1932

Abstract

X-ray micro–computed tomography (micro-CT) provides the unique ability to capture intact internal microstructure data without significant preparation of the sample. The fundamentals of micro-CT technology are briefly described along with a short introduction to basic image processing, quantitative analysis, and derivative computational modeling. The applications and limitations of micro-CT in industries such as meat, dairy, postharvest, and bread/confectionary are discussed to serve as a guideline to the plausibility of utilizing the technique for detecting features of interest. Component volume fractions, their respective size/shape distributions, and connectivity, for example, can be utilized for product development, manufacturing process tuning and/or troubleshooting. In addition to determining structure-function relations, micro-CT can be used for foreign material detection to further ensure product quality and safety. In most usage scenarios, micro-CT in its current form is perfectly adequate for determining microstructure in a wide variety of food products. However, in low-contrast and low-stability samples, emphasis is placed on the shortcomings of the current systems to set realistic expectations for the intended users.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-030117-012639
2018-03-25
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/food/9/1/annurev-food-030117-012639.html?itemId=/content/journals/10.1146/annurev-food-030117-012639&mimeType=html&fmt=ahah

Literature Cited

  1. Andersen A. 1984. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason. Imaging 6:181–94 [Google Scholar]
  2. Aregawi WA, Abera MK, Fanta SW, Verboven P, Nicolai B. 2014. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model. J. Phys. Condens. Matter 26:46464111 [Google Scholar]
  3. Ashton JR, Befera N, Clark D, Qi Y, Mao L. et al. 2015. Anatomical and functional imaging of myocardial infarction in mice using micro-CT and eXIA 160 contrast agent. Contrast Media Mol. Imaging 9:2161–68 [Google Scholar]
  4. Babin P, Della Valle G, Chiron H, Cloetens P, Hoszowska J. et al. 2006. Fast X-ray tomography analysis of bubble growth and foam setting during breadmaking. J. Cereal Sci. 43:3393–97 [Google Scholar]
  5. Bansal GJ. 2006. Digital radiography. A comparison with modern conventional imaging. Postgrad. Med. J. 82:969425–28 [Google Scholar]
  6. Barcelon EG, Tojo S, Watanabe K. 1999. Relating X-ray absorption and some quality characteristics of mango fruit (Mangifera indica L.). J. Agric. Food Chem. 47:93822–25 [Google Scholar]
  7. Batenburg KJ, Sijbers J. 2011. DART: a practical reconstruction algorithm for discrete tomography. IEEE Trans. Image Process. 20:92542–53 [Google Scholar]
  8. Beckmann EC. 2006. CT scanning the early days. Br. J. Radiol. 79:9375–8 [Google Scholar]
  9. Boone M, Wernersson E. 2013. Qualitative comparison of several phase correction algorithms in single-image in-line X-ray phase contrast tomography. Tomogr. Mater. Struct. 5:1107–10 [Google Scholar]
  10. Boone MN, De Witte Y, Dierick M, Almeida A, Van Hoorebeke L. 2012. Improved signal-to-noise ratio in laboratory-based phase contrast tomography. Microsc. Microanal. 18:2399–405 [Google Scholar]
  11. Brecht J, Shewfelt R. 1991. Using X-ray-computed tomography to nondestructively determine maturity of green tomatoes. HortScience 26:145–47 [Google Scholar]
  12. Bultreys T, Van Hoorebeke L, Cnudde V. 2015. Multi-scale, micro–computed tomography-based pore network models to simulate drainage in heterogeneous rocks. Adv. Water Resour. 78:36–49 [Google Scholar]
  13. Burghardt AJ, Link TM, Majumdar S. 2011. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin. Orthop. Relat. Res. 469:82179–93 [Google Scholar]
  14. Bushong SC. 2008. Radiologic Science for Technologist: Physics, Biology, and Protection. Maryland Heights, MO: Mosby. , 10th ed..
