1932

Abstract

Polysaccharides and polyphenols coexist in many plant-based food products. Polyphenol–polysaccharide interactions may affect the physicochemical, functional, and physiological properties, such as digestibility, bioavailability, and stability, of plant-based foods. In this review, the interactions (physically or covalently linked) between the selected polysaccharides and polyphenols are summarized. The preparation and structural characterization of the polyphenol–polysaccharide conjugates, their structural–interaction relationships, and the effects of the interactions on functional and physiological properties of the polyphenol and polysaccharide molecules are reviewed. Moreover, potential applications of polyphenol–polysaccharide conjugates are discussed. This review aids in a comprehensive understanding of the synthetic strategy, beneficial bioactivity, and potential application of polyphenol–polysaccharide complexes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-052720-010354
2022-03-25
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/food/13/1/annurev-food-052720-010354.html?itemId=/content/journals/10.1146/annurev-food-052720-010354&mimeType=html&fmt=ahah

Literature Cited

  1. Ahn CB, Jung WK, Park SJ, Kim YT, Kim WS, Je JY 2016. Gallic acid-g-chitosan modulates inflammatory responses in LPS-stimulated RAW264.7 cells via NF-κB, AP-1, and MAPK pathways. Inflammation 39:366–74
    [Google Scholar]
  2. Ahn S, Halake K, Lee J 2017. Antioxidant and ion-induced gelation functions of pectins enabled by polyphenol conjugation. Int. J. Biol. Macromol. 101:776–82
    [Google Scholar]
  3. Aljawish A, Chevalot I, Jasniewski J, Revol-Junelles AM, Scher J, Muniglia L 2014. Laccase-catalysed functionalisation of chitosan by ferulic acid and ethyl ferulate: evaluation of physicochemical and biofunctional properties. Food Chem. 161:279–87
    [Google Scholar]
  4. Aljawish A, Chevalot I, Piffaut B, Rondeau-Mouro C, Girardin M et al. 2012. Functionalization of chitosan by laccase-catalyzed oxidation of ferulic acid and ethyl ferulate under heterogeneous reaction conditions. Carbohydr. Polym. 87:537–44
    [Google Scholar]
  5. Aljawish A, Muniglia L, Klouj A, Jasniewski J, Scher J, Desobry S 2016. Characterization of films based on enzymatically modified chitosan derivatives with phenol compounds. Food Hydrocoll 60:551–58
    [Google Scholar]
  6. Anyanwu GO, Iqbal J, Khan SU, Zaib S, Rauf K et al. 2019. Antidiabetic activities of chloroform fraction of Anthocleista vogelii Planch root bark in rats with diet- and alloxan-induced obesity-diabetes. J. Ethnopharmacol. 229:293–302
    [Google Scholar]
  7. Atta EM, Mohamed NH, Abdelgawad AA 2017. Antioxidants: an overview on the natural and synthetic types. Eur. Chem. Bull. 6:365–75
    [Google Scholar]
  8. Bautista-Ortin AB, Cano-Lechuga M, Ruiz-Garcia Y, Gomez-Plaza E. 2014. Interactions between grape skin cell wall material and commercial enological tannins. Practical implications. Food Chem. 152:558–65
    [Google Scholar]
  9. Bermudez-Oria A, Rodriguez-Gutierrez G, Fernandez-Prior A, Vioque B, Fernandez-Bolanos J. 2019. Strawberry dietary fiber functionalized with phenolic antioxidants from olives. Interactions between polysaccharides and phenolic compounds. Food Chem. 280:310–20
    [Google Scholar]
  10. Binsi PK, Nayak N, Sarkar PC, Jeyakumari A, Muhamed Ashraf P et al. 2017. Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: characterization and release kinetics. Food Chem. 219:158–68
    [Google Scholar]
  11. Buchweitz M, Carle R, Kammerer DR. 2012. Bathochromic and stabilising effects of sugar beet pectin and an isolated pectic fraction on anthocyanins exhibiting pyrogallol and catechol moieties. Food Chem. 135:3010–19
    [Google Scholar]
  12. Buchweitz M, Speth M, Kammerer DR, Carle R. 2013a. Impact of pectin type on the storage stability of black currant (Ribes nigrum L.) anthocyanins in pectic model solutions. Food Chem. 139:1168–78
