1932

Abstract

Gusts of moderate and large magnitude induce flow separation and other complexities when they interact with the lifting surfaces of air vehicles. The presence of these nonlinear gusts are becoming ubiquitous in twenty-first-century air vehicles, where the classic potential flow–based methodologies applied in the past may no longer be valid. In this review, we define the parameter space for the presence of large-amplitude gusts and describe where and when these gusts may primarily be found. Recent research using modern experimental and computational techniques to define the limits of classical unsteady and indicial aerodynamic theories is summarized, with a focus on discrete transverse, streamwise (longitudinal), and vortex gust encounters. We propose areas where future research is needed to transition these studies of large-amplitude gust physics to real-time prediction and mitigation during flight.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-031621-085520
2022-01-05
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-031621-085520.html?itemId=/content/journals/10.1146/annurev-fluid-031621-085520&mimeType=html&fmt=ahah

Literature Cited

  1. Al-Battal NH, Cleaver DJ, Gursul I 2019. Unsteady actuation of counter-flowing wall jets for gust load attenuation. Aerosp. Sci. Technol. 89:3175–91
    [Google Scholar]
  2. Andreu Angulo I, Babinsky H 2021. Unsteady modelling of pitching wings for gust mitigation Paper presented at AIAA 2021 SciTech Forum, online, Jan. 11–15 & 19–21, AIAA Pap. 2021-1999
  3. Andreu Angulo I, Babinsky H, Biler H, Sedky G, Jones AR 2020. Effect of transverse gust velocity profiles. AIAA J. 58:125123–33
    [Google Scholar]
  4. Atassi HM. 1984. The Sears problem for a lifting airfoil revisited—new results. J. Fluid Mech. 141:109–22
    [Google Scholar]
  5. Badrya C, Biler H, Jones AR, Baeder JD. 2021. Effect of gust width on flat-plate response in large transverse gust. AIAA J. 59:149–64
    [Google Scholar]
  6. Barnes CJ, Visbal MR. 2018a. Clockwise vortical-gust/airfoil interactions at a transitional Reynolds number. AIAA J. 56:103863–74
    [Google Scholar]
  7. Barnes CJ, Visbal MR. 2018b. Counterclockwise vortical-gust/airfoil interactions at a transitional Reynolds number. AIAA J. 56:72540–52
    [Google Scholar]
  8. Barnes CJ, Visbal MR, Huang PG. 2016. On the effects of vertical offset and core structure in streamwise-oriented vortexwing interactions. J. Fluid Mech. 799:128–58
    [Google Scholar]
  9. Beal TR. 1993. Digital simulation of atmospheric turbulence for Dryden and von Kármán models. J. Guid. Control Dyn. 16:1132–38
    [Google Scholar]
  10. Berger DH. 2020. Commandant's planning guidance Plan. Guid., US Mar. Corps Washington, DC: https://www.hqmc.marines.mil/Portals/142/Docs/%2038th%20Commandant%27s%20Planning%20Guidance_2019.pdf?ver=2019-07-16-200152-700
  11. Berry AJ, Howitt J, Gu DW, Postlethwaite I. 2012. A continuous local motion planning framework for unmanned vehicles in complex environments. J. Intell. Robot Syst. 66:477–94
    [Google Scholar]
  12. Biler H, Badrya C, Jones AR. 2019. Experimental and computational investigation of transverse gust encounters. AIAA J. 57:114608–22
    [Google Scholar]
  13. Biler H, Sedky G, Jones AR, Saritas M, Cetiner O. 2021. Experimental investigation of transverse and vortex gust encounters at low Reynolds numbers. AIAA J. 59:786–99
    [Google Scholar]
  14. Bisplinghoff RL, Ashley H, Halfman RL. 1955. Aeroelasticity Cambridge, MA: Addison-Wesley