  15. Cantre D, East A, Verboven P, Trejo Araya X, Herremans E. et al. 2014.a Microstructural characterisation of commercial kiwifruit cultivars using X-ray micro computed tomography. Postharvest Biol. Technol. 92:79–86 [Google Scholar]
  16. Cantre D, Herremans E, Verboven P, Ampofo-Asiama J, Nicolaï B. 2014.b Characterization of the 3-D microstructure of mango (Mangifera indica L. cv. Carabao) during ripening using X-ray computed microtomography. Innov. Food Sci. Emerg. Technol. 24:28–39 [Google Scholar]
  17. Cao G, Lee YZ, Peng R, Liu Z, Rajaram R. et al. 2009. A dynamic micro-CT scanner based on a carbon nanotube field emission X-ray source. Phys. Med. Biol. 54:82323–40 [Google Scholar]
  18. Carroll QB. 2007. Practical Radiographic Imaging Springfield, IL: Charles C. Thomas Publ, 8th ed..
  19. Cevoli C, Fabbri A. 2017. Heat transfer finite element model of fresh fruit salad insulating packages in non-refrigerated conditions. Biosyst. Eng. 153:89–98 [Google Scholar]
  20. Chawanji AS, Baldwin AJ, Brisson G, Webster E. 2012. Use of X-ray micro tomography to study the microstructure of loose-packed and compacted milk powders. J. Microsc. 248:149–57 [Google Scholar]
  21. Chenevier D. 2015. Official launch of the Upgrade Programme Phase II: the ESRF designs a new generation of synchrotrons. ESRF press release May 29. http://www.esrf.eu/about/upgrade
  22. Chiang YC, Rösch P, Dabanoglu A, Lin CP, Hickel R, Kunzelmann KH. 2010. Polymerization composite shrinkage evaluation with 3D deformation analysis from μCT images. Dent. Mater. 26:3223–31 [Google Scholar]
  23. Cho E, Sadr A, Inai N, Tagami J. 2011. Evaluation of resin composite polymerization by three dimensional micro-CT imaging and nanoindentation. Dent. Mater. 27:111070–78 [Google Scholar]
  24. Cnudde V, Boone MN. 2013. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci. Rev. 123:1–17 [Google Scholar]
  25. Cnudde V, Masschaele B, Dierick M, Vlassenbroeck J, Van Hoorebeke L, Jacobs P. 2006. Recent progress in X-ray CT as a geosciences tool. Appl. Geochem. 21:5826–32 [Google Scholar]
  26. Cole MT, Parmee RJ, Milne WI. 2016. Nanomaterial-based X-ray sources. Nanotechnology 27:882501 [Google Scholar]
  27. Datta AK. 2016. Toward computer-aided food engineering: mechanistic frameworks for evolution of product, quality and safety during processing. J. Food Eng. 176:9–27 [Google Scholar]
  28. Descamps E, Sochacka A, De Kegel B, Van Loo D, Van Hoorebeke L, Adriaens D. 2014. Soft tissue discrimination with contrast agents using micro-CT scanning. Belg. J. Zool. 144:120–40 [Google Scholar]
  29. Dhondt S, Vanhaeren H, Van Loo D, Cnudde V, Inzé D. 2010. Plant structure visualization by high-resolution X-ray computed tomography. Trends Plant Sci 15:8419–22 [Google Scholar]
  30. Dierick M, Van Loo D, Masschaele B, Van Den Bulcke J, Van Acker J. et al. 2014. Recent micro-CT scanner developments at UGCT. Nucl. Instrum. Methods Phys. Res. Sect. B 324:35–40 [Google Scholar]
  31. Duquenne B, Vergauwen B, Capdepon C, Boone MA, De Schryver T. et al. 2016. Stabilising frozen dairy mousses by low molecular weight gelatin peptides. Food Hydrocoll 60:317–23 [Google Scholar]
  32. Ember KJI, Hoeve MA, McAughtrie SL, Bergholt MS, Dwyer BJ. et al. 2017. Raman spectroscopy and regenerative medicine: a review. npj Regen. Med. 2:112 [Google Scholar]