    [Google Scholar]
  13. Buchweitz M, Speth M, Kammerer DR, Carle R. 2013b. Stabilisation of strawberry (Fragaria × ananassa Duch.) anthocyanins by different pectins. Food Chem. 141:2998–3006
    [Google Scholar]
  14. Cai WD, Zhu J, Wu LX, Qiao ZR, Li L, Yan JK 2019. Preparation, characterization, rheological and antioxidant properties of ferulic acid–grafted curdlan conjugates. Food Chem. 300:125221
    [Google Scholar]
  15. Chatterjee NS, Panda SK, Navitha M, Asha KK, Anandan R, Mathew S 2015. Vanillic acid and coumaric acid grafted chitosan derivatives: improved grafting ratio and potential application in functional food. J. Food Sci. Technol. 52:7153–62
    [Google Scholar]
  16. Cho Y-S, Lee D-S, Kim Y-M, Ahn C-B, Kim D-H et al. 2013. Protection of hepatic cell damage and antimicrobial evaluation of chitosan-catechin conjugate. J. Korean Soc. Appl. Biol. Chem. 56:701–7
    [Google Scholar]
  17. Chung JE, Kurisawa M, Uyama H, Kobayashi S. 2003. Enzymatic synthesis and antioxidant property of gelatin-catechin conjugates. Biotechnol. Lett. 25:231993–97
    [Google Scholar]
  18. Cirillo G, Curcio M, Vittorio O, Iemma F, Restuccia D et al. 2016. Polyphenol conjugates and human health: a perspective review. Crit. Rev. Food Sci. Nutr. 56:326–37
    [Google Scholar]
  19. Cirillo G, Puoci F, Iemma F, Curcio M, Parisi OI et al. 2012. Starch-quercetin conjugate by radical grafting: synthesis and biological characterization. Pharm. Dev. Technol. 17:466–76
    [Google Scholar]
  20. Curcio M, Puoci F, Iemma F, Parisi OI, Cirillo G et al. 2009. Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. J. Agric. Food Chem. 57:5933–38
    [Google Scholar]
  21. Das AK, Nanda PK, Madane P, Biswas S, Das A et al. 2020. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci. Technol. 99:323–36
    [Google Scholar]
  22. Dobson CC, Mottawea W, Rodrigue A, Buzati Pereira BL, Hammami R et al. 2019. Impact of molecular interactions with phenolic compounds on food polysaccharides functionality. Adv. Food. Nutr. Res. 90:135–81
    [Google Scholar]
  23. Domínguez Avila JA, Rodrigo García J, González Aguilar GA, de la Rosa LA 2017a. The antidiabetic mechanisms of polyphenols related to increased glucagon-like peptide-1 (GLP1) and insulin signaling. Molecules 22:6903
    [Google Scholar]
  24. Domínguez Avila JA, Villegas Ochoa MA, Alvarez Parrilla E, Montalvo González E, González Aguilar GA 2017b. Interactions between four common plant-derived phenolic acids and pectin, and its effect on antioxidant capacity. J. Food Meas. Charact. 12:992–1004
    [Google Scholar]
  25. Eom TK, Senevirathne M, Kim SK. 2012. Synthesis of phenolic acid conjugated chitooligosaccharides and evaluation of their antioxidant activity. Environ. Toxicol. Pharmacol. 34:519–27
    [Google Scholar]
  26. Fernandes A, Bras NF, Mateus N, de Freitas V. 2014. Understanding the molecular mechanism of anthocyanin binding to pectin. Langmuir 30:8516–27
    [Google Scholar]
  27. Fernandes A, Oliveira J, Fonseca F, Ferreira-da-Silva F, Mateus N et al. 2020. Molecular binding between anthocyanins and pectic polysaccharides: unveiling the role of pectic polysaccharides structure. Food Hydrocoll 102:105625
    [Google Scholar]
  28. Fernandes PAR, Le Bourvellec C, Renard C, Wessel DF, Cardoso SM, Coimbra MA 2020. Interactions of arabinan-rich pectic polysaccharides with polyphenols. Carbohydr. Polym. 230:115644
    [Google Scholar]
  29. Fillat A, Gallardo O, Vidal T, Pastor FIJ, Díaz P, Roncero MB 2012. Enzymatic grafting of natural phenols to flax fibres: development of antimicrobial properties. Carbohydr. Polym. 87:146–52
    [Google Scholar]
  30. Gangopadhyay N, Rai DK, Brunton NP, Gallagher E, Hossain MB 2016. Antioxidant-guided isolation and mass spectrometric identification of the major polyphenols in barley (Hordeum vulgare) grain. Food Chem. 210:212–20
    [Google Scholar]
