1932

Abstract

Granular materials composed of particles with differing grain sizes, densities, shapes, or surface properties may experience unexpected segregation during flow. This review focuses on kinetic sieving and squeeze expulsion, whose combined effect produces the dominant gravity-driven segregation mechanism in dense sheared flows. Shallow granular avalanches that form at the surface of more complex industrial flows such as heaps, silos, and rotating drums provide ideal conditions for particles to separate, with large particles rising to the surface and small particles percolating down to the base. When this is combined with erosion and deposition, amazing patterns can form in the underlying substrate. Gravity-driven segregation and velocity shear induce differential lateral transport, which may be thought of as a secondary segregation mechanism. This allows larger particles to accumulate at flow fronts, and if they are more frictional than the fine grains, they can feedback on the bulk flow, causing flow fingering, levee formation, and longer runout of geophysical mass flows.

Associated Article

There are media items related to this article:
Particle Segregation in Dense Granular Flows: Supplemental Video 3

Associated Article

There are media items related to this article:
Particle Segregation in Dense Granular Flows: Supplemental Video 12

Associated Article

There are media items related to this article:
Particle Segregation in Dense Granular Flows: Supplemental Video 10

Associated Article

There are media items related to this article:
Particle Segregation in Dense Granular Flows: Supplemental Video 13

Associated Article

There are media items related to this article:
Particle Segregation in Dense Granular Flows: Supplemental Video 11

Associated Article

There are media items related to this article:
Particle Segregation in Dense Granular Flows: Supplemental Video 2

Associated Article

There are media items related to this article:
Particle Segregation in Dense Granular Flows: Supplemental Video 7

Associated Article

There are media items related to this article:
Particle Segregation in Dense Granular Flows: Supplemental Video 6

Associated Article

There are media items related to this article:
Particle Segregation in Dense Granular Flows: Supplemental Video 1

Associated Article

There are media items related to this article:
Particle Segregation in Dense Granular Flows: Supplemental Video 8

Associated Article

There are media items related to this article:
Particle Segregation in Dense Granular Flows: Supplemental Video 4

Associated Article

There are media items related to this article:
Particle Segregation in Dense Granular Flows: Supplemental Video 5

Associated Article

There are media items related to this article:
Particle Segregation in Dense Granular Flows: Supplemental Video 9
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122316-045201
2018-01-05
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/fluid/50/1/annurev-fluid-122316-045201.html?itemId=/content/journals/10.1146/annurev-fluid-122316-045201&mimeType=html&fmt=ahah

