaces/SLIPS: from superhydrophobicity to electrowetting. Langmuir 35:4197–204
    [Google Scholar]
  64. Miles J, Henderson D 1990. Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22:143–65
    [Google Scholar]
  65. Nejati I, Dietzel M, Hardt S. 2015. Conjugated liquid layers driven by the short-wavelength Bénard-Marangoni instability: experiment and numerical simulation. J. Fluid Mech. 783:46–71
    [Google Scholar]
  66. Nizkaya TV, Asmolov ES, Vinogradova OI. 2014. Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures. Phys. Rev. E 90:043017
    [Google Scholar]
  67. Papadopoulos P, Mammen L, Deng X, Vollmer D, Butt HJ. 2013. How superhydrophobicity breaks down. PNAS 110:3254–58
    [Google Scholar]
  68. Park KC, Kim P, Grinthal A, He N, Fox D et al. 2016. Condensation on slippery asymmetric bumps. Nature 531:78–82
    [Google Scholar]
  69. Paulssen D, Feng W, Pini I, Levkin PA 2018. Formation of liquid-liquid micropatterns through guided liquid displacement on liquid-infused surfaces. Adv. Mater. Interfaces 5:1800852
    [Google Scholar]
  70. Paulssen D, Hardt S, Levkin PA 2019. Droplet sorting and manipulation on patterned two-phase slippery lubricant–infused surface. ACS Appl. Mater. Interfaces 11:16130–38
    [Google Scholar]
  71. Peaudecerf FJ, Landel JR, Goldstein RE, Luzzatto-Fegiz P. 2017. Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces. PNAS 114:7254–59
    [Google Scholar]
  72. Peppou-Chapman S, Hong JK, Waterhouse A, Neto C. 2020. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem. Soc. Rev. 49:3688–715
    [Google Scholar]
  73. Quéré D. 2005. Non-sticking drops. Rep. Prog. Phys. 68:2495–532
    [Google Scholar]
  74. Quéré D. 2008. Wetting and roughness. Annu. Rev. Mater. Res. 38:71–99
    [Google Scholar]
  75. Reichert B, Huerre A, Theodoly O, Valignat MP, Cantat I, Jullien MC 2018. Topography of the lubrication film under a pancake droplet travelling in a Hele-Shaw cell. J. Fluid Mech. 850:708–32
    [Google Scholar]
  76. Rofman B, Dehe S, Frumkin V, Hardt S, Bercovici M 2020. Intermediate states of wetting on hierarchical superhydrophobic surfaces. Langmuir 36:5517–23
    [Google Scholar]
  77. Rosenberg BJ, van Buren T, Fu MK, Smits AJ. 2016. Turbulent drag reduction over air- and liquid-impregnated surfaces. Phys. Fluids 28:015103
    [Google Scholar]
  78. Rothstein JP. 2010. Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42:89–109
    [Google Scholar]
  79. Ruiz-Gutiérrez É, Guan JH, Xu B, McHale G, Wells GG, Ledesma-Aguilar R. 2017. Energy invariance in capillary systems. Phys. Rev. Lett. 118:218003
    [Google Scholar]
  80. Sadullah MS. 2020. Computational studies of liquid droplet on liquid infused surfaces. PhD Thesis Durham Univ. Durham, UK:
    [Google Scholar]
  81. Sadullah MS, Launay G, Parle J, Ledesma-Aguilar R, Gizaw Y et al. 2020a. Bidirectional motion of droplets on gradient liquid infused surfaces. Commun. Phys. 3:166
    [Google Scholar]
  82. Sadullah MS, Panter JR, Kusumaatmaja H. 2020b. Factors controlling the pinning force of liquid droplets on liquid infused surfaces. Soft Matter 16:8114–21
    [Google Scholar]
  83. Sadullah MS, Semprebon C, Kusumaatmaja H. 2018. Drop dynamics on liquid-infused surfaces: the role of the lubricant ridge. Langmuir 34:8112–18
    [Google Scholar]
  84. Scarratt RJ, Zhu L, Neto C. 2020. Large effective slip on lubricated surfaces measured with colloidal probe AFM. Langmuir 36:6033–40
    [Google Scholar]
  85. Schatz MF, Neitzel GP. 2001. Experiments on thermocapillary instabilities. Annu. Rev. Fluid Mech. 33:93–127
    [Google Scholar]
  86. Schellenberger F, Xie J, Encinas N, Hardy A, Klapper M et al. 2015. Direct observation of drops on slippery lubricant–infused surfaces. Soft Matter 11:7617–26
    [Google Scholar]
  87. Schönecker C, Baier T, Hardt S. 2014. Influence of the enclosed fluid on the flow over a microstructured surface in the Cassie state. J. Fluid Mech. 740:168–95
    [Google Scholar]
