1932

Abstract

Particles floating at interfaces are commonly observed in nature, as well as in industrial processes. When the particles are non-Brownian particles, large deformations of the interface are created that induce long-ranged capillary interactions and lead to the formation of particle rafts with unique characteristics. In this review we discuss recent efforts in investigating particle raft formation and the role of the rafts’ own weight during dynamic clustering. Under specific conditions, these rafts can ultimately collapse and sink. When subjected to external or internal forces, the raft undergoes large deformations that test the mechanical characteristics of this interfacial composite material. It can behave as a continuous elastic sheet under compression, although its discrete nature can also trigger its fragmentation via interparticle interactions. Finally, armored droplets, drops covered by a protective shell of particles, can lose their integrity when submitted to dynamic deformations, resulting in the ejection of particles or the fracturing of the armor. Open questions to understand the properties of this material are highlighted and future research to understand the fundamental physics of particle rafts, the customization of the cluster formation, or the disassembly of this collective material is suggested.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030322-015150
2023-01-19
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/fluid/55/1/annurev-fluid-030322-015150.html?itemId=/content/journals/10.1146/annurev-fluid-030322-015150&mimeType=html&fmt=ahah

Literature Cited

  1. Abkarian M, Protière S, Aristoff JM, Stone HA. 2013. Gravity-induced encapsulation of liquids by destabilization of granular rafts. Nat. Commun. 4:1895
    [Google Scholar]
  2. Allain C, Cloitre M. 1993. Interaction between particles trapped at fluid interfaces: I. Exact and asymptotic solutions for the force between two horizontal cylinders. J. Colloid Interface Sci. 157:2261–68
    [Google Scholar]
  3. Aussillous P, Quéré D. 2006. Properties of liquid marbles. Proc. R. Soc. A 462:2067973–99
    [Google Scholar]
  4. Aveyard R, Clint JH, Nees D, Quirke N. 2000. Structure and collapse of particle monolayers under lateral pressure at the octane/aqueous surfactant solution interface. Langmuir 16:238820–28
    [Google Scholar]
  5. Batchelor G. 1976. Brownian diffusion of particles with hydrodynamic interaction. J. Fluid Mech. 74:11–29
    [Google Scholar]
  6. Batchelor G, Green JT. 1972. The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56:2375–400
    [Google Scholar]
  7. Berhanu M, Kudrolli A. 2010. Heterogeneous structure of granular aggregates with capillary interactions. Phys. Rev. Lett. 105:9098002
    [Google Scholar]
  8. Binks BP, Horozov TS. 2006. Colloidal Particles at Liquid Interfaces Cambridge, UK: Cambridge Univ. Press
  9. Binks BP, Lumsdon S. 2001. Pickering emulsions stabilized by monodisperse latex particles: effects of particle size. Langmuir 17:154540–47
    [Google Scholar]
  10. Bleibel J, Dietrich S, Domìnguez A, Oettel M. 2011. Shock waves in capillary collapse of colloids: a model system for screened Newtonian gravity. Phys. Rev. Lett. 107:128302
    [Google Scholar]
  11. Boneva MP, Christov NC, Danov KD, Kralchevsky PA. 2007. Effect of electric-field-induced capillary attraction on the motion of particles at an oil–water interface. Phys. Chem. Chem. Phys. 9:486371–84
    [Google Scholar]
  12. Bowden N, Terfort A, Carbeck J, Whitesides GM. 1997. Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276:5310233–35
    [Google Scholar]
  13. Camoin C, Blanc R. 1985. Aggregation in a sheared 2D dispersion of spheres with attractive interactions. J. Phys. Lett. 46:267–74