  33. Esveld DC, Van Der Sman RGM, Van Dalen G, Van Duynhoven JPM, Meinders MBJ. 2012. Effect of morphology on water sorption in cellular solid foods. Part I: pore scale network model. J. Food Eng. 109:2301–10 [Google Scholar]
  34. Falcone PM, Baiano A, Zanini F, Mancini L, Tromba G. et al. 2006. Three-dimensional quantitative analysis of bread crumb by X-ray microtomography. J. Food Sci. 70:4E265–72 [Google Scholar]
  35. Fanta SW, Abera MK, Aregawi WA, Ho QT, Verboven P. et al. 2014. Microscale modeling of coupled water transport and mechanical deformation of fruit tissue during dehydration. J. Food Eng. 124:86–96 [Google Scholar]
  36. Fischbach F, Freund T, Pech M, Werk M, Bassir C. et al. 2003. Comparison of indirect CsI/A:Si and direct a:SE digital radiography. An assessment of contrast and detail visualization. Acta Radiol 44:6616–21 [Google Scholar]
  37. Frisullo P, Laverse J, Marino R, Del Nobile MA. 2009. X-ray computed tomography to study processed meat microstructure. J. Food Eng. 94:3–4283–89 [Google Scholar]
  38. Frisullo P, Licciardello F, Muratore G, Del Nobile MA. 2010.a Microstructural characterization of multiphase chocolate using X-ray microtomography. J. Food Sci. 75:7E469–76 [Google Scholar]
  39. Frisullo P, Marino R, Laverse J, Albenzio M, Del Nobile MA. 2010.b Assessment of intramuscular fat level and distribution in beef muscles using X-ray microcomputed tomography. Meat Sci 85:2250–55 [Google Scholar]
  40. Fu J, Biernath T, Willner M, Amberger M, Meiser J. et al. 2014. Cone-beam differential phase-contrast laminography with X-ray tube source. Europhys. Lett. 106:668002 [Google Scholar]
  41. Fulladosa E, Santos-Garcés E, Picouet P, Gou P. 2010. Prediction of salt and water content in dry-cured hams by computed tomography. J. Food Eng. 96:180–85 [Google Scholar]
  42. Gilbert P. 1972. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36:1105–17 [Google Scholar]
  43. Gondek E, Jakubczyk E, Herremans E, Verlinden B, Hertog M. et al. 2013. Acoustic, mechanical and microstructural properties of extruded crisp bread. J. Cereal Sci. 58:1132–39 [Google Scholar]
  44. Gonzalez RC, Woods RE. 2002. Digital Image Processing London: Pearson, 3rd ed..
  45. Guggisberg D, Fröhlich-Wyder MT, Irmler S, Greco M, Wechsler D, Schuetz P. 2013. Eye formation in semi-hard cheese: X-ray computed tomography as a non-invasive tool for assessing the influence of adjunct lactic acid bacteria. Dairy Sci. Technol. 93:2135–49 [Google Scholar]
  46. Guo E, Zeng G, Kazantsev D, Rockett P, Bent J. et al. 2017. Synchrotron X-ray tomographic quantification of microstructural evolution in ice cream: a multi-phase soft solid. RSC Adv 7:2515561–73 [Google Scholar]
  47. Hansen JD, Schlaman DW, Haff RP, Yee WL. 2005. Potential postharvest use of radiography to detect internal pests in deciduous tree fruits. J. Entomol. Sci. 40:255–62 [Google Scholar]
  48. Herremans E, Bongaers E, Estrade P, Gondek E, Hertog M. et al. 2013.a Microstructure-texture relationships of aerated sugar gels: novel measurement techniques for analysis and control. Innov. Food Sci. Emerg. Technol. 18:202–11 [Google Scholar]
