1932

Abstract

John Lumley's contributions to the theory, modeling, and experiments on turbulent flows played a seminal role in the advancement of our understanding of this subject in the second half of the twentieth century. We discuss John's career and his personal style, including his love and deep knowledge of vintage wine and vintage cars. His intellectual contributions range from abstract theory to applied engineering. Here we discuss some of his major advances, focusing on second-order modeling, proper orthogonal decomposition, path-breaking experiments, research on geophysical turbulence, and important contributions to the understanding of drag reduction. John Lumley was also an influential teacher whose books and films have molded generations of students. These and other aspects of his professional career are described.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122316-044524
2018-01-05
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/fluid/50/1/annurev-fluid-122316-044524.html?itemId=/content/journals/10.1146/annurev-fluid-122316-044524&mimeType=html&fmt=ahah

Literature Cited

  1. André JC, De Moor G, Lacarrérè P, Du Vachat R. 1976a. Turbulence approximation for inhomogeneous flows: part 1. The clipping approximation. J. Atmos. Sci. 33:476–81 [Google Scholar]
  2. André JC, De Moor G, Lacarrérè P, Du Vachat R. 1976b. Turbulence approximation for inhomogeneous flows: part 2. The numerical simulation of a penetrative convection experiment. J. Atmos. Sci. 33:482–91 [Google Scholar]
  3. Aubry N, Holmes P, Lumley JL, Stone E. 1988. The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192:115–73 [Google Scholar]
  4. Aubry N, Guyonnet R, Lima R. 1991. Spatio-temporal analysis of complex signals: theory and applications. J. Stat. Phys. 64:683–739 [Google Scholar]
  5. Bakewell HP, Lumley JL. 1967. The viscous sublayer and adjacent wall region in turbulent pipe flows. Phys. Fluids 10:1880–89 [Google Scholar]
  6. Berkooz G, Holmes P, Lumley JL. 1993. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25:539–75 [Google Scholar]
  7. Buchave P, Lumley JL, George WK Jr. 1979. The measurement of turbulence with the laser-Doppler anemometer. Annu. Rev. Fluid Mech. 11:443–503 [Google Scholar]
  8. Cantwell B. 1990. Future directions in turbulence research and the role of organized motion. See Lumley 1990b, pp. 97–131
  9. Choi K-S, Lumley JL. 2001. The return to isotropy of homogeneous turbulence. J. Fluid Mech. 436:59–84 [Google Scholar]
  10. Corino ER, Brodkey RS. 1969. A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37:1–30 [Google Scholar]
  11. Corrsin S. 1943. Investigations of flow in an axially symmetric heated jet of air NACA Adv. Confid. Rep. 3L23.
  12. Daly BJ, Harlow FH. 1970. Transport equations in turbulence. Phys. Fluids 13:2634–49 [Google Scholar]
  13. Davidov BI. 1961. On the statistical dynamics of an incompressible turbulent fluid. Dokl. Akad. Nauk S.S.S.R. 136:47–50 [Google Scholar]
  14. de Gennes PG. 1990. Introduction to Polymer Dynamics Cambridge, UK: Cambridge Univ. Press
  15. Donelan MA, Kitaigorodskii SA, Lumley JL, Terray EA. 1982. Wave-turbulence interactions in the upper ocean. Part II: statistical characteristics of wave and turbulence components of random velocity field in the marine surface layer. J. Phys. Oceanogr. 13:111988–99 [Google Scholar]
  16. Gatski TB, Sarkar S, Speziale CG. 1992. Studies in Turbulence New York: Springer-Verlag
  17. George WK, Lumley JL. 1971. Limitations on the measurement of turbulence using a laser-Doppler velocimeter. Proc. Tech. Program, Electro-Opt. Syst. Des. Conf.926–39 Chicago: Ind. Sci. Conf. Manag. [Google Scholar]
  18. George WK, Lumley JL. 1973. The laser-Doppler velocimeter and its application to the measurement of turbulence. J. Fluid Mech. 60:321–63 [Google Scholar]
  19. Glauser MN, Zheng X, George WK. 1992. The streamwise evolution of coherent structures in the axisymmetric jet mixing layer. See Gatski et al. 1992 207–22
  20. Hanjalić K, Launder BE. 1972. A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech. 52:609–38 [Google Scholar]
  21. Herzog S. 1986. The large scale structure in the near-wall region of turbulent pipe flow PhD Thesis, Cornell Univ.
  22. Holmes P, Lumley JL, Berkooz G. 1996. Turbulence, Coherent Structures, Dynamical Systems and Symmetry Cambridge, UK: Cambridge Univ. Press
  23. Holmes P, Lumley JL, Berkooz G, Rowley CW. 2012. Turbulence, Coherent Structures, Dynamical Systems and Symmetry Cambridge, UK: Cambridge Univ. Press. 2nd ed.