  31. Geng Q. 2014. Effects of probiotics and tea polyphenols on acids production during the simulated colonic fermentation of two dietary fibers. MA Thesis, Northeast Agric. Univ. Harbin, China:
  32. Gonçalves FJ, Fernandes PAR, Wessel DF, Cardoso SM, Rocha SM, Coimbra MA. 2018. Interaction of wine mannoproteins and arabinogalactans with anthocyanins. Food Chem. 243:1–10
    [Google Scholar]
  33. González-Aguilar GA, Blancas-Benítez FJ, Sáyago-Ayerdi SG. 2017. Polyphenols associated with dietary fibers in plant foods: molecular interactions and bioaccessibility. Curr. Opin. Food. Sci. 13:84–88
    [Google Scholar]
  34. Guo QB, Ai L, Cui S 2018. 1D & 2D and solid-state NMR. Methodology for Structural Analysis of Polysaccharides Le Moigne 53–63 Cham, Switz: Springer
    [Google Scholar]
  35. Guo QB, Hu X, Wang C, Ai L 2017. Polysaccharides: structure and solubility. Solubility of Polysaccharides J Xu 7–21 London: InTechOpen
    [Google Scholar]
  36. Guo QB, Xiao X, Li C, Kang J, Liu G et al. 2021. Catechin-grafted arabinoxylan conjugate: preparation, structural characterization and property investigation. Int. J. Biol. Macromol. 182:796–805
    [Google Scholar]
  37. Guo QW, Ma Q, Xue Z, Gao X, Chen H 2018. Studies on the binding characteristics of three polysaccharides with different molecular weight and flavonoids from corn silk (Maydis stigma). Carbohydr. Polym. 198:581–88
    [Google Scholar]
  38. Halake K, Lee J. 2017. Functional hyaluronic acid conjugates based on natural polyphenols exhibit antioxidant, adhesive, gelation, and self-healing properties. J. Ind. Eng. Chem. 54:44–51
    [Google Scholar]
  39. Hu B, Ma F, Yang Y, Xie M, Zhang C et al. 2016. Antioxidant nanocomplexes for delivery of epigallocatechin-3-gallate. J. Agric. Food Chem. 64:3422–29
    [Google Scholar]
  40. Hu Q, Luo Y. 2016. Polyphenol-chitosan conjugates: synthesis, characterization, and applications. Carbohydr. Polym. 151:624–39
    [Google Scholar]
  41. Jakobek L. 2015. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 175:556–67
    [Google Scholar]
  42. Jakobek L, Matić P. 2019. Non-covalent dietary fiber: polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci. Technol. 83:235–47
    [Google Scholar]
  43. Jakobek L, Matić P, Kraljević Š, Ukić Š, Benšić M, Barron AR. 2020. Adsorption between quercetin derivatives and β-glucan studied with a novel approach to modeling adsorption isotherms. Appl. Sci. 10:51637
    [Google Scholar]
  44. Janesirisakule S, Sinthusake T, Wanichwecharungruang S. 2013. Nanocarrier with self-antioxidative property for stabilizing and delivering ascorbyl palmitate into skin. J. Pharm. Sci. 102:2770–79
    [Google Scholar]
  45. Jing Y, Huang J, Yu X. 2018. Preparation, characterization, and functional evaluation of proanthocyanidin-chitosan conjugate. Carbohydr. Polym. 194:139–45
    [Google Scholar]
  46. Jung MH, Seong PN, Kim MH, Myong NH, Chang MJ 2013. Effect of green tea extract microencapsulation on hypertriglyceridemia and cardiovascular tissues in high fructose-fed rats. Nutr. Res. Pract. 7:366–72
    [Google Scholar]
  47. Karaki N, Aljawish A, Muniglia L, Humeau C, Jasniewski J 2016. Physicochemical characterization of pectin grafted with exogenous phenols. Food Hydrocoll 60:486–93
    [Google Scholar]
  48. Kim S, Requejo KI, Nakamatsu J, Gonzales KN, Torres FG, Cavaco-Paulo A. 2017. Modulating antioxidant activity and the controlled release capability of laccase mediated catechin grafting of chitosan. Process Biochem. 59:65–76
    [Google Scholar]
  49. Koh J, Xu Z, Wicker L 2020. Binding kinetics of blueberry pectin-anthocyanins and stabilization by non-covalent interactions. Food Hydrocoll. 99:105354
    [Google Scholar]
  50. Le Bourvellec C, Bagano Vilas Boas P, Lepercq P, Comtet-Marre S, Auffret P et al. 2019. Procyanidin–cell wall interactions within apple matrices decrease the metabolization of procyanidins by the human gut microbiota and the anti-inflammatory effect of the resulting microbial metabolome in vitro. Nutrients 11:664