  49. Herremans E, Verboven P, Bongaers E, Estrade P, Verlinden BE. et al. 2013.b Characterisation of “Braeburn” browning disorder by means of X-ray micro-CT. Postharvest Biol. Technol. 75:114–24 [Google Scholar]
  50. Herremans E, Verboven P, Defraeye T, Rogge S, Ho QT. et al. 2014. X-ray CT for quantitative food microstructure engineering: the apple case. Nucl. Instrum. Methods Phys. Res. Sect. B 324:88–94 [Google Scholar]
  51. Herremans E, Verboven P, Verlinden BE, Cantre D, Abera M. et al. 2015. Automatic analysis of the 3-D microstructure of fruit parenchyma tissue using X-ray micro-CT explains differences in aeration. BMC Plant Biol 15:1264 [Google Scholar]
  52. Ho QT, Carmeliet J, Datta AK, Defraeye T, Delele MA. et al. 2013. Multiscale modeling in food engineering. J. Food Eng. 114:3279–91 [Google Scholar]
  53. Ho QT, Verboven P, Fanta SW, Abera MK, Retta MA. et al. 2014. A multiphase pore scale network model of gas exchange in apple fruit. Food Bioprocess Technol 7:482–95 [Google Scholar]
  54. Ho QT, Verboven P, Mebatsion HK, Verlinden BE, Vandewalle S, Nicolaï BM. 2009. Microscale mechanisms of gas exchange in fruit tissue. New Phytol 182:163–74 [Google Scholar]
  55. Ho QT, Verboven P, Verlinden BE, Herremans E, Wevers M. et al. 2011. A three-dimensional multiscale model for gas exchange in fruit. Plant Physiol 155:31158–68 [Google Scholar]
  56. Ho QT, Verboven P, Verlinden BE, Schenk A, Delele MA. et al. 2010. Genotype effects on internal gas gradients in apple fruit. J. Exp. Bot. 61:102745–55 [Google Scholar]
  57. Hsieh J. 2009. Computed Tomography Bellingham, WA: SPIE. , 2nd ed..
  58. Jeffery NS, Stephenson RS, Gallagher JA, Jarvis JC, Cox PG. 2011. Micro–computed tomography with iodine staining resolves the arrangement of muscle fibres. J. Biomech. 44:1189–92 [Google Scholar]
  59. Jensen K, Martinsen ACT, Tingberg A, Aaløkken TM, Fosse E. 2014. Comparing five different iterative reconstruction algorithms for computed tomography in an ROC study. Eur. Radiol. 24:122989–3002 [Google Scholar]
  60. Jiang JA, Chang HY, Wu KH, Ouyang CS, Yang MM. et al. 2008. An adaptive image segmentation algorithm for X-ray quarantine inspection of selected fruits. Comput. Electron. Agric. 60:2190–200 [Google Scholar]
  61. Kalender WA. 2011. Computed Tomography: Fundamentals, System Technology, Image Quality, Applications Hoboken, NJ: Wiley [Google Scholar]
  62. Kasap SO, Rowlands JA. 2002. Direct-conversion flat-panel X-ray image sensors for digital radiography. Proc. IEEE. 90:4591–604 [Google Scholar]
  63. Kim JY, Lim J, Lee JH, Hwang HS, Lee S. 2017. Utilization of oleogels as a replacement for solid fat in aerated baked goods: physicochemical, rheological, and tomographic characterization. J. Food Sci. 82:2445–52 [Google Scholar]
  64. Kim S, Schatzki T, Schatzki F. 2001. Detection of pinholes in almonds through X-ray imaging. Trans. ASAE 44:4997–1003 [Google Scholar]
  65. Kirtil E, Oztop MH. 2016. 1H nuclear magnetic resonance relaxometry and magnetic resonance imaging and applications in food science and processing. Food Eng. Rev. 8:11–22 [Google Scholar]
  66. Kiss Z, Rodek L, Nagy A, Kuba A, Balaskó M. 2005. Reconstruction of pixel-based and geometric objects by discrete tomography. Simulation and physical experiments. Electron. Notes Discret. Math. 20:475–91 [Google Scholar]