  24. Kitaigorodskii SA, Lumley JL. 1982. Wave-turbulence interactions in the upper ocean. Part I: the energy balance of the interacting fields of surface wind-waves and wind-induced three-dimensional turbulence. J. Phys. Oceanogr. 13:111977–87 [Google Scholar]
  25. Kline SJ, Reynolds WC, Schraub FA, Runstadler PW. 1967. The structure of turbulent boundary layers. J. Fluid Mech. 30:741–73 [Google Scholar]
  26. Kline SJ, Coles DE, Hirst EA. 1969. Proc. Comput. Turbul. Bound. Layers: 1968 AFOSR-IFP-Stanford Conf. Stanford, CA: Thermosci. Div., Stanford Univ.
  27. Leibovich S, Lumley JL. 1982. Interaction of turbulence and Langmuir cells in vertical transport of oil droplets. First Int. Conf. Meteorol. Air/Sea Interact. Coast. Zone, May 10–14, The Hague, Netherlands ed. H Tennekes, pp. 271–76 Boston: Am. Meteorol. Soc. [Google Scholar]
  28. Liepmann HW. 1952. Aspects of the turbulence problem. Second part. Z. Angew. Math. Phys. 3:407–26 [Google Scholar]
  29. Lissik EA, Lumley JL, Scott NR. 1984. A model for milk flow through the teat canal in dairy cattle Am. Soc. Agric. Eng.
  30. Lumley JL. 1962. The constant temperature hot-thermistor anemometer. Proc. Symp. Meas. Unsteady Flow75–82 New York: Am. Soc. Mech. Eng. [Google Scholar]
  31. Lumley JL. 1963a. Deformation of continuous media Video, Natl. Comm. Fluid Mech. Films. http://techtv.mit.edu/videos/32596-deformation-of-a-continuous-media
  32. Lumley JL. 1963b. Eulerian and Lagrangian description in fluid mechanics Video, Natl. Comm. Fluid Mech. Films. http://techtv.mit.edu/collections/ifluids/videos/32597-eulerian-and-lagrangian-descriptions-in-fluid-mechanics
  33. Lumley JL. 1964. The spectrum of nearly inertial turbulence in a stably stratified fluid. J. Atmos. Sci. 21:99–102 [Google Scholar]
  34. Lumley JL. 1967a. Similarity and the turbulent energy spectrum. Phys. Fluids 10:855–58 [Google Scholar]
  35. Lumley JL. 1967b. The structure of inhomogeneous turbulent flows. See Yaglom & Tatarsky 1967, pp. 166–78
  36. Lumley JL. 1969. Drag reduction by additives. Annu. Rev. Fluid Mech. 1:367–84 [Google Scholar]
  37. Lumley JL. 1970a. Stochastic Tools in Turbulence New York: Academic Press
  38. Lumley JL. 1970b. Toward a turbulent constitutive relation. J. Fluid Mech. 41:413–34 [Google Scholar]
  39. Lumley JL. 1971. Explanation of thermal plume growth rates. Phys. Fluids 14:2537–38 [Google Scholar]
  40. Lumley JL. 1973. Drag reduction in turbulent flows by polymer additives. J. Polym. Sci. 7:263–90 [Google Scholar]
  41. Lumley JL. 1978. Computational modeling of turbulent flows. Advances in Applied Mechanics 18 ed. C-S Yih 123–76 New York: Academic Press [Google Scholar]
  42. Lumley JL. 1979. Second-order modeling of turbulent flows. Prediction of Turbulent Flows Kollmann W. 1–32 Washington, DC: Hemisphere [Google Scholar]
  43. Lumley JL. 1983. Turbulence modeling. J. Appl. Mech. 50:1097–103 [Google Scholar]
  44. Lumley JL. 1990a. The utility and drawbacks of traditional approaches: comment 1. See Lumley 1990b 49–58
  45. Lumley JL. 1990b. Whither Turbulence? Turbulence at the Crossroads 357 Berlin: Springer-Verlag
  46. Lumley JL. 1992. Some comments on turbulence. Phys. Fluids. A42203–11
  47. Lumley JL. 1999. Engines: An Introduction New York: Cambridge Univ. Press
  48. Lumley JL. 2001. Early work on fluid mechanics in the IC engine. Annu. Rev. Fluid Mech. 33:319–38 [Google Scholar]
  49. Lumley JL. 2005. Still Life with Cars: An Automotive Memoir Jefferson, NC: McFarland
  50. Lumley JL, Blossey PN. 1998. Control of turbulence. Annu. Rev. Fluid Mech. 30:311–27 [Google Scholar]
  51. Lumley JL, Khajeh-Nouri B. 1975. Computational modeling of turbulent transport. Advances in Geophysics 18A FN Frenkiel, RE Munn 169–92 New York: Academic Press [Google Scholar]
  52. Lumley JL, McMahon JF. 1967. Reducing water tunnel turbulence by means of a honeycomb. J. Basic Eng. 89:4764–70 [Google Scholar]