    [Google Scholar]
  14. Cavallaro M, Botto L, Lewandowski EP, Wang M, Stebe KJ. 2011. Curvature-driven capillary migration and assembly of rod-like particles. PNAS 108:5220923–28
    [Google Scholar]
  15. Cervantes-Álvarez A, Escobar-Ortega Y, Sauret A, Pacheco-Vázquez F. 2020. Air entrainment and granular bubbles generated by a jet of grains entering water. J. Colloid Interface Sci. 574:285–92
    [Google Scholar]
  16. Chan D, Henry J, White L. 1981. The interaction of colloidal particles collected at fluid interfaces. J. Colloid Interface Sci. 79:2410–18
    [Google Scholar]
  17. Cicuta P, Vella D. 2009. Granular character of particle rafts. Phys. Rev. Lett. 102:13138302
    [Google Scholar]
  18. Cooray H, Cicuta P, Vella D. 2017. Floating and sinking of a pair of spheres at a liquid–fluid interface. Langmuir 33:61427–36
    [Google Scholar]
  19. Cózar A, Echevarra F, González-Gordillo JI, Irigoien X, Úbeda B et al. 2014. Plastic debris in the open ocean. PNAS 111:2810239–44
    [Google Scholar]
  20. Dalbe MJ, Cosic D, Berhanu M, Kudrolli A. 2011. Aggregation of frictional particles due to capillary attraction. Phys. Rev. E 83:5051403
    [Google Scholar]
  21. Dani A, Keiser G, Yeganeh M, Maldarelli C. 2015. Hydrodynamics of particles at an oil–water interface. Langmuir 31:4913290–302
    [Google Scholar]
  22. Danov KD, Aust R, Durst F, Lange U. 1995. Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large Brownian particle. J. Colloid Interface Sci. 175:136–45
    [Google Scholar]
  23. Danov KD, Dimova R, Pouligny B. 2000. Viscous drag of a solid sphere straddling a spherical or flat surface. Phys. Fluids 12:112711–22
    [Google Scholar]
  24. Danov KD, Kralchevsky PA, Naydenov BN, Brenn G 2005. Interactions between particles with an undulated contact line at a fluid interface: capillary multipoles of arbitrary order. J. Colloid Interface Sci. 287:1121–34
    [Google Scholar]
  25. de Soëte F. 2021. Ecoulement de gouttes couvertes dans une contraction PhD Thesis, Univ. PSL Paris:
  26. Domìnguez A, Oettel M, Dietrich S 2010. Dynamics of colloidal particles with capillary interactions. Phys. Rev. E 82:011402
    [Google Scholar]
  27. Fournier JB, Galatola P. 2002. Anisotropic capillary interactions and jamming of colloidal particles trapped at a liquid-fluid interface. Phys. Rev. E 65:3031601
    [Google Scholar]
  28. Friedlander SK. 2000. Smoke, Dust, and Haze New York: Oxford Univ. Press
  29. Garbin V. 2019. Collapse mechanisms and extreme deformation of particle-laden interfaces. Curr. Opin. Colloid Interface Sci. 39:202–11
    [Google Scholar]
  30. Gifford W, Scriven L. 1971. On the attraction of floating particles. Chem. Eng. Sci. 26:3287–97
    [Google Scholar]
  31. Grzybowski BA, Stone HA, Whitesides GM. 2000. Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature 405:67901033–36
    [Google Scholar]
  32. Gu C, Botto L. 2018. Buckling vs. particle desorption in a particle-covered drop subject to compressive surface stresses: a simulation study. Soft Matter 14:5711–24
    [Google Scholar]
  33. Guzowski J, Gim B. 2019. Particle clusters at fluid–fluid interfaces: equilibrium profiles, structural mechanics and stability against detachment. Soft Matter 15:244921–38
    [Google Scholar]
  34. He W, Sun Y, Dinsmore AD. 2020. Response of a raft of particles to a local indentation. Soft Matter 16:102497–505
    [Google Scholar]
  35. Hornbaker D, Albert R, Albert I, Barabási AL, Schiffer P. 1997. What keeps sandcastles standing?. Nature 387:6635765–65
    [Google Scholar]
  36. Hu Z, Fang W, Li Q, Feng XQ, Lv Ja 2020. Optocapillarity-driven assembly and reconfiguration of liquid crystal polymer actuators. Nat. Commun. 11:5780
    [Google Scholar]