  67. Kokawa M, Suzuki Y, Suzuki Y, Yoshimura M, Trivittayasil V. et al. 2017. Viscoelastic properties and bubble structure of rice-gel made from high-amylose rice and its effects on bread. J. Cereal Sci. 73:33–39 [Google Scholar]
  68. Kolstad K. 2001. Fat deposition and distribution measured by computer tomography in three genetic groups of pigs. Livest. Prod. Sci. 67:3281–92 [Google Scholar]
  69. Kumamaru KK, Hoppel BE, Mather RT, Rybicki FJ. 2010. CT angiography: current technology and clinical use. Radiol. Clin. North Am. 48:2213–35 [Google Scholar]
  70. Lammertyn J, Dresselaers T, Van Hecke P, Jancsók P, Wevers M, Nicolaï B. 2003. MRI and X-ray CT study of spatial distribution of core breakdown in “Conference” pears. Magn. Reson. Imaging 21:7805–15 [Google Scholar]
  71. Landis EN, Keane DT. 2010. X-ray microtomography. Mater. Charact. 61:121305–16 [Google Scholar]
  72. Lauridsen T, Glavina K, Colmer TD, Winkel A, Irvine S. et al. 2014. Visualisation by high resolution synchrotron X-ray phase contrast micro-tomography of gas films on submerged superhydrophobic leaves. J. Struct. Biol. 188:161–70 [Google Scholar]
  73. Laverse J, Mastromatteo M, Frisullo P, Albenzio M, Gammariello D, Del Nobile MA. 2011. Fat microstructure of yogurt as assessed by X-ray microtomography. J. Dairy Sci. 94:2668–75 [Google Scholar]
  74. Laverse J, Mastromatteo M, Frisullo P, Del Nobile MA. 2012. X-ray microtomography to study the microstructure of mayonnaise. J. Food Eng. 108:1225–31 [Google Scholar]
  75. Léonard A, Blacher S, Nimmol C, Devahastin S. 2008. Effect of far-infrared radiation assisted drying on microstructure of banana slices: an illustrative use of X-ray microtomography in microstructural evaluation of a food product. J. Food Eng. 85:1154–62 [Google Scholar]
  76. Léonard A, Guiot LP, Pirard JP, Crine M, Balligand M, Blacher S. 2007. Non-destructive characterization of deer (Cervus elaphus) antlers by X-ray microtomography coupled with image analysis. J. Microsc. 225:3258–63 [Google Scholar]
  77. Lim KS, Barigou M. 2004. X-ray micro–computed tomography of cellular food products. Food Res. Int. 37:101001–12 [Google Scholar]
  78. Ma J, Pablo J, Wu K, Couples GD, Jiang Z. 2014. A pore network model for simulating non-ideal gas flow in micro- and nano-porous materials. Fuel 116:498–508 [Google Scholar]
  79. Magwaza LS, Opara UL. 2014. Investigating non-destructive quantification and characterization of pomegranate fruit internal structure using X-ray computed tomography. Postharvest Biol. Technol. 95:1–6 [Google Scholar]
  80. Mahmoud AM, Ngan P, Crout R, Mukdadi OM. 2010. High-resolution 3D ultrasound jawbone surface imaging for diagnosis of periodontal bony defects: an in vitro study. Ann. Biomed. Eng. 38:113409–22 [Google Scholar]
  81. Maire E, Fazekas A, Salvo L, Dendievel R, Youssef S. et al. 2003. X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems. Compos. Sci. Technol. 63:162431–43 [Google Scholar]
  82. Maire E, Withers PJ. 2014. Quantitative X-ray tomography. Int. Mater. Rev. 59:11–43 [Google Scholar]
  83. Masschaele B, Dierick M, Van Loo D, Boone MN, Brabant L. et al. 2013. HECTOR: a 240kV micro-CT setup optimized for research. J. Phys. Conf. Ser. 463:12012 [Google Scholar]
