1932

Abstract

Although they lack muscle, plants have evolved a remarkable range of mechanisms to create motion, from the slow growth of shoots to the rapid snapping of carnivorous plants and the explosive rupture of seed pods. Here we review the key fluid mechanics principles used by plants to achieve movements, summarizing current knowledge and recent discoveries. We begin with a brief overview of water transport and material properties in plants and emphasize that the poroelastic timescale of water diffusion through soft plant tissue imposes constraints on the possible mechanisms for motion. We then discuss movements that rely only on the transport of water, from irreversible growth to reversible swelling/shrinking due to osmotic or humidity gradients. We next show how plants use mechanical instabilities—snap buckling, cavitation, and fracture—to speed up their movements beyond the limits imposed by simple hydraulic mechanisms. Finally, we briefly discuss alternative schemes, involving capillarity or complex fluids.

[Erratum, Closure]

An erratum has been published for this article:
"Vegetable Dynamicks": The Role of Water in Plant Movements
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120710-101200
2012-01-21
2024-04-24
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-fluid-120710-101200
Loading
/content/journals/10.1146/annurev-fluid-120710-101200
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error