Literature Cited

  1. Baker JL, Barker T, Gray JMNT. 2016a. A two-dimensional depth-averaged μ(I)-rheology for dense granular avalanches. J. Fluid Mech. 787:367–95 [Google Scholar]
  2. Baker JL, Johnson CG, Gray JMNT. 2016b. Segregation-induced finger formation in granular free-surface flows. J. Fluid Mech. 809:168–212 [Google Scholar]
  3. Barker T, Gray JMNT. 2017. Partial regularisation of the incompressible μ (I)-rheology for granular flow. J. Fluid Mech. 828:5–32 [Google Scholar]
  4. Barker T, Schaeffer DG, Bohorquez P, Gray JMNT. 2015. Well-posed and ill-posed behaviour of the μ (I)-rheology for granular flow. J. Fluid Mech. 779:794–818 [Google Scholar]
  5. Barker T, Schaeffer DG, Shearer M, Gray JMNT. 2017. Well-posed continuum equations for granular flow with compressibility and μ (I)-rheology. Proc. R. Soc. A 473:20160846 [Google Scholar]
  6. Bartelt P, McArdell BW. 2009. Granulometric investigations of snow avalanches. J. Glaciol. 55:829–33 [Google Scholar]
  7. Bates L. 1997. User Guide to Segregation GD Hayes Marlow, UK: Br. Mater. Handl. Board
  8. Baxter J, Tüzün U, Heyes D, Hayati I, Fredlund P. 1998. Stratification in poured granular heaps. Nature 391:136 [Google Scholar]
  9. Branney MJ, Kokelaar BP. 1992. A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to nonparticulate flow during emplacement of high-grade ignimbrite. Bull. Volcanol. 54:504–20 [Google Scholar]
  10. Bridgwater J, Foo W, Stephens D. 1985. Particle mixing and segregation in failure zones—theory and experiment. Powder Technol. 41:147–58 [Google Scholar]
  11. Calder ES, Sparks RSJ, Gardeweg MC. 2000. Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at lascar volcano, Chile. J. Volcanol. Geotherm. Res. 104:201–35 [Google Scholar]
  12. Chadwick P. 1976. Continuum Mechanics: Concise Theory and Problems London: Allen Unwin
  13. Davies TRH. 1988. Debris flow surges: a laboratory investigation Tech. Rep. 96, Mitt. Versuch. Wasserbau Hydrol. Glaziologie, ETH Zurich
  14. Dolgunin VN, Ukolov AA. 1995. Segregation modelling of particle rapid gravity flow. Powder Technol. 83:95–103 [Google Scholar]
  15. Dolgunin VN, Ukolov AA, Ivanov OO. 2006. Segregation kinetics in the rapid gravity flow of granular materials. Theor. Found. Chem. Eng. 40:393–404 [Google Scholar]
  16. Ehrichs EE, Jaeger HM, Karczmar GS, Knight JB, Kuperman VY, Nagel SR. 1995. Granular convection observed by magnetic resonance imaging. Science 267:1632–34 [Google Scholar]
  17. Fan Y, Hill KM. 2011. Theory for shear-induced segregation of dense granular mixtures. New J. Phys. 13:095009 [Google Scholar]
  18. Félix G, Thomas N. 2004. Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet. Sci. Lett. 221:197–213 [Google Scholar]
  19. Gajjar P, Gray JMNT. 2014. Asymmetric flux models for particle-size segregation in granular avalanches. J. Fluid Mech. 757:297–329 [Google Scholar]
  20. Gajjar P, van der Vaart K, Thornton AR, Johnson CG, Ancey C, Gray JMNT. 2016. Asymmetric breaking size-segregation waves in dense granular free-surface. J. Fluid Mech. 794:460–505 [Google Scholar]
  21. GDR MiDi (Group. Res. Milieux Div.) 2004. On dense granular flows. Eur. Phys. J. E 14:341–65 [Google Scholar]
  22. Goldhirsch I. 2010. Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matter 12:239–52 [Google Scholar]
  23. Golick LA, Daniels KE. 2009. Mixing and segregation rates in sheared granular materials. Phys. Rev. E 80:042301 [Google Scholar]
  24. Goujon C, Dalloz-Dubrujeaud B, Thomas N. 2007. Bidisperse granular avalanches on inclined planes: a rich variety of behaviours. Eur. Phys. J. E 23:199–215 [Google Scholar]
  25. Gray JMNT. 2001. Granular flow in partially filled slowly rotating drums. J. Fluid Mech. 441:1–29 [Google Scholar]
  26. Gray JMNT, Ancey C. 2009. Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts. J. Fluid Mech. 629:387–423 [Google Scholar]