  84. Masschaele BC, Cnudde V, Dierick M, Jacobs P, Van Hoorebeke L, Vlassenbroeck J. 2007. UGCT: new X-ray radiography and tomography facility. Nucl. Instrum. Methods Phys. Res. Sect. A 580:1266–69 [Google Scholar]
  85. Mendoza F, Verboven P, Ho QT, Kerckhofs G, Wevers M, Nicolaï B. 2010. Multifractal properties of pore-size distribution in apple tissue using X-ray imaging. J. Food Eng. 99:2206–15 [Google Scholar]
  86. Metscher BD. 2009. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:111 [Google Scholar]
  87. Miklos R, Nielsen MS, Einarsdottir H, Feidenhans'l R, Lametsch R. 2015. Novel X-ray phase-contrast tomography method for quantitative studies of heat induced structural changes in meat. Meat Sci 100:217–21 [Google Scholar]
  88. Mohammed IK, Charalambides MN, Williams JG, Rasburn J. 2014. Modelling the microstructural evolution and fracture of a brittle confectionery wafer in compression. Innov. Food Sci. Emerg. Technol. 24:48–60 [Google Scholar]
  89. Moreno-Atanasio R, Williams RA, Jia X. 2010. Combining X-ray microtomography with computer simulation for analysis of granular and porous materials. Particuology 8:281–99 [Google Scholar]
  90. Mould RF. 1995. The early history of X-ray diagnosis with emphasis on the contributions of physics 1895–1915. Phys. Med. Biol. 40:111741–87 [Google Scholar]
  91. Mundt AJ, Roeske JC. 2011. Image-Guided Radiation Therapy: A Clinical Perspective Shelton, CT: PMPH-USA
  92. Muziri T, Theron KI, Cantre D, Wang Z, Verboven P. et al. 2016. Microstructure analysis and detection of mealiness in “Forelle” pear (Pyrus communis L.) by means of X-ray computed tomography. Postharvest Biol. Technol. 120:145–56 [Google Scholar]
  93. Neethirajan S, Karunakaran C, Jayas DS, White NDG. 2006. X-ray computed tomography image analysis to explain the airflow resistance differences in grain bulks. Biosyst. Eng. 94:4545–55 [Google Scholar]
  94. Nguyen TA, Dresselaers T, Verboven P, D'Hallewin G, Culeddu N. et al. 2006. Finite element modelling and MRI validation of 3D transient water profiles in pears during postharvest storage. J. Sci. Food Agric. 86:5745–56 [Google Scholar]
  95. Nicolaï BM, Defraeye T, De Ketelaere B, Herremans E, Hertog MLATM. et al. 2014. Nondestructive measurement of fruit and vegetable quality. Annu. Rev. Food Sci. Technol. 5:1285–312 [Google Scholar]
  96. O'Sullivan DJ, McSweeney PLH, Cotter PD, Giblin L, Sheehan JJ. 2016. Compromised Lactobacillus helveticus starter activity in the presence of facultative heterofermentative Lactobacillus casei DPC6987 results in atypical eye formation in Swiss-type cheese. J. Dairy Sci. 99:42625–40 [Google Scholar]
  97. Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9:162–66 [Google Scholar]
  98. Overdick M, Baumer C, Engel KJ, Fink J, Herrmann C. et al. 2009. Status of direct conversion detectors for medical imaging with X-rays. IEEE Trans. Nucl. Sci. 56:41800–9 [Google Scholar]
  99. Pareyt B, Talhaoui F, Kerckhofs G, Brijs K, Goesaert H. et al. 2009. The role of sugar and fat in sugar-snap cookies: structural and textural properties. J. Food Eng. 90:3400–8 [Google Scholar]
  100. Pawley JB. 2006. Fundamental limits in confocal microscopy. Handbook Of Biological Confocal Microscopy JB Pawley 20–42 Boston: Springer US [Google Scholar]
  101. Pridmore TP, French AP, Pound MP. 2012. What lies beneath: underlying assumptions in bioimage analysis. Trends Plant Sci 17:12688–92 [Google Scholar]