  15. Blanchard D. 2013. A comparison of wind speed and forest damage associated with tornadoes in northern Arizona. Weather Forecast. 28:2408–17
    [Google Scholar]
  16. Chen H, Jaworski J. 2020a. Aeroelastic encounters of spanwise vortex gusts and the self-rotation of trailing vortices Paper presented at AIAA 2020 SciTech Forum Orlando, FL: Jan. 6–10, AIAA Pap. 2020-0555
  17. Chen H, Jaworski JW. 2020b. Aeroelastic interactions and trajectory selection of vortex gusts impinging upon Joukowski airfoils. J. Fluids Struct. 96:103026
    [Google Scholar]
  18. Cherry BE, Constantino MM. 2010. The burble effect: superstructure and flight deck effects on carrier air wake. Paper presented at American Society of Naval Engineers Launch and Recovery Symposium 2010 Arlington, VA: Dec. 8–9
    [Google Scholar]
  19. Chowdhury J, Ringuette M. 2021. Effect of a rotating and swept wingtip on streamwise gust alleviation. AIAA J. 59:3800–11
    [Google Scholar]
  20. Corkery SJ, Babinsky H. 2019. An investigation into gust shear layer vorticity and the added mass force for a transverse wing-gust encounter Paper presented at AIAA 2019 SciTech Forum San Diego, CA: Jan. 7–11, AIAA Pap. 2019-1145
  21. Corkery SJ, Babinsky H, Harvey JK. 2018. On the development and early observations from a towing tank-based transverse wing-gust encounter test rig. Exp. Fluids 59:9135
    [Google Scholar]
  22. da Silva AFC, Colonius T. 2018. Ensemble-based state estimator for aerodynamic flows. AIAA J. 56:72568–78
    [Google Scholar]
  23. Darakananda D, da Silva AFC, Colonius T, Eldredge JD 2018. Data-assimilated low-order vortex modeling of separated flows. Phys. Rev. Fluids 3:12124701
    [Google Scholar]
  24. Darakananda D, Eldredge J. 2019. A versatile taxonomy of low-dimensional vortex models for unsteady aerodynamics. J. Fluid Mech. 858:917–48
    [Google Scholar]
  25. De Montaudouin J, Reveles N, Smith MJ. 2014. Aerodynamic and aeroelastic analysis of rotors at high advance ratios. Aeronaut. J. 118: 1201.297–313
    [Google Scholar]
  26. Dhamankar NS, Blaisdell GA, Lyrintzis AS. 2018. Overview of turbulent inflow boundary conditions for large-eddy simulations. AIAA J. 56:41317–34
    [Google Scholar]
  27. Diederich FW, Drischler JA. 1957. Effect of spanwise variations in gust intensity on the lift due to atmospheric turbulence NACA Tech. Note 3920 Langley Aeronaut. Lab. Langley Field, VA:
  28. Dooley GM, Krebill AF, Martin JE, Buchholz J, Carrica PM. 2020a. Structure of a ship airwake at multiple scales. AIAA J. 58:52005–13
    [Google Scholar]
  29. Dooley GM, Martin JE, Buchholz J, Carrica PM. 2020b. Ship airwakes in waves and motions and effects on helicopter operation. Comput. Fluids 208:104627
    [Google Scholar]
  30. Durst C. 1960. Wind speeds over short periods of time. Meteor. Mag. 89: 1056.181–87
    [Google Scholar]
  31. Engin K, Aydin E, Zaloglu B, Fenercioglu I, Cetiner O 2018. Large scale spanwise periodic vortex gusts or single spanwise vortex impinging on a rectangular wing Paper presented at the 2018 Fluid Dynamics Conference Atlanta, GA Jun. 25–29, AIAA Pap. 2018-3086
  32. EASA (E.U. Aviat. Saf. Agency) 2020a. Certification specifications and acceptable means of compliance for large aeroplanes Certif. Specif. CS-25 EASA, Cologne, Ger.
  33. EASA (E.U. Aviat. Saf. Agency) 2020b. Certification specifications for normal-category aeroplanes and acceptable means of compliance and guidance material to the certification specifications for normal-category aeroplanes Certif. Specif. CS-23 EASA, Cologne, Ger.