  27. Gray JMNT, Ancey C. 2011. Multi-component particle size segregation in shallow granular avalanches. J. Fluid Mech. 678:535–88 [Google Scholar]
  28. Gray JMNT, Ancey C. 2015. Particle-size and particle-density segregation in granular avalanches. J. Fluid Mech. 779:622–68 [Google Scholar]
  29. Gray JMNT, Chugunov VA. 2006. Particle-size segregation and diffusive remixing in shallow granular avalanches. J. Fluid Mech. 569:365–98 [Google Scholar]
  30. Gray JMNT, Edwards AN. 2014. A depth-averaged μ(I)-rheology for shallow granular free-surface flows. J. Fluid Mech. 755:503–34 [Google Scholar]
  31. Gray JMNT, Hutter K. 1997. Pattern formation in granular avalanches. Contin. Mech. Thermodyn. 9:341–45 [Google Scholar]
  32. Gray JMNT, Hutter K. 1998. Physik granularer Lawinen. Phys. Bl. 54:37–43 [Google Scholar]
  33. Gray JMNT, Kokelaar BP. 2010. Large particle segregation, transport and accumulation in granular free-surface flows. J. Fluid Mech. 652:105–37. Erratum. 2010. J. Fluid Mech. 657:539 [Google Scholar]
  34. Gray JMNT, Shearer M, Thornton AR. 2006. Time-dependent solutions for particle-size segregation in shallow granular avalanches. Proc. R. Soc. A 462:947–72 [Google Scholar]
  35. Gray JMNT, Tai YC. 1998. Particle size segregation, granular shocks and stratification patterns. Physics of Dry Granular Media HJ Herrmann, JP Hovi, S Luding 697–702 Dordrecht, Neth.: Kluwer Acad. [Google Scholar]
  36. Gray JMNT, Tai YC, Noelle S. 2003. Shock waves, dead-zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech. 491:161–81 [Google Scholar]
  37. Gray JMNT, Thornton AR. 2005. A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. A 461:1447–73 [Google Scholar]
  38. Gray JMNT, Wieland M, Hutter K. 1999. Free surface flow of cohesionless granular avalanches over complex basal topography. Proc. R. Soc. A 455:1841–74 [Google Scholar]
  39. Grigorian SS, Eglit ME, Iakimov YL. 1967. Novaya postanovka i resheniye zadachi o dvizhenii snezhnoy laviny [A new formulation and solution of the problem of the motion of a snow avalanche]. Tr. Vysokogorn. Geofiz. Inst. 12:104–13 [Google Scholar]
  40. Henann DL, Kamrin K. 2013. A predictive, size-dependent continuum model for dense granular flows. PNAS 110:6730–35 [Google Scholar]
  41. Heyman J, Delannay R, Tabuteau H, Valance A. 2017. Compressibility regularizes the μ (I)-rheology for dense granular flows. J. Fluid Mech. 830:553–68 [Google Scholar]
  42. Hill KM, Fan Y. 2016. Granular temperature and segregation in dense sheared particulate mixtures. KONA Powder Part. J. 33:150–68 [Google Scholar]
  43. Hill KM, Gioia G, Amaravadi D. 2004. Radial segregation patterns in rotating granular mixtures: waviness selection. Phys. Rev. Lett. 93:224301 [Google Scholar]
  44. Hill KM, Kharkar DV, Gilchrist JF, McCarthy JJ, Ottino JM. 1999. Segregation driven organization in chaotic granular flows. PNAS 96:11701–6 [Google Scholar]
  45. Hill KM, Tan SD. 2014. Segregation in dense sheared flows: gravity, temperature gradients, and stress partitioning. J. Fluid Mech. 756:54–88 [Google Scholar]
  46. Iverson RM. 1997. The physics of debris flows. Rev. Geophys. 35:245–96 [Google Scholar]
  47. Iverson RM, Logan M, LaHusen RG, Berti M. 2010. The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. 115:F03005 [Google Scholar]
  48. Iverson RM, Vallance JW. 2001. New views of granular mass flows. Geology 29:115–18 [Google Scholar]
  49. Jenkins JT, Yoon D. 2001. Segregation in binary mixtures under gravity. Phys. Rev. Lett. 88:194301 [Google Scholar]
  50. Jing L, Kwok CY, Leung YF. 2017. Micromechanical origin of particle size segregation. Phys. Rev. Lett. 118:118001 [Google Scholar]
  51. Johanson JR. 1978. Particle segregation...and what to do about it. Chem. Eng. 85:183–88 [Google Scholar]
  52. Johnson CG, Kokelaar BP, Iverson RM, Logan M, LaHusen RG, Gray JMNT. 2012. Grain-size segregation and levee formation in geophysical mass flows. J. Geophys. Res. 117:F01032 [Google Scholar]