  37. Huang K, Brinkmann M, Herminghaus S. 2012. Wet granular rafts: aggregation in two dimensions under shear flow. Soft Matter 8:4711939–48
    [Google Scholar]
  38. Jambon-Puillet E. 2016. Folds in floating membranes: from elastic sheets to granular rafts PhD Thesis, Univ. Pierre Marie Curie, Sorbonne Univ., Inst. Jean le Rond d'Alembert Paris:
  39. Jambon-Puillet E, Josserand C, Protière S. 2017. Wrinkles, folds, and plasticity in granular rafts. Phys. Rev. Mater. 1:4042601
    [Google Scholar]
  40. Jambon-Puillet E, Josserand C, Protière S. 2018. Drops floating on granular rafts: a tool for liquid transport and delivery. Langmuir 34:154437–44
    [Google Scholar]
  41. Janssen HA. 1895. Versuche über Getreidedruck in Silozellen. Z. Ver. dtsch. Ing. 39:1045–49
    [Google Scholar]
  42. Ji X, Wang X, Zhang Y, Zang D. 2020. Interfacial viscoelasticity and jamming of colloidal particles at fluid–fluid interfaces: a review. Rep. Prog. Phys. 83:12126601
    [Google Scholar]
  43. Jones SG, Abbasi N, Ahuja A, Truong V, Tsai SSH. 2015. Floating and sinking of self-assembled spheres on liquid-liquid interfaces: rafts versus stacks. Phys. Fluids 27:7072102
    [Google Scholar]
  44. Kassuga TD, Rothstein JP. 2015. Buckling of particle-laden interfaces. J. Colloid Interface Sci. 448:287–96
    [Google Scholar]
  45. Keller JB. 1998. Surface tension force on a partly submerged body. Phys. Fluids 10:113009–10
    [Google Scholar]
  46. Kim BL, Rendos A, Ganesh P, Brown KA. 2019. Failure of particle-laden interfaces studied using the funnel method. Colloid Interface Sci. Commun. 28:54–59
    [Google Scholar]
  47. Kralchevsky PA, Denkov ND. 2001. Capillary forces and structuring in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 6:4383–401
    [Google Scholar]
  48. Kralchevsky PA, Ivanov IB, Ananthapadmanabhan KP, Lips A. 2005. On the thermodynamics of particle-stabilized emulsions: curvature effects and catastrophic phase inversion. Langmuir 21:150–63
    [Google Scholar]
  49. Kralchevsky PA, Nagayama K. 1994. Capillary forces between colloidal particles. Langmuir 10:123–36
    [Google Scholar]
  50. Kralchevsky PA, Nagayama K. 2001. Capillary bridges and capillary-bridge forces. Studies in Interface Science, vol. 10469–502 Amsterdam: Elsevier
    [Google Scholar]
  51. Kralchevsky PA, Paunov V, Ivanov I, Nagayama K. 1992. Capillary meniscus interaction between colloidal particles attached to a liquid–fluid interface. J. Colloid Interface Sci. 151:179–94
    [Google Scholar]
  52. Lagarde A. 2020. Folds in floating membranes: from elastic sheets to granular rafts PhD Thesis, Sorbonne Univ., Inst. Jean le Rond d'Alembert Paris:
  53. Lagarde A, Josserand C, Protière S. 2019. The capillary interaction between pairs of granular rafts. Soft Matter 15:285695–702
    [Google Scholar]
  54. Lagarde A, Protière S. 2020. Probing the erosion and cohesion of a granular raft in motion. Phys. Rev. Fluids 5:4044003
    [Google Scholar]
  55. Lagubeau G, Rescaglio A, Melo F. 2014. Armoring a droplet: soft jamming of a dense granular interface. Phys. Rev. E 90:3030201
    [Google Scholar]
  56. Larmour IA, Saunders GC, Bell SEJ. 2008. Sheets of large superhydrophobic metal particles self assembled on water by the Cheerios effect. Angew. Chem. Int. Ed. 47:275043–45
    [Google Scholar]
  57. Lee MH. 2000. On the validity of the coagulation equation and the nature of runaway growth. Icarus 143:174–86
    [Google Scholar]
  58. Lehmann P, Aminzadeh M, Or D. 2019. Evaporation suppression from water bodies using floating covers: laboratory studies of cover type, wind, and radiation effects. Water Resour. Res. 55:64839–53
    [Google Scholar]
  59. Leyvraz F. 2003. Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys. Rep. 383:2–395–212