  34. FAA (Fed. Aviat. Admin.) 2010. Airworthiness standards: transport category rotorcraft Fed. Aviat. Regul., 14 CFR Part 29 FAA Washington, DC:
  35. FAA (Fed. Aviat. Admin.) 2014a. Certification of transport category rotorcraft Advis. Circ. AC 29-2C, Change 6 FAA Washington, DC:
  36. FAA (Fed. Aviat. Admin.) 2014b. Dynamic gust loads Advis. Circ. AC 25.341-1 FAA Washington, DC:
  37. FAA (Fed. Aviat. Admin.) 2016. Certification of normal category rotorcraft Advis. Circ. AC 17-1B, Change 7 FAA Washington, DC:
  38. Farnsworth J, Sinner D, Gloutak D, Droste L, Bateman D. 2020. Design and qualification of an unsteady low-speed wind tunnel with an upstream louver system. Exp. Fluids 61:8181
    [Google Scholar]
  39. Fenerci A, Øiseth O, Rønnquist A. 2017. Long-term monitoring of wind field characteristics and dynamic response of a long-span suspension bridge in complex terrain. Eng. Struct. 147:269–84
    [Google Scholar]
  40. Frederick M, Kerrigan EC, Graham JMR. 2010. Gust alleviation using rapidly deployed trailing-edge flaps. J. Wind Eng. Ind. Aerodyn. 98:12712–23
    [Google Scholar]
  41. Gehlert P, Babinsky H. 2021. Noncirculatory force on a finite thickness body encountering a gust. AIAA J. 59:2719–30
    [Google Scholar]
  42. Gilday M. 2021. Chief of Naval Operations (CNO) navigation plan (NAVPLAN) Navig. Plan, Off. Chief Nav. Oper. Washington, DC: https://www.navy.mil/Press-Office/Press-Releases/display-pressreleases/Article/2467465/cno-releases-navigation-plan-2021/
  43. Glīzde N. 2017. Plotting the flight envelope of an unmanned aircraft system air vehicle. Transp. Aerosp. Eng. 4:180–87
    [Google Scholar]
  44. Goldstein ME, Atassi H. 1976. A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust. J. Fluid Mech. 74:04741–65
    [Google Scholar]
  45. Golubev V, Hollenshade T, Nguyen L, Visbal M. 2010. High-accuracy low-Re simulations of airfoil-gust and airfoil-vortex interactions. Paper presented at the 40th AIAA Fluid Dynamics Conference and Exhibit Chicago, IL: Jun. 28–Jul. 1, AIAA Pap. 2010-4968
    [Google Scholar]
  46. Granlund K, Monnier B, Ol M, Williams DR 2014. Airfoil longitudinal gust response in separated versus attached flows. Phys. Fluids 26:2027103
    [Google Scholar]
  47. Granlund K, Ol MV, Jones AR. 2016. Streamwise oscillation of airfoils into reverse flow. AIAA J. 54:51628–36
    [Google Scholar]
  48. Greenberg J. 1947. Airfoil in a sinusoidal motion in a pulsating stream NACA Tech. Note 1326 Langley Aeronaut. Lab. Langley Field, VA:
  49. Gross G. 2014. On the estimation of wind comfort in a building environment by micro-scale simulation. Meteorol. Z. 23:151–62
    [Google Scholar]
  50. Grubb A, Moushegian A, Heathcote D, Smith MJ 2020. Physics and computational modeling of nonlinear transverse gust encounters Paper presented at AIAA 2020 SciTech Forum Orlando, FL: Jan. 6–10, AIAA Pap. 2020–0080
  51. Harding S, Payne G, Bryden I. 2014. Generating controllable velocity fluctuations using twin oscillating hydrofoils: experimental validation. J. Fluid Mech. 750:113–23
    [Google Scholar]
  52. He G, Deparday J, Siegel L, Henning A, Mulleners K. 2020. Stall delay and leading-edge suction for a pitching airfoil with trailing-edge flap. AIAA J. 58:125146–55
    [Google Scholar]
  53. He X, Asztalos K, Henry J, Dawson STM, Williams DR 2021. Generating traveling cross-flow gusts in a wind tunnel Paper presented at AIAA 2021 SciTech Forum, online, Jan 11–15 & 19–21 AIAA Pap2021–1938
  54. He X, Williams DR. 2020. Spectral feedback control of turbulent spectra in a wind tunnel. Exp. Fluids 61:8175