  53. Jop P, Forterre Y, Pouliquen O. 2006. A constitutive relation for dense granular flows. Nature 44:727–30 [Google Scholar]
  54. Joseph DD, Saut JC. 1990. Short-wave instabilities and ill-posed initial-value problems. Theor. Comput. Fluid Dyn. 1:191–227 [Google Scholar]
  55. Kamrin K, Koval G. 2012. Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108:178301 [Google Scholar]
  56. Khakhar DV, McCarthy JJ, Ottino JM. 1997. Radial segregation of granular mixtures in rotating cylinders. Phys. Fluids 9:3600–14 [Google Scholar]
  57. Khakhar DV, McCarthy JJ, Ottino JM. 1999. Mixing and segregation of granular materials in chute flows. Chaos 9:594–610 [Google Scholar]
  58. Khakhar DV, Orpe AV, Hajra SK. 2003. Segregation of granular materials in rotating cylinders. Physica A 318:129–36 [Google Scholar]
  59. Kokelaar BP, Graham RL, Gray JMNT, Vallance JW. 2014. Fine-grained linings of leveed channels facilitate runout of granular flows. Earth Planet. Sci. Lett. 385:172–80 [Google Scholar]
  60. Larcher M, Jenkins JT. 2013. Segregation and mixture profiles in dense, inclined flows of two types of spheres. Phys. Fluids 25:113301 [Google Scholar]
  61. Larcher M, Jenkins JT. 2015. The evolution of segregation in dense inclined flows of binary mixtures of spheres. J. Fluid Mech. 782:405–29 [Google Scholar]
  62. Lueptow RM, Deng Z, Xiao H, Umbanhowar PB. 2017. Modeling segregation in modulated granular flow. EJP Web Conf. 140:03018 [Google Scholar]
  63. Makse HA, Havlin S, King PR, Stanley HE. 1997. Spontaneous stratification in granular mixtures. Nature 386:379–82 [Google Scholar]
  64. Marks B, Einav I. 2011. A cellular automaton for segregation during granular avalanches. Granul. Matter 13:211–14 [Google Scholar]
  65. Marks B, Einav I. 2015. A mixture of crushing and segregation: the complexity of grainsize in natural granular flows. Geophys. Res. Lett. 42:274–81 [Google Scholar]
  66. Marks B, Rognon P, Einav I. 2012. Grainsize dynamics of polydisperse granular segregation down inclined planes. J. Fluid Mech. 690:499–511 [Google Scholar]
  67. May LBH, Golick LA, Phillips KC, Shearer M, Daniels KE. 2010. Shear-driven size segregation of granular materials: modeling and experiment. Phys. Rev. E 81:051301 [Google Scholar]
  68. McCarthy JJ. 2009. Turning the corner in segregation. Powder Technol. 192:137–42 [Google Scholar]
  69. Middleton GV. 1970. Experimental studies related to problems of flysch sedimentation. Flysch Sedimentology in North America J Lajoie, pp. 253–72 Toronto: Bus. Econ. Sci. Ltd. [Google Scholar]
  70. Morland LW. 1992. Flow of viscous fluids through a porous deformable matrix. Surv. Geophys. 13:209–68 [Google Scholar]
  71. Mounty D. 2007. Particle size-segregation in convex rotating drums PhD Thesis, Univ. Manch.
  72. Mullin T. 2000. Coarsening of self-organised clusters in binary mixtures of particles. Phys. Rev. Lett. 84:4741–44 [Google Scholar]
  73. Ottino JM, Khakhar DV. 2000. Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32:55–91 [Google Scholar]
  74. Pierson TC. 1986. Flow behavior of channelized debris flows, Mount St. Helens, Washington. Hillslope Processes AD Abrahams, pp. 269–96 Boston: Allen Unwin [Google Scholar]
  75. Pouliquen O, Delour J, Savage SB. 1997. Fingering in granular flows. Nature 386:816–17 [Google Scholar]
  76. Pouliquen O, Forterre Y. 2002. Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453:133–51 [Google Scholar]
  77. Pouliquen O, Vallance JW. 1999. Segregation induced instabilities of granular fronts. Chaos 9:621–30 [Google Scholar]
  78. Rognon PG, Roux JN, Naaim M, Chevoir F. 2007. Dense flows of bidisperse assemblies of disks down an inclined plane. Phys. Fluids 19:058101 [Google Scholar]
  79. Savage SB, Hutter K. 1989. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199:177–215 [Google Scholar]