  102. Raoof A, Nick HM, Hassanizadeh SM, Spiers CJ. 2013. PoreFlow: a complex pore-network model for simulation of reactive transport in variably saturated porous media. Comput. Geosci. 61:160–74 [Google Scholar]
  103. Rockett P, Karagadde S, Guo E, Bent J, Hazekamp J. et al. 2015. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream. IOP Conf. Ser. Mater. Sci. Eng. 84:112076 [Google Scholar]
  104. Romvári R, Hancz C, Petrási Z, Molnár T, Horn P. 2002. Non-invasive measurement of fillet composition of four freshwater fish species by computer tomography. Aquac. Int. 10:3231–40 [Google Scholar]
  105. Russ JC. 2005. Image Analysis of Food Microstructure Boca Raton, FL: CRC Press
  106. Russ JC. 2015. Image analysis of foods. J. Food Sci. 80:9E1974–87 [Google Scholar]
  107. Salvo L, Cloetens P, Maire E, Zabler S, Blandin JJ. et al. 2003. X-ray micro-tomography an attractive characterisation technique in materials science. Nucl. Instrum. Methods Phys. Res. Sect. B 200:273–86 [Google Scholar]
  108. Sasov A, Van Dyck D. 1998. Desktop X-ray microscopy and microtomography. J. Microsc. 191:2151–58 [Google Scholar]
  109. Schoeman L, Williams P, du Plessis A, Manley M. 2016. X-ray micro–computed tomography (μCT) for non-destructive characterisation of food microstructure. Trends Food Sci. Technol. 47:10–24 [Google Scholar]
  110. Schuetz P, Guggisberg D, Jerjen I, Fröhlich-Wyder MT, Hofmann J. et al. 2013. Quantitative comparison of the eye formation in cheese using radiography and computed tomography data. Int. Dairy J. 31:2150–55 [Google Scholar]
  111. Staedler YM, Masson D, Schönenberger J. 2013. Plant tissues in 3D via X-Ray tomography: simple contrasting methods allow high resolution imaging. PLOS ONE 8:9e75295 [Google Scholar]
  112. Stevenson AW, Gureyev TE, Paganin D, Wilkins SW, Weitkamp T. et al. 2003. Phase-contrast X-ray imaging with synchrotron radiation for materials science applications. Nucl. Instrum. Methods Phys. Res. Sect. B 199:427–35 [Google Scholar]
  113. Stieger M, Van de Velde F. 2013. Microstructure, texture and oral processing: new ways to reduce sugar and salt in foods. Curr. Opin. Colloid Interface Sci. 18:4334–48 [Google Scholar]
  114. Stucht D, Danishad KA, Schulze P, Godenschweger F, Zaitsev M, Speck O. 2015. Highest resolution in vivo human brain MRI using prospective motion correction. PLOS ONE 10:71–17 [Google Scholar]
  115. Syamaladevi RM, Manahiloh KN, Muhunthan B, Sablani SS. 2012. Understanding the influence of state/phase transitions on ice recrystallization in Atlantic salmon (Salmo salar) during frozen storage. Food Biophys 7:157–71 [Google Scholar]
  116. Tao Y, Chen Z, Jing H, Walker J. 2001. Internal inspection of deboned poultry using X-ray imaging and adaptive thresholding. Trans. ASAE 44:41005–9 [Google Scholar]
  117. Tapfer A, Bech M, Velroyen A, Meiser J, Mohr J. et al. 2012. Experimental results from a preclinical X-ray phase-contrast CT scanner. PNAS 109:3915691–96 [Google Scholar]
  118. Thomas P, Kannan A, Degwekar VH, Ramamurthy MS. 1995. Non-destructive detection of seed weevil-infested mango fruits by X-ray imaging. Postharvest Biol. Technol. 5:1–2161–65 [Google Scholar]