    [Google Scholar]
  55. Heathcote DJ, Gursul I, Cleaver DJ. 2018. Aerodynamic load alleviation using minitabs. J. Aircr. 55:52068–77
    [Google Scholar]
  56. Heinz J, Sørensen NN, Zahle F. 2011. Investigation of the load reduction potential of two trailing edge flap controls using CFD. Wind Energy 14:3449–62
    [Google Scholar]
  57. Hodara J, Smith MJ. 2017. Hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation closure for separated transitional flows. AIAA J. 55:61948–58
    [Google Scholar]
  58. Hou W, Darakananda D, Eldredge JD 2019. Machine-learning-based detection of aerodynamic disturbances using surface pressure measurements. AIAA J. 57:125079–93
    [Google Scholar]
  59. Hufstedler EAL, McKeon BJ. 2019. Vortical gusts: experimental generation and interaction with wing. AIAA J. 57:3921–31
    [Google Scholar]
  60. Isaacs R. 1945. Airfoil theory for flows of variable velocity. J. Aeronaut. Sci. 12:1113–17
    [Google Scholar]
  61. Isaacs R. 1946. Airfoil theory for rotary wing aircraft. J. Aeronaut. Sci. 13:4218–20
    [Google Scholar]
  62. Jarrin N. 2008. Synthetic inflow boundary conditions for the numerical simulation of turbulence. PhD Thesis Univ. Manchester Manchester, U.K:.
    [Google Scholar]
  63. Johnson W, Silva C, Solis E 2018. Concept vehicles for air taxi operations. Paper presented at the AHS Technical Conference on Aeromechanics Design for Transformative Vertical Flight San Francisco, CA: Jan. 16–19
    [Google Scholar]
  64. Jones AR. 2020. Gust encounters of rigid wings: taming the parameter space. Phys. Rev. Fluids 5:11110513
    [Google Scholar]
  65. Jones AR, Cetiner O. 2021. Overview of unsteady aerodynamic response of rigid wings in gust encounters. AIAA J. 59:2731–36
    [Google Scholar]
  66. Kerstens W, Pfeiffer J, Williams D, King R, Colonius T 2012. Closed-loop control of lift for longitudinal gust suppression at low Reynolds numbers. AIAA J. 49:81721–28
    [Google Scholar]
  67. Kirk PB, Jones AR. 2019. Vortex formation on surging aerofoils with application to reverse flow modelling. J. Fluid Mech. 859:59–88
    [Google Scholar]
  68. Klein S, Scholz P, Radespiel R. 2016. Transient, three-dimensional disturbances interacting with a high-lift airfoil-wind tunnel experiments. Paper presented at the 54th AIAA Aerospace Sciences Meeting San Diego, CA: Jan. 4–8, AIAA Pap. 2016-1844
    [Google Scholar]
  69. Küssner HG. 1932. Stresses produced in airplane wings by gusts NACA Tech. Memo. 654 Langley Mem. Aeronaut. Lab. Langley Field, VA:
  70. Küssner HG. 1936. Zusammenfassender Bericht über den instationären Auftrieb von Flügeln. Jahrb. Dtsch. Luftfahrtforsch. 13:12410–24
    [Google Scholar]
  71. Le Provost M, Eldredge J 2020. Ensemble-filtered vortex modeling of strongly disturbed aerodynamic flows. arXiv:2008.11309 [physics.flu-dyn]
  72. Liggett N, Smith MJ. 2012. Temporal convergence criteria for time-accurate viscous simulations of separated flows. Comput. Fluids 66:140–56
    [Google Scholar]
  73. Lone M, Dussart G. 2019. Impact of spanwise non-uniform discrete gusts on civil aircraft loads. Aeronaut. J. 123: 1259.93–120
    [Google Scholar]
  74. Manar FH, Jones AR. 2019. Evaluation of potential flow models for unsteady separated flow with respect to experimental data. Phys. Rev. Fluids 4:3034702
    [Google Scholar]
  75. Mancini P, Medina A, Jones AR. 2019. Experimental and analytical investigation into lift prediction on large trailing edge flaps. Phys. Fluids 31:1013106
    [Google Scholar]