  53. Lumley JL, Newman GR. 1977. The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82:161–78 [Google Scholar]
  54. Lumley JL, Panofsky H. 1964. The Structure of Atmospheric Turbulence New York: Wiley Intersci.
  55. Lumley JL, Sheih CM, Tennekes H. 1971. Air-borne hot wire measurements of the small-scale structure of atmospheric turbulence. Phys. Fluids 14:201–15 [Google Scholar]
  56. Lumley JL, Yaglom AM. 2001. A century of turbulence. Flow Turbul. Combust. 66:241–86 [Google Scholar]
  57. Lumley JL, Zeman O, Siess J. 1978. The influence of buoyancy on turbulent transport. J. Fluid Mech. 84:581–97 [Google Scholar]
  58. Moin P. 1984. Probing turbulence via large eddy simulation. Presented at AIAA Aerosp. Sci. Meet., 22nd, Jan. 9–12, Reno, NV, AIAA Pap. 1984-174
  59. Moin P, Davis SH. 2016. Introduction. Annu. Rev. Fluid Mech. 48:v [Google Scholar]
  60. Monin AS, Kamenkovich VM, Kort VG. 1977. Variability of the Oceans JL Lumley, transl. R Radok New York: Wiley
  61. Monin AS, Yaglom AM. 1971. Statistical Fluid Mechanics: Mechanics of Turbulence I Cambridge, MA: MIT Press
  62. Monin AS, Yaglom AM. 1975. Statistical Fluid Mechanics: Mechanics of Turbulence II Cambridge, MA: MIT Press
  63. Obukov AM. 2001. Turbulence and Atmospheric Dynamics JL Lumley, transl. VN Bespalyi Stanford, CA: Cent. Turbul. Res.
  64. Pai SI. 1943. Turbulent flow between rotating cylinders NACA Tech. Rep. 892, Natl. Comm. Aeronaut., Washington, DC
  65. Panchapakesan NR, Lumley JL. 1993a. Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246:197–223 [Google Scholar]
  66. Panchapakesan NR, Lumley JL. 1993b. Turbulence measurements in axisymmetric jets of air and helium. Part 2. Helium jet. J. Fluid Mech. 246:225–47 [Google Scholar]
  67. Payne FR, Lumley JL. 1966. One-dimensional spectra derived from an air-borne hot-wire anemometer. Q. J. R. Meteorol. Soc. 92:397–401 [Google Scholar]
  68. Podvin B, Gibson J, Berkooz G, Lumley J. 1997. Lagrangian and Eulerian view of the bursting period. Phys. Fluids 9:433–37 [Google Scholar]
  69. Pope SB. 1983. Consistent modeling of turbulent flows. Phys. Fluids 26:404–8 [Google Scholar]
  70. Pope SB. 2000. Turbulent Flows Cambridge, UK: Cambridge Univ. Press
  71. Ptasinski PK, Boersma BJ, Nieuwstadt FTM, Huksen MA, Van Den Brule BHAA, Hunt JCR. 2003. Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms. J. Fluid Mech. 490:251–91 [Google Scholar]
  72. Rajaee M, Karlson SKF, Sirovich L. 1994. Low-dimensional description of free shear flow coherent structures and their dynamical behaviour. J. Fluid Mech. 258:1–29 [Google Scholar]
  73. Rempfer D, Fasel H. 1994. Evolution of three-dimensional coherent structures in a flat-plate boundary layer. J. Fluid Mech. 260:351–75 [Google Scholar]
  74. Robert A, Vaithianathan T, Collins LC, Brasseur JG. 2010. Polymer-laden homogeneous shear-driven turbulent flow: a model for polymer drag reduction. J. Fluid Mech. 657:189–226 [Google Scholar]
  75. Rotta JC. 1951a. Statistische Theorie nichthomogener Turbulenz. Z. Phys. 129:547–72 [Google Scholar]
  76. Rotta JC. 1951b. Statistische Theorie nichthomogener Turbulenz. Z. Phys. 131:51–77 [Google Scholar]
  77. Saddoughi SG, Veeravalli SV. 1994. Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268:333–72 [Google Scholar]
  78. Sanghi S, Aubry N. 1993. Mode interaction models for near-wall turbulence. J. Fluid Mech. 247:455–88 [Google Scholar]