  80. Savage SB, Lun CKK. 1988. Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189:311–35 [Google Scholar]
  81. Schlick CP, Fan Y, Umbanhowar PB, Ottino JM, Lueptow RM. 2015. Granular segregation in circular tumblers: theoretical model and scaling laws. J. Fluid Mech. 765:632–52 [Google Scholar]
  82. Schlick CP, Isner AB, Freireich BJ, Fan Y, Umbanhowar PB et al. 2016. A continuum approach for predicting segregation in flowing polydisperse granular materials. J. Fluid Mech. 797:95–109 [Google Scholar]
  83. Schröter M, Ulrich S, Kreft J, Swift JB, Swinney HL. 2006. Mechanisms in the size segregation of a binary granular mixture. Phys. Rev. E 74:011307 [Google Scholar]
  84. Schulze D. 2008. Powders and Bulk Solids Berlin: Springer-Verlag
  85. Scott AM, Bridgwater J. 1975. Interparticle percolation: a fundamental solids mixing mechanism. Ind. Eng. Chem. Fundam. 14:22–27 [Google Scholar]
  86. Shearer M, Gray JMNT, Thornton AR. 2008. Stable solutions of a scalar conservation law for particle-size segregation in dense granular avalanches. Eur. J. Appl. Math. 19:61–86 [Google Scholar]
  87. Shinbrot T, Muzzio FJ. 1998. Reverse buoyancy in shaken granular beds. Phys. Rev. Lett. 81:4365–68 [Google Scholar]
  88. Staron L, Phillips JC. 2014. Segregation time-scale in bi-disperse granular flows. Phys. Fluids 26:033302 [Google Scholar]
  89. Thornton AR, Gray JMNT. 2008. Breaking size-segregation waves and particle recirculation in granular avalanches. J. Fluid Mech. 596:261–84 [Google Scholar]
  90. Thornton AR, Gray JMNT, Hogg AJ. 2006. A three-phase mixture theory for particle size segregation in shallow granular free-surface flows. J. Fluid Mech. 550:1–25 [Google Scholar]
  91. Thornton AR, Weinhart T, Luding S, Bokhove O. 2012. Modeling of particle size segregation: calibration using the discrete particle method. Int. J. Mod. Phys. C 23:1240014 [Google Scholar]
  92. Tripathi A, Khakhar DV. 2013. Density difference-driven segregation in a dense granular flow. J. Fluid Mech. 717:643–69 [Google Scholar]
  93. Tunuguntla DR, Bokhove O, Thornton AR. 2014. A mixture theory for size and density segregation in shallow granular free-surface flows. J. Fluid Mech. 749:99–112 [Google Scholar]
  94. Tunuguntla DR, Weinhart T, Thornton AR. 2017. Comparing and contrasting size-based particle segregation models. Comput. Part. Mech. 4:4387–405 [Google Scholar]
  95. Vallance JW, Savage SB. 2000. Particle segregation in granular flows down chutes. IUTAM Symposium on Segregation in Granular Materials 81 AD Rosato, DL Blackmore, pp. 31–51 Dordrecht, Neth.: Springer [Google Scholar]
  96. van der Vaart K, Gajjar P, Epely-Chauvin G, Andreini N, Gray JMNT, Ancey C. 2015. Underlying asymmetry within particle size segregation. Phys. Rev. Lett. 114:238001 [Google Scholar]
  97. Weinhart T, Hartkamp R, Thornton A, Luding S. 2013. Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids 25:070605 [Google Scholar]
  98. Wiederseiner S, Andreini N, Épely-Chauvin G, Moser G, Monnereau M. 2011. Experimental investigation into segregating granular flows down chutes. Phys. Fluids 23:013301 [Google Scholar]
  99. Williams SC. 1968. The mixing of dry powders. Powder Technol. 2:13–20 [Google Scholar]
  100. Woodhouse MJ, Thornton AR, Johnson CG, Kokelaar BP, Gray JMNT. 2012. Segregation-induced fingering instabilities in granular free surface. J. Fluid Mech. 709:543–80 [Google Scholar]
  101. Xiao HY, Umbanhowar PB, Ottino JM, Lueptow RM. 2016. Modelling density segregation in flowing bidisperse granular materials. Proc. R. Soc. A 472:20150856 [Google Scholar]
  102. Zuriguel I, Gray JMNT, Peixinho J, Mullin T. 2006. Pattern selection by a granular wave in a rotating drum. Phys. Rev. E 73:061302 [Google Scholar]
/content/journals/10.1146/annurev-fluid-122316-045201
Loading
/content/journals/10.1146/annurev-fluid-122316-045201
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error