  76. Marzanek MF, Rival DE. 2019. Separation mechanics of non-slender delta wings during streamwise gusts. J. Fluids Struct. 90:286–96
    [Google Scholar]
  77. Miles JW. 1956. The aerodynamic force on an airfoil in a moving gust. J. Aeronaut. Sci. 23:111044–50
    [Google Scholar]
  78. Mohamed A, Carrese R, Fletcher D, Watkins S 2015. Scale-resolving simulation to predict the updraught regions over buildings for MAV orographic lift soaring. J. Wind Eng. Ind. Aerodyn. 140:34–48
    [Google Scholar]
  79. Mohamed A, Massey K, Watkins S, Clothier R. 2014. The attitude control of fixed-wing MAVS in turbulent environments. Prog. Aerosp. Sci. 66:37–48
    [Google Scholar]
  80. Mohr S, Kunz M, Richter A, Ruck B. 2017. Statistical characteristics of convective wind gusts in Germany. Nat. Hazards Earth Syst. Sci. 17:6957–69
    [Google Scholar]
  81. Moushegian A, Weston C, Smith MJ. 2019. Analysis of a wing moving through a nonlinear gust Paper presented at the AIAA Fluid Dynamics Conference San Diego, CA: Jan. 7–11, AIAA Pap. 2019-0637
  82. Mueller T. 2009. On the birth of micro air vehicles. Int. J. Micro. Air Veh. 1:1–12
    [Google Scholar]
  83. Mulleners K, Mancini P, Jones AR. 2017. Flow development on a flat-plate wing subjected to a streamwise acceleration. AIAA J. 55:62118–22
    [Google Scholar]
  84. Nolan DS, Dahl NA, Bryan GH, Rotunno R. 2017. Tornado vortex structure, intensity, and surface wind gusts in large-eddy simulations with fully developed turbulence. J. Atmos. Sci. 74:51573–97
    [Google Scholar]
  85. O'Donnell R, Mohseni K 2019. Roll control of low-aspect-ratio wings using articulated winglet control surfaces. J. Aircr. 56:2419–30
    [Google Scholar]
  86. Panta A, Watkins S, Marino M, Fisher A, Mohamed A. 2019. Lift response of rapidly actuated leading-edge and trailing-edge control surfaces for MAVs Paper presented at AIAA 2019 SciTech Forum San Diego, CA: Jan. 7–11, AIAA Pap. 2019-1397
  87. Peng D, Gregory JW. 2015. Vortex dynamics during blade-vortex interactions. Phys. Fluids 27:5053104
    [Google Scholar]
  88. Peng D, Gregory JW. 2017. Asymmetric distributions in pressure/load fluctuation levels during blade-vortex interactions. J. Fluids Struct. 68:58–71
    [Google Scholar]
  89. Perrotta G, Jones AR. 2017. Unsteady forcing on a flat-plate wing in large transverse gusts. Exp. Fluids 58:8101
    [Google Scholar]
  90. Peterka JA, Shahid S. 1998. Design gust wind speeds in the United States. J. Struct. Eng. 124:2207–14
    [Google Scholar]
  91. Ramesh K, Ramesh K, Gopalarathnam A, Gopalarathnam A, Granlund K et al. 2014. Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding. J. Fluid Mech. 751:500–38
    [Google Scholar]
  92. Rennie R, Catron B, Feroz M, Williams D, He X 2019. Dynamic behavior and gust simulation in an unsteady flow wind tunnel. AIAA J. 57:41423–33
    [Google Scholar]
  93. Rockwell D. 1998. Vortex-body interactions. Annu. Rev. Fluid Mech. 30:1199–229
    [Google Scholar]
  94. Rockwood M, Medina A. 2020. Controlled generation of periodic vortical gusts by the rotational oscillation of a circular cylinder and attached plate. Exp. Fluids 61:265
    [Google Scholar]
  95. Sedky G, Jones AR, Lagor F. 2020. Lift regulation during transverse gust encounters using a modified Goman–Khrabrov model. AIAA J. 58:93788–98
    [Google Scholar]
  96. Sheridan P. 2018. Current gust forecasting techniques, developments and challenges. Adv. Sci. Res. Adv. 15:159–72
    [Google Scholar]
  97. Shukla S, Sinha SS, Singh SN. 2019. Ship-helo coupled airwake aerodynamics: a comprehensive review. Prog. Aerosp. Sci. 106:71–107