    [Google Scholar]
  60. Lin M, Lindsay H, Weitz D, Ball R, Klein R, Meakin P. 1989. Universality in colloid aggregation. Nature 339:6223360–62
    [Google Scholar]
  61. Liu IB, Sharifi-Mood N, Stebe KJ. 2018. Capillary assembly of colloids: interactions on planar and curved interfaces. Annu. Rev. Condensed Matter Phys. 9:283–305
    [Google Scholar]
  62. Loudet JC, Alsayed AM, Zhang J, Yodh AG. 2005. Capillary interactions between anisotropic colloidal particles. Phys. Rev. Lett. 94:1018301
    [Google Scholar]
  63. Loudet JC, Pouligny B. 2011. How do mosquito eggs self-assemble on the water surface?. Eur. Phys. J. E 34:876
    [Google Scholar]
  64. Mlot NJ, Tovey CA, Hu DL. 2011. Fire ants self-assemble into waterproof rafts to survive floods. PNAS 108:197669–73
    [Google Scholar]
  65. Monteux C, Kirkwood J, Xu H, Jung E, Fuller GG 2007. Determining the mechanical response of particle-laden fluid interfaces using surface pressure isotherms and bulk pressure measurements of droplets. Phys. Chem. Chem. Phys. 9:486344–50
    [Google Scholar]
  66. Nicolson MM. 1949. The interaction between floating particles. Proc. Camb. Philos. Soc. 45:2288–95
    [Google Scholar]
  67. Ong XY, Taylor SE, Ramaioli M. 2019. Pouring of grains onto liquid surfaces: dispersion or lump formation?. Langmuir 35:3411150–56
    [Google Scholar]
  68. Ono-dit-Biot JC, Soulard P, Barkley S, Weeks ER, Salez T et al. 2020. Rearrangement of two dimensional aggregates of droplets under compression: signatures of the energy landscape from crystal to glass. Phys. Rev. Res. 2:2023070
    [Google Scholar]
  69. Paunov V, Kralchevsky P, Denkov N, Nagayama K. 1993. Lateral capillary forces between floating submillimeter particles. J. Colloid Interface Sci. 157:1100–12
    [Google Scholar]
  70. Petit P, Biance AL, Lorenceau E, Planchette C. 2016. Bending modulus of bidisperse particle rafts: local and collective contributions. Phys. Rev. E 93:4042802
    [Google Scholar]
  71. Pickering SU. 1907. Emulsions. J. Chem. Soc. 91:2001–21
    [Google Scholar]
  72. Pitois O, Buisson M, Chateau X. 2015. On the collapse pressure of armored bubbles and drops. Eur. Phys. J. E 38:548
    [Google Scholar]
  73. Pitois O, Rouyer F. 2019. Rheology of particulate rafts, films, and foams. Curr. Opin. Colloid Interface Sci. 43:125–37
    [Google Scholar]
  74. Planchette C, Biance AL, Lorenceau E. 2012a. Transition of liquid marble impacts onto solid surfaces. EPL 97:114003
    [Google Scholar]
  75. Planchette C, Lorenceau E, Biance AL. 2012b. Surface wave on a particle raft. Soft Matter 8:82444–51
    [Google Scholar]
  76. Planchette C, Lorenceau E, Biance AL. 2018. Rupture of granular rafts: effects of particle mobility and polydispersity. Soft Matter 14:316419–30
    [Google Scholar]
  77. Pozrikidis C. 2007. Particle motion near and inside an interface. J. Fluid Mech. 575:333–57
    [Google Scholar]
  78. Protière S, Josserand C, Aristoff JM, Stone HA, Abkarian M. 2017. Sinking a granular raft. Phys. Rev. Lett. 118:10108001
    [Google Scholar]
  79. Rendos A, Alsharif N, Kim BL, Brown KA. 2017. Elasticity and failure of liquid marbles: influence of particle coating and marble volume. Soft Matter 13:478903–9
    [Google Scholar]
  80. Saavedra OV, Elettro H, Melo F. 2018. Progressive friction mobilization and enhanced Janssen's screening in confined granular rafts. Phys. Rev. Mater. 2:4043603
    [Google Scholar]
  81. Sanlı C, Saitoh K, Luding S, van der Meer D 2014. Collective motion of macroscopic spheres floating on capillary ripples: dynamic heterogeneity and dynamic criticality. Phys. Rev. E 90:3033018
    [Google Scholar]