    [Google Scholar]
  51. Le Bourvellec C, Bouchet B, Renard CM 2005. Non-covalent interaction between procyanidins and apple cell wall material. Part III: Study on model polysaccharides. Biochim. Biophys. Acta 1725:10–18
    [Google Scholar]
  52. Le Bourvellec C, Guyot S, Renard CMGC 2009. Interactions between apple (Malus × domestica Borkh.) polyphenols and cell walls modulate the extractability of polysaccharides. Carbohydr. Polym. 75:251–61
    [Google Scholar]
  53. Le Bourvellec C, Renard CM 2012. Interactions between polyphenols and macromolecules: quantification methods and mechanisms. Crit. Rev. Food Sci. Nutr. 52:213–48
    [Google Scholar]
  54. Lee F, Chung JE, Xu K, Kurisawa M 2015. Injectable degradation-resistant hyaluronic acid hydrogels cross-linked via the oxidative coupling of green tea catechin. ACS Macro Lett. 4:957–60
    [Google Scholar]
  55. Lee SJ, Kang MS, Oh JS, Na HS, Lim YJ et al. 2013. Caffeic acid–conjugated chitosan derivatives and their anti-tumor activity. Arch. Pharm. Res. 36:1437–46
    [Google Scholar]
  56. Lei F, Liu F, Yuan F, Gao Y 2014a. Impact of chitosan–EGCG conjugates on physicochemical stability of β-carotene emulsion. Food Hydrocoll. 39:163–70
    [Google Scholar]
  57. Lei F, Wang X, Liang C, Yuan F, Gao Y. 2014b. Preparation and functional evaluation of chitosan-EGCG conjugates. J. Appl. Polym. Sci. 131:339732
    [Google Scholar]
  58. Li K, Guan G, Zhu J, Wu H, Sun Q. 2019. Antibacterial activity and mechanism of a laccase-catalyzed chitosan–gallic acid derivative against Escherichia coli and Staphylococcus aureus. Food Control 96:234–43
    [Google Scholar]
  59. Li S, Li J, Zhu Z, Cheng S, He J, Lamikanra O. 2020. Soluble dietary fiber and polyphenol complex in lotus root: preparation, interaction and identification. Food Chem. 314:126219
    [Google Scholar]
  60. Liang K, Bae KH, Lee F, Xu K, Chung JE et al. 2016. Self-assembled ternary complexes stabilized with hyaluronic acid–green tea catechin conjugates for targeted gene delivery. J. Control Release 226:205–16
    [Google Scholar]
  61. Lin Z, Fischer J, Wicker L. 2016. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin. Food Chem. 194:986–93
    [Google Scholar]
  62. Liu D, Lopez-Sanchez P, Martinez-Sanz M, Gilbert EP, Gidley MJ 2019. Adsorption isotherm studies on the interaction between polyphenols and apple cell walls: effects of variety, heating and drying. Food Chem. 282:58–66
    [Google Scholar]
  63. Liu J, Bai R, Liu Y, Zhang X, Kan J, Jin C. 2018a. Isolation, structural characterization and bioactivities of naturally occurring polysaccharide-polyphenolic conjugates from medicinal plants: a review. Int. J. Biol. Macromol. 107:2242–50
    [Google Scholar]
  64. Liu J, Lan W, Sun X, Xie J 2020. Effects of chitosan grafted phenolic acid coating on microbiological, physicochemical and protein changes of sea bass (Lateolabrax japonicus) during refrigerated storage. J. Food Sci. 85:2506–15
    [Google Scholar]
  65. Liu J, Liu S, Zhang X, Kan J, Jin C. 2019. Effect of gallic acid grafted chitosan film packaging on the postharvest quality of white button mushroom (Agaricus bisporus). Postharvest Biol. Technol. 147:39–47
    [Google Scholar]
  66. Liu J, Lu JF, Kan J, Tang YQ, Jin CH. 2013. Preparation, characterization and antioxidant activity of phenolic acids grafted carboxymethyl chitosan. Int. J. Biol. Macromol. 62:85–93
    [Google Scholar]
  67. Liu J, Lu JF, Kan J, Wen XY, Jin CH. 2014a. Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin. Int. J. Biol. Macromol. 64:76–83
    [Google Scholar]
  68. Liu J, Meng CG, Yan YH, Shan YN, Kan J, Jin CH. 2016a. Protocatechuic acid grafted onto chitosan: characterization and antioxidant activity. Int. J. Biol. Macromol. 89:518–26
    [Google Scholar]
  69. Liu J, Meng CG, Yan YH, Shan YN, Kan J, Jin CH. 2016b. Structure, physical property and antioxidant activity of catechin grafted Tremella fuciformis polysaccharide. Int. J. Biol. Macromol. 82:719–24