  119. Thomas P, Saxena SC, Chandra R, Rao R, Bhatia CR. 1993. X-ray imaging for detecting spongy tissue, an internal disorder in fruits of “Alphonso” mango (Mangifera indica L.). J. Hortic. Sci. 68:5803–6 [Google Scholar]
  120. Ting VJL, Silcock P, Bremer PJ, Biasioli F. 2013. X-ray micro-computer tomographic method to visualize the microstructure of different apple cultivars. J. Food Sci. 78:11E1735–42 [Google Scholar]
  121. Turbin-Orger A, Babin P, Boller E, Chaunier L, Chiron H. et al. 2015. Growth and setting of gas bubbles in a viscoelastic matrix imaged by X-ray microtomography: the evolution of cellular structures in fermenting wheat flour dough. Soft Matter 11:173373–84 [Google Scholar]
  122. Valous NA, Sun D-W. 2012. Image processing techniques for computer vision in the food and beverage industries. Computer Vision Technology in the Food and Beverage Industries D-W Sun 97–129 Amsterdam, Neth.: Elsevier [Google Scholar]
  123. van Dael M, Verboven P, Dhaene J, Van Hoorebeke L, Sijbers J, Nicolai B. 2017. Multisensor X-ray inspection of internal defects in horticultural products. Postharvest Biol. Technol. 128:33–43 [Google Scholar]
  124. Van Dyck T, Verboven P, Herremans E, Defraeye T, Van Campenhout L. et al. 2014. Characterisation of structural patterns in bread as evaluated by X-ray computer tomography. J. Food Eng. 123:67–77 [Google Scholar]
  125. Van Eyndhoven G, Batenburg KJ, Kazantsev D, Van Nieuwenhove V, Lee PD. et al. 2015. An iterative CT reconstruction algorithm for fast fluid flow imaging. IEEE Trans. Image Process. 24:114446–58 [Google Scholar]
  126. Van Geet M, Swennen R, Wevers M. 2000. Quantitative analysis of reservoir rocks by microfocus X-ray computerized tomography. Sediment. Geol. 132:25–36 [Google Scholar]
  127. Van Nieuwenhove V, De Beenhouwer J, De Schryver T, Van Hoorebeke L, Sijbers J. 2017. Data-driven affine deformation estimation and correction in cone beam computed tomography. IEEE Trans. Image Process. 26:31441–51 [Google Scholar]
  128. Verboven P, Herremans E, Helfen L, Ho QT, Abera M. et al. 2015. Synchrotron X-ray computed laminography of the three-dimensional anatomy of tomato leaves. Plant J 81:1169–82 [Google Scholar]
  129. Verboven P, Kerckhofs G, Mebatsion HK, Ho QT, Temst K. et al. 2008. Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron X-ray computed tomography. Plant Physiol 147:2518–27 [Google Scholar]
  130. Vicent V, Verboven P, Ndoye F-T, Alvarez G, Nicolaï B. 2017. A new method developed to characterize the 3D microstructure of frozen apple using X-ray micro-CT. J. Food Eng. 212:154–64 [Google Scholar]
  131. Wang Z, Verboven P, Nicolai B. 2017. Contrast-enhanced 3D micro-CT of plant tissues using different impregnation techniques. Plant Methods 13:1105 [Google Scholar]
  132. Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE. et al. 2010. Visualization of image data from cells to organisms. Nat. Methods 7:3S26–41 [Google Scholar]
  133. Yu Y, Ning R, Cai W. 2011. Performance evaluation of a differential phase-contrast cone-beam (DPC-CBCT) system for soft tissue imaging. J. Investig. Dermatol. 135:279614X [Google Scholar]
/content/journals/10.1146/annurev-food-030117-012639
Loading
/content/journals/10.1146/annurev-food-030117-012639
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error