  82. Stamou D, Duschl C, Johannsmann D. 2000. Long-range attraction between colloidal spheres at the air-water interface: the consequence of an irregular meniscus. Phys. Rev. E 62:45263–72
    [Google Scholar]
  83. Stancik EJ, Gavranovic GT, Widenbrant MJ, Laschitsch AT, Vermant J, Fuller GG. 2003. Structure and dynamics of particle monolayers at a liquid–liquid interface subjected to shear flow. Faraday Discuss. 123:145–56
    [Google Scholar]
  84. Stancik EJ, Widenbrant MJ, Laschitsch AT, Vermant J, Fuller GG. 2002. Structure and dynamics of particle monolayers at a liquid–liquid interface subjected to extensional flow. Langmuir 18:114372–75
    [Google Scholar]
  85. Taccoen N, Lequeux FMC, Gunes DZ, Baroud CN. 2016. Probing the mechanical strength of an armored bubble and its implication to particle-stabilized foams. Phys. Rev. X 6:1011010
    [Google Scholar]
  86. Tavacoli JW, Katgert G, Kim EG, Cates ME, Clegg PS. 2012. Size limit for particle-stabilized emulsion droplets under gravity. Phys. Rev. Lett. 108:26268306
    [Google Scholar]
  87. Vandewalle N, Poty M, Vanesse N, Caprasse J, Defize T, Jérôme C. 2020. Switchable self-assembled capillary structures. Soft Matter 16:4510320–25
    [Google Scholar]
  88. Varshney A, Sane A, Ghosh S, Bhattacharya S. 2012. Amorphous to amorphous transition in particle rafts. Phys. Rev. E 86:3031402
    [Google Scholar]
  89. Vassileva ND, van den Ende D, Mugele F, Mellema J. 2005. Capillary forces between spherical particles floating at a liquid–liquid interface. Langmuir 21:2411190200
    [Google Scholar]
  90. Vassileva ND, van den Ende D, Mugele F, Mellema J. 2006. Restructuring and break-up of two-dimensional aggregates in shear flow. Langmuir 22:114959–67
    [Google Scholar]
  91. Vassileva ND, van den Ende D, Mugele F, Mellema J. 2007. Fragmentation and erosion of two-dimensional aggregates in shear flow. Langmuir 23:52352–61
    [Google Scholar]
  92. Vella D. 2015. Floating versus sinking. Annu. Rev. Fluid Mech. 47:115–35
    [Google Scholar]
  93. Vella D, Aussillous P, Mahadevan L. 2004. Elasticity of an interfacial particle raft. EPL 68:2212
    [Google Scholar]
  94. Vella D, Kim HY, Aussillous P, Mahadevan L. 2006a. Dynamics of surfactant-driven fracture of particle rafts. Phys. Rev. Lett. 96:17178301
    [Google Scholar]
  95. Vella D, Mahadevan L. 2005. The “Cheerios effect. .” Am. J. Phys. 73:9817–25
    [Google Scholar]
  96. Vella D, Metcalfe PD, Whittaker RJ. 2006b. Equilibrium conditions for the floating of multiple interfacial objects. J. Fluid Mech. 549:215–24
    [Google Scholar]
  97. Voise J, Schindler M, Casas J, Raphaël E. 2011. Capillary-based static self-assembly in higher organisms. J. R. Soc. Interface 8:621357–66
    [Google Scholar]
  98. Wang W, Giltinan J, Zakharchenko S, Sitti M. 2017. Dynamic and programmable self-assembly of micro-rafts at the air-water interface. Sci. Adv. 3:5e1602522
    [Google Scholar]
  99. Weitz D, Lin M. 1986. Dynamic scaling of cluster-mass distributions in kinetic colloid aggregation. Phys. Rev. Lett. 57:16203740
    [Google Scholar]
  100. Xiao H, Ivancic RJS, Durian DJ. 2020. Strain localization and failure of disordered particle rafts with tunable ductility during tensile deformation. Soft Matter 16:358226–36
    [Google Scholar]
  101. Zuo P, Cheng Y, Wang Z, Dou X, Liu J. 2021. Tension and bending of the particle raft driven by a magnet. Colloid Interface Sci. Commun. 45:100528
    [Google Scholar]
  102. Zuo P, Liu J, Li S. 2017. The load-bearing ability of a particle raft under the transverse compression of a slender rod. Soft Matter 13:122315–21
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-030322-015150
Loading
/content/journals/10.1146/annurev-fluid-030322-015150
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error