    [Google Scholar]
  70. Liu J, Pu H, Liu S, Kan J, Jin C. 2017. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: a review. Carbohydr. Polym. 174:999–1017
    [Google Scholar]
  71. Liu J, Wang X, Yong H, Kan J, Jin C 2018b. Recent advances in flavonoid-grafted polysaccharides: synthesis, structural characterization, bioactivities and potential applications. Int. J. Biol. Macromol. 116:1011–25
    [Google Scholar]
  72. Liu J, Wang X, Yong H, Kan J, Zhang N, Jin C. 2018c. Preparation, characterization, digestibility and antioxidant activity of quercetin grafted Cynanchum auriculatum starch. Int. J. Biol. Macromol. 114:130–36
    [Google Scholar]
  73. Liu J, Wen XY, Lu JF, Kan J, Jin CH. 2014b. Free radical mediated grafting of chitosan with caffeic and ferulic acids: structures and antioxidant activity. Int. J. Biol. Macromol. 65:97–106
    [Google Scholar]
  74. Liu X, Le Bourvellec C, Renard CMGC 2020. Interactions between cell wall polysaccharides and polyphenols: effect of molecular internal structure. Compr. Rev. Food Sci. Food Saf. 19:3574–617
    [Google Scholar]
  75. Lovegrove A, Edwards CH, De Noni I, Patel H, El SN et al. 2017. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr. 57:237–53
    [Google Scholar]
  76. Lv X, Ye FY, Lia IF, Ming J, Zhao GH 2016. Synthesis and characterization of a novel antioxidant RS4 by esterifying carboxymethyl sweetpotato starch with quercetin. Carbohydr. Polym. 152:317–26
    [Google Scholar]
  77. Mercado-Mercado G, Blancas-Benitez FJ, Velderrain-Rodríguez GR, Montalvo-González E, González-Aguilar GA et al. 2015. Bioaccessibility of polyphenols released and associated to dietary fibre in calyces and decoction residues of roselle (Hibiscus sabdariffa L.). J. Funct. Foods 18:171–81
    [Google Scholar]
  78. Mittal A, Singh A, Benjakul S, Prodpran T, Nilsuwan K et al. 2021. Composite films based on chitosan and epigallocatechin gallate grafted chitosan: characterization, antioxidant and antimicrobial activities. Food Hydrocoll 111:106384
    [Google Scholar]
  79. Moreno-Vasquez MJ, Valenzuela-Buitimea EL, Plascencia-Jatomea M, Encinas-Encinas JC, Rodriguez-Felix F et al. 2017. Functionalization of chitosan by a free radical reaction: characterization, antioxidant and antibacterial potential. Carbohydr. Polym. 155:117–27
    [Google Scholar]
  80. Mundlia J, Ahuja M, Kumar P. 2020. Enhanced biological activity of polyphenols on conjugation with gellan gum. Int. J. Polym. Mater. 70:10712–29
    [Google Scholar]
  81. Mundlia J, Ahuja M, Kumar P, Pillay V. 2019. Improved antioxidant, antimicrobial and anticancer activity of naringenin on conjugation with pectin. 3 Biotech 9:312
    [Google Scholar]
  82. Nagar E, Okun Z, Shpigelman A. 2020. Digestive fate of polyphenols: updated view of the influence of chemical structure and the presence of cell wall material. Curr. Opin. Food Sci. 31:38–46
    [Google Scholar]
  83. Nam J, Yeo WS. 2016. Controlled drug release using ascorbate-responsive quercetin-conjugated alginate hydrogels. Appl. Biol. Chem. 59:4579–84
    [Google Scholar]
  84. Padayachee A, Day L, Howell K, Gidley MJ. 2017. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit. Rev. Food Sci. Nutr. 57:59–81
    [Google Scholar]
  85. Padayachee A, Netzel G, Netzel M, Day L, Zabaras D et al. 2012. Binding of polyphenols to plant cell wall analogues. Part 1: anthocyanins. Food Chem. 134:155–61
    [Google Scholar]
  86. Paini M, Aliakbarian B, Casazza AA, Perego P, Ruggiero C, Pastorino L 2015. Chitosan/dextran multilayer microcapsules for polyphenol co-delivery. Mater. Sci. Eng. C 46:374–80
    [Google Scholar]
  87. Pasanphan W, Chirachanchai S. 2008. Conjugation of gallic acid onto chitosan: an approach for green and water-based antioxidant. Carbohydr. Polym. 72:169–77
    [Google Scholar]