  79. Schumann U. 1977. Realizability of Reynolds stress turbulence models. Phys. Fluids 20:721–75 [Google Scholar]
  80. Sheih CM, Lumley JL, Tennekes H. 1970. Further studies on the Wyngaard-Lumley anemometer. J. Phys. E 3:1023–25 [Google Scholar]
  81. Shraiman BI, Siggia ED. 2000. Scalar turbulence. Nature 405:639–46 [Google Scholar]
  82. Siegel SG, Seidel J, Fagley C, Luchtenburg DM, Cohen K, McLaughlin T. 2008. Low dimensional modeling of a transient cylinder wake using double proper orthogonal decomposition. J. Fluid Mech. 610:1–42 [Google Scholar]
  83. Sirovich L. 1987a. Turbulence and the dynamics of coherent structures: part I: coherent structures. Q. Appl. Math. 45:3561–71 [Google Scholar]
  84. Sirovich L. 1987b. Turbulence and the dynamics of coherent structures: part II: symmetries and transformations. Q. Appl. Math. 45:3573–82 [Google Scholar]
  85. Sirovich L. 1987c. Turbulence and the dynamics of coherent structures: part III: dynamics and scaling. Q. Appl. Math. 45:3583–90 [Google Scholar]
  86. Snyder WH, Lumley JL. 1971. Some measurements of particle velocity autocorrelation functions in a turbulent flow. J. Fluid Mech. 48:41–71 [Google Scholar]
  87. Tabor M, de Gennes PG. 1986. A cascade theory of drag reduction. Europhys. Lett. 2:519–22 [Google Scholar]
  88. Tennekes H, Lumley JL. 1972. A First Course in Turbulence Cambridge, MA: MIT Press
  89. Toms BA. 1948. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. Proc. 1st Int. Congr. Rheol. 2135–41 Amsterdam: North-Holland [Google Scholar]
  90. Toschi F, Bodenschatz E. 2009. Lagrangian properties of particle turbulence. Annu. Rev. Fluid Mech. 41:375–404 [Google Scholar]
  91. Townsend AA. 1949. The fully developed turbulent wake of a circular cylinder. Aust. J. Sci. Res. 2:451–68 [Google Scholar]
  92. Townsend AA. 1951. The structure of the turbulent boundary layer. Proc. Camb. Philos. Soc. 47:375–95 [Google Scholar]
  93. Warhaft Z, Lumley JL. 1978. An experimental study of the decay of temperature fluctuations in grid-generated turbulence. J. Fluid Mech. 88:659–84 [Google Scholar]
  94. Way J, Libby PA. 1971. Application of hot-wire anemometry and digital techniques to measurements in a turbulent jet. AIAA J. 9:1567–73 [Google Scholar]
  95. White CM, Mungal MG. 2008. Mechanisms and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40:235–56 [Google Scholar]
  96. Wyngaard JC. 2010. Turbulence in the Atmosphere Cambridge, UK: Cambridge Univ. Press
  97. Wyngaard JC, Lumley JL. 1967. A constant-temperature hot-wire anemometer. J. Sci. Instrum. 44:363–65 [Google Scholar]
  98. Yaglom AM, Tatarsky VI. 1967. Atmospheric Turbulence and Radio Wave Propagation Moscow: Nauka
  99. Yeung PK, Pope SB. 1989. Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207:531–86 [Google Scholar]
  100. Zeman O, Lumley JL. 1976. Modeling buoyancy-driven mixed layers. J. Atmos. Sci. 33:101974–88 [Google Scholar]
  101. Zeman O, Lumley JL. 1982a. Modeling salt-fingering structures. J. Mar. Res. 40:2315–30 [Google Scholar]
  102. Zeman O, Lumley JL. 1982b. Progress in modeling multi-layer salt fingering structures. Math. Model. 4:73–85 [Google Scholar]
/content/journals/10.1146/annurev-fluid-122316-044524
Loading
/content/journals/10.1146/annurev-fluid-122316-044524
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error