    [Google Scholar]
  98. Silva C, Johnson W, Patterson M, Antcliff KR 2018. VTOL urban air mobility concept vehicles for technology development. Paper presented at the AIAA Aviation Technology, Integration, and Operations Conference Atlanta, GA: Jun. 25–29, AIAA Pap. 2018-3847
    [Google Scholar]
  99. Smith LR, Jones AR. 2020. Vortex formation on a pitching aerofoil at high surging amplitudes. J. Fluid Mech. 905:A22
    [Google Scholar]
  100. Smith MJ, Gardner AD, Jain R, Peters DA, Richez F. 2020. Rotating wing dynamic stall: state of the art and future directions Paper presented at the 76th Vertical Flight Society Annual Forum & Technology Display. online. Oct. 5–8
    [Google Scholar]
  101. Smith MJ, Liggett N, Koukol BCG. 2011. The aerodynamics of airfoils at high and reverse angles of attack. J. Aircr. 48:62012–23
    [Google Scholar]
  102. Smithson. Natl. Air Space Mus 1999. The Wright Flyer: from invention to icon. Smithson. Natl. Air Space Mus. https://airandspace.si.edu/exhibitions/wright-brothers/online/icon/1903.cfm
    [Google Scholar]
  103. Suomi I, Vihma T. 2018. Wind gust measurement techniques—from traditional anemometry to new possibilities. J. Sensors 18:41300
    [Google Scholar]
  104. Thedin R, Murman SM, Horn J, Schmitz S. 2020. Effects of atmospheric turbulence unsteadiness on ship airwakes and helicopter dynamics. AIAA J. 57:3534–46
    [Google Scholar]
  105. Theodorsen T. 1934. General theory of aerodynamic instability and the mechanism of flutter NACA Tech Memo 496, Langley Mem. Aeronaut. Lab. Langley Field, VA:
  106. Thorpe R, McCrink M, Gregory J 2018. Measurement of unsteady gusts in an urban wind field using a UAV-based anemometer Paper presented at the 2018 Applied Aerodynamics Conference Atlanta, GA: Jun. 25–29, AIAA Pap. 2018-4218
  107. USDOD (U.S. Dep. Def.) 1980. Flying qualities of flying airplanes Mil. Spec. MIL-F-8785C, DOD Washington, DC:
  108. USDOD (U.S. Dep. Def.) 2004. Flying qualities of piloted aircraft Mil. Stand. MIL-STD-1797A (Notice 3), DOD Washington, DC:
  109. von Kármán T, Sears W. 1938. Airfoil theory for non-uniform motion. J. Aeronaut. Sci. 5:10379–90
    [Google Scholar]
  110. Wagner H. 1925. Uber die Entstehung des dynamischen Auftriebes von Tragflügeln. Z. Angew. Math. Mech. 5:17–35
    [Google Scholar]
  111. Wales C, Jones D, Gaitonde A. 2015. Prescribed velocity method for simulation of aerofoil gust responses. J. Aircr. 52:164–76
    [Google Scholar]
  112. Wei NJ, Kissing J, Wester TTB, Wegt S, Schiffmann K et al. 2019. Insights into the periodic gust response of airfoils. J. Fluid Mech. 876:237–63
    [Google Scholar]
  113. Wilczak JM, Stoelinga M, Berg LK, Sharp J, Draxl C et al. 2019. The second wind forecast improvement project (WFIP2): observational field campaign. Bull. Am. Meteorol. Soc. 100:91701–23
    [Google Scholar]
  114. Yeo H. 2013. Investigation of UH-60A rotor performance and loads at high advance ratios. J. Aircr. 50:2576–89
    [Google Scholar]
  115. Young AM, Farman J, Miller R. 2016. Load alleviation technology for extending life in tidal turbines. Proceedings of the 2nd International Conference on Renewable Energies Offshore, Lisbon, Portugal, Oct. 24–26 ed. CG Soares 521–30 Boca Raton, FL: CRC
  116. Young AM, Smyth ASM. 2021. Gust-airfoil coupling with a loaded airfoil. AIAA J. 59:3773–85
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-031621-085520
Loading
/content/journals/10.1146/annurev-fluid-031621-085520
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error