  88. Pawlaczyk I, Czerchawski L, Kuliczkowski W, Karolko B, Pilecki W et al. 2011. Anticoagulant and anti-platelet activity of polyphenolic-polysaccharide preparation isolated from the medicinal plant Erigeron canadensis L. Thromb. Res. 127:328–40
    [Google Scholar]
  89. Pawlaczyk I, Czerchawski L, Pilecki W, Lamer-Zarawska E, Gancarz R. 2009. Polyphenolic-polysaccharide compounds from selected medicinal plants of Asteraceae and Rosaceae families: chemical characterization and blood anticoagulant activity. Carbohydr. Polym. 77:568–75
    [Google Scholar]
  90. Pawlaczyk-Graja I. 2018. Polyphenolic-polysaccharide conjugates from flowers and fruits of single-seeded hawthorn (Crataegus monogyna Jacq.): chemical profiles and mechanisms of anticoagulant activity. Int. J. Biol. Macromol. 116:869–79
    [Google Scholar]
  91. Pawlaczyk-Graja I, Balicki S, Wilk KA 2019. Effect of various extraction methods on the structure of polyphenolic-polysaccharide conjugates from Fragaria vesca L. leaf. Int. J. Biol. Macromol. 130:664–74
    [Google Scholar]
  92. Peng Y, Gao Y, Zhang X, Zhang C, Wang X et al. 2019. Antidiabetic and hepatoprotective activity of the roots of Calanthe fimbriata Franch. Biomed. Pharmacother. 111:60–67
    [Google Scholar]
  93. Phan ADT, Flanagan BM, D'Arcy BR, Gidley MJ. 2017. Binding selectivity of dietary polyphenols to different plant cell wall components: quantification and mechanism. Food Chem. 233:216–27
    [Google Scholar]
  94. Phan ADT, Netzel G, Wang D, Flanagan BM, D'Arcy BR, Gidley MJ. 2015. Binding of dietary polyphenols to cellulose: structural and nutritional aspects. Food Chem. 171:388–96
    [Google Scholar]
  95. Porter NT, Martens EC. 2017. The critical roles of polysaccharides in gut microbial ecology and physiology. Annu. Rev. Microbiol. 71:349–69
    [Google Scholar]
  96. Quijada-Morin N, Williams P, Rivas-Gonzalo JC, Doco T, Escribano-Bailon MT. 2014. Polyphenolic, polysaccharide and oligosaccharide composition of Tempranillo red wines and their relationship with the perceived astringency. Food Chem. 154:44–51
    [Google Scholar]
  97. Renard CMGC, Baron A, Guyot S, Drilleau JF. 2001. Interactions between apple cell walls and native apple polyphenols: quantification and some consequences. Int. J. Biol. Macromol. 29:2115–25
    [Google Scholar]
  98. Renard CMGC, Watrelot AA, Le Bourvellec C. 2017. Interactions between polyphenols and polysaccharides: mechanisms and consequences in food processing and digestion. Trends Food Sci. Technol. 60:43–51
    [Google Scholar]
  99. Riaz A, Lei S, Akhtar HMS, Wan P, Chen D et al. 2018. Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int. J. Biol. Macromol. 114:547–55
    [Google Scholar]
  100. Rouger C, Derbre S, Richomme P 2019. Mesua sp.: chemical aspects and pharmacological relevance of prenylated polyphenols. Phytochem. Rev. 18:1317–42
    [Google Scholar]
  101. Rui L, Xie M, Hu B, Zhou L, Saeeduddin M, Zeng X. 2017a. Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid. Carbohydr. Polym. 170:206–16
    [Google Scholar]
  102. Rui L, Xie M, Hu B, Zhou L, Yin D, Zeng X 2017b. A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydr. Polym. 173:473–81
    [Google Scholar]
  103. Ruiz-Garcia Y, Smith PA, Bindon KA. 2014. Selective extraction of polysaccharide affects the adsorption of proanthocyanidin by grape cell walls. Carbohydr. Polym. 114:102–14
    [Google Scholar]
  104. Saluk-Juszczak J, Pawlaczyk I, Olas B, Kolodziejczyk J, Ponczek M et al. 2010. The effect of polyphenolic-polysaccharide conjugates from selected medicinal plants of Asteraceae family on the peroxynitrite-induced changes in blood platelet proteins. Int. J. Biol. Macromol. 47:700–5
    [Google Scholar]
  105. Saranya TS, Rajan VK, Biswas R, Jayakumar R, Sathianarayanan S 2018. Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres. Int. J. Biol. Macromol. 110:227–33
    [Google Scholar]
  106. Shehata IA, El-Harshany E, Abdallah HM, Esmat A, Abdel-Sattar EA. 2018. Anti-inflammatory activity of Kleinia odora. Eur. J. Integr. Med. 23:64–69
    [Google Scholar]
  107. Singh A, Dutta PK, Kumar H, Kureel AK, Rai AK. 2018. Synthesis of chitin-glucan-aldehyde-quercetin conjugate and evaluation of anticancer and antioxidant activities. Carbohydr. Polym. 193:99–107
    [Google Scholar]
  108. Solari-Godiño A, Pérez-Jiménez J, Saura-Calixto F, Borderías AJ, Moreno HM. 2017. Anchovy mince (Engraulis ringens) enriched with polyphenol-rich grape pomace dietary fibre: in vitro polyphenols bioaccessibility, antioxidant and physico-chemical properties. Food Res. Int. 102:639–46
    [Google Scholar]
  109. Soliman GM, Zhang YL, Merle G, Cerruti M, Barralet J 2014. Hydrocaffeic acid-chitosan nanoparticles with enhanced stability, mucoadhesion and permeation properties. Eur. J. Pharm. Biopharm. 88:1026–37
    [Google Scholar]
  110. Spizzirri UG, Altimari I, Puoci F, Parisi OI, Iemma F, Picci N. 2011. Innovative antioxidant thermo-responsive hydrogels by radical grafting of catechin on inulin chain. Carbohydr. Polym. 84:517–23
    [Google Scholar]
  111. Spizzirri UG, Parisi OI, Iemma F, Cirillo G, Puoci F et al. 2010. Antioxidant–polysaccharide conjugates for food application by eco-friendly grafting procedure. Carbohydr. Polym. 79:333–40
    [Google Scholar]
  112. Sutovska M, Capek P, Franova S, Pawlaczyk I, Gancarz R 2012. Antitussive and bronchodilatory effects of Lythrum salicaria polysaccharide-polyphenolic conjugate. Int. J. Biol. Macromol. 51:794–99
    [Google Scholar]
  113. Sutovska M, Capek P, Kocmalova M, Franova S, Pawlaczyk I, Gancarz R 2013. Characterization and biological activity of Solidago canadensis complex. Int. J. Biol. Macromol. 52:192–97
    [Google Scholar]
  114. Sutovska M, Capek P, Kocmalova M, Pawlaczyk I, Zaczynska E et al. 2014. Characterization and pharmacodynamic properties of Arnica montana complex. Int. J. Biol. Macromol. 69:214–21
    [Google Scholar]
  115. Tsirigotis-Maniecka M, Pawlaczyk-Graja I, Ziewiecki R, Balicki S, Matulova M et al. 2018. The polyphenolic-polysaccharide complex of Agrimoniaeupatoria L. as an indirect thrombin inhibitor: isolation and chemical characterization. Int. J. Biol. Macromol. 125:124–32
    [Google Scholar]
  116. Tudorache M, Bordenave N 2019. Phenolic compounds mediate aggregation of water-soluble polysaccharides and change their rheological properties: effect of different phenolic compounds. Food Hydrocoll. 97:105193
    [Google Scholar]
  117. Vittorio O, Cirillo G, Iemma F, Di Turi G, Jacchetti E et al. 2012. Dextran-catechin conjugate: a potential treatment against the pancreatic ductal adenocarcinoma. Pharm. Res. 29:2601–14
    [Google Scholar]
  118. Vittorio O, Cojoc M, Curcio M, Spizzirri UG, Hampel S et al. 2016. Polyphenol conjugates by immobilized laccase: the green synthesis of dextran-catechin. Macromol. Chem. Phys. 217:1488–92
    [Google Scholar]
  119. Vittorio O, Voliani V, Faraci P, Karmakar B, Cirillo G 2014. Magnetic catechin-dextran conjugate as targeted therapeutic for pancreatic tumour cells. J. Drug Target. 22:5408–15
    [Google Scholar]
  120. Vuillemin ME, Michaux F, Adam AA, Linder M, Muniglia L, Jasniewski J 2020. Physicochemical characterizations of gum arabic modified with oxidation products of ferulic acid. Food Hydrocoll. 107:105946
    [Google Scholar]
  121. Wang C, Cai WD, Yao J, Wu LX, Li L et al. 2020. Conjugation of ferulic acid onto pectin affected the physicochemical, functional and antioxidant properties. J. Sci. Food Agric. 100:155352–62
    [Google Scholar]
  122. Wang D, Mao L, Dai L, Yuan F, Gao Y 2018. Characterization of chitosan-ferulic acid conjugates and their application in the design of β-carotene bilayer emulsions with propylene glycol alginate. Food Hydrocoll 80:281–91
    [Google Scholar]
  123. Wang J, Liu W, Chen Z, Chen H 2017. Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma. Biomed. Pharmacother. 90:160–70
    [Google Scholar]
  124. Wang Y, Liu J, Chen F, Zhao G 2013. Effects of molecular structure of polyphenols on their noncovalent interactions with oat β-glucan. J. Agric. Food Chem. 61:4533–38
    [Google Scholar]
  125. Watrelot AA, Le Bourvellec C, Imberty A, Renard CM 2014. Neutral sugar side chains of pectins limit interactions with procyanidins. Carbohydr. Polym. 99:527–36
    [Google Scholar]
  126. Watrelot AA, Schulz DL, Kennedy JA 2017. Wine polysaccharides influence tannin-protein interactions. Food Hydrocoll 63:571–79
    [Google Scholar]
  127. Wei Z, Gao Y 2016. Evaluation of structural and functional properties of chitosan-chlorogenic acid complexes. Int. J. Biol. Macromol. 86:376–82
    [Google Scholar]
  128. Wen Y, Ye F, Zhu J, Zhao G. 2016. Corn starch ferulates with antioxidant properties prepared by N,N′-carbonyldiimidazole-mediated grafting procedure. Food Chem. 208:1–9
    [Google Scholar]
  129. Woranuch S, Yoksan R. 2013. Preparation, characterization and antioxidant property of water-soluble ferulic acid grafted chitosan. Carbohydr. Polym. 96:495–502
    [Google Scholar]
  130. Xie M, Hu B, Wang Y, Zeng X 2014. Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer. J. Agric. Food Chem. 62:9128–36
    [Google Scholar]
  131. Xie M, Hu B, Yan Y, Zhou L, Ou S, Zeng X 2016. Rheological properties of gallic acid-grafted-chitosans with different substitution degrees. LWT 74:472–79
    [Google Scholar]
  132. Xu C, Guan S, Xu J, Gong W, Liu T et al. 2021. Preparation, characterization and antioxidant activity of protocatechuic acid grafted carboxymethyl chitosan and its hydrogel. Carbohydr. Polym. 252:117210
    [Google Scholar]
  133. Xue B, Xie J, Huang J, Chen L, Gao L et al. 2016. Plant polyphenols alter a pathway of energy metabolism by inhibiting fecal Bacteroidetes and Firmicutes in vitro. Food Funct 7:1501–7
    [Google Scholar]
  134. Yang X, Li A, Li X, Sun L, Guo Y 2020. An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures. Trends Food Sci. Technol. 102:1–15
    [Google Scholar]
  135. Yao LJ, Jalil J, Attiq A, Hui CC, Zakaria NA. 2019. The medicinal uses, toxicities and anti-inflammatory activity of Polyalthia species (Annonaceae). J. Ethnopharmacol. 229:303–25
    [Google Scholar]
  136. Ye J, Wang S, Lan W, Qin W, Liu Y 2018. Preparation and properties of polylactic acid-tea polyphenol-chitosan composite membranes. Int. J. Biol. Macromol. 117:632–39
    [Google Scholar]
  137. Yin ZN, Wu WJ, Sun CZ, Liu HF, Chen WB et al. 2019. Antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of Aspergillus niger. Biomed. Environ. Sci. 32:11–21
    [Google Scholar]
  138. Yong H, Bai R, Bi F, Liu J, Qin Y, Liu J. 2020. Synthesis, characterization, antioxidant and antimicrobial activities of starch aldehyde-quercetin conjugate. Int. J. Biol. Macromol. 156:462–70
    [Google Scholar]
  139. Yu S-H, Mi F-L, Pang J-C, Jiang S-C, Kuo T-H et al. 2011. Preparation and characterization of radical and pH-responsive chitosan–gallic acid conjugate drug carriers. Carbohydr. Polym. 84:794–802
    [Google Scholar]
  140. Yu YB, Cai WD, Wang ZW, Yan JK 2021. Emulsifying properties of a ferulic acid-grafted curdlan conjugate and its contribution to the chemical stability of β-carotene. Food Chem. 339:128053
    [Google Scholar]
  141. Zbikowska HM, Szejk M, Saluk J, Pawlaczyk-Graja I, Gancarz R, Olejnik AK 2016. Polyphenolic-polysaccharide conjugates from plants of Rosaceae/Asteraceae family as potential radioprotectors. Int. J. Biol. Macromol. 86:329–37
    [Google Scholar]
  142. Zeng X, Du Z, Ding X, Zhao Y, Jiang W. 2020. Preparation, characterization and in vitro hypoglycemic activity of banana condensed tannin-inulin conjugate. Food Funct 11:7973–86
    [Google Scholar]
  143. Zhang D, Zhu J, Ye F, Zhao G. 2017. Non-covalent interaction between ferulic acid and arabinan-rich pectic polysaccharide from rapeseed meal. Int. J. Biol. Macromol. 103:307–15
    [Google Scholar]
  144