  88. Seiwert J, Clanet C, Quéré D. 2011. Coating of a textured solid. J. Fluid Mech. 669:55–63
    [Google Scholar]
  89. Semprebon C, McHale G, Kusumaatmaja H. 2017. Apparent contact angle and contact angle hysteresis on liquid infused surfaces. Soft Matter 13:101–10
    [Google Scholar]
  90. Semprebon C, Sadullah MS, McHale G, Kusumaatmaja H. 2021. Apparent contact angle of droplets on liquid infused surfaces: geometric interpretation. Soft Matter In press
    [Google Scholar]
  91. Sharma M, Roy PK, Barman J, Khare K. 2019. Mobility of aqueous and binary mixture drops on lubricating fluid–coated slippery surfaces. Langmuir 35:7672–79
    [Google Scholar]
  92. Shirtcliffe NJ, McHale G, Atherton S, Newton MI 2010. An introduction to superhydrophobicity. Adv. Colloid Interface Sci. 161:124–38
    [Google Scholar]
  93. Smith JD, Dhiman R, Anand S, Reza-Garduno E, Cohen RE et al. 2013. Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9:1772–80
    [Google Scholar]
  94. Solomon BR, Khalil KS, Varanasi KK. 2014. Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir 30:10970–76
    [Google Scholar]
  95. Solomon BR, Subramanyam SB, Farnham TA, Khalil KS, Anand S, Varanasi KK 2017. Lubricant-impregnated surfaces. Non-Wettable Surfaces: Theory, Preparation, and Applications ed. RHA Ras, A Marmur 285–318 London: R. Soc. Chem.
    [Google Scholar]
  96. Song D, Song B, Hu H, Du X, Du P et al. 2018. Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface. Phys. Rev. Fluids 3:033303
    [Google Scholar]
  97. Tao R, McHale G, Reboud J, Cooper JM, Torun H et al. 2020. Hierarchical nanotexturing enables acoustofluidics on slippery yet sticky, flexible surfaces. Nano Lett 20:3263–70
    [Google Scholar]
  98. Tress M, Karpitschka S, Papadopoulos P, Snoeijer JH, Vollmer D, Butt HJ. 2017. Shape of a sessile drop on a flat surface covered with a liquid film. Soft Matter 13:3760–67
    [Google Scholar]
  99. van Buren T, Smits AJ. 2017. Substantial drag reduction in turbulent flow using liquid-infused surfaces. J. Fluid Mech. 827:448–56
    [Google Scholar]
  100. Villegas M, Zhang Y, Abu Jarad N, Soleymani L, Didar TF 2019. Liquid-infused surfaces: a review of theory, design, and applications. ACS Nano 13:8517–36
    [Google Scholar]
  101. Wells GG, Ruiz-Gutiérrez É, Le Lirzin Y, Nourry A, Orme BV et al. 2018. Snap evaporation of droplets on smooth topographies. Nat. Commun. 9:1380
    [Google Scholar]
  102. Wexler JS, Grosskopf A, Chow M, Fan Y, Jacobi I, Stone HA 2015a. Robust liquid-infused surfaces through patterned wettability. Soft Matter 11:5023–29
    [Google Scholar]
  103. Wexler JS, Jacobi I, Stone HA. 2015b. Shear-driven failure of liquid-infused surfaces. Phys. Rev. Lett. 114:168301
    [Google Scholar]
  104. Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD et al. 2011. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–47
    [Google Scholar]
  105. Xiao R, Li JS, Mieszkin S, Di Fino A, Clare AS et al. 2013a. Slippery liquid–infused porous surfaces showing marine antibiofouling properties. ACS Appl. Mater. Interfaces 5:10074–80
    [Google Scholar]
  106. Xiao R, Miljkovic N, Enright R, Wang EN. 2013b. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer. Sci. Rep. 3:1988
    [Google Scholar]
  107. Ybert C, Barentin C, Cottin-Bizonne C, Joseph P, Bocquet L 2007. Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19:123601
    [Google Scholar]
  108. Zhang C, Zhang B, Ma H, Li Z, Xiao X et al. 2018. Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment. ACS Nano 12:2048–55
    [Google Scholar]
  109. Zhao S, Dietzel M, Hardt S. 2019. Faraday instability of a liquid layer on a lubrication film. J. Fluid Mech. 879:422–47
    [Google Scholar]
  110. Zheng Y, Cheng J, Zhou C, Xing H, Wen X et al. 2017. Droplet motion on a shape gradient surface. Langmuir 33:4172–77
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-030121-113156
Loading
/content/journals/10.1146/annurev-fluid-030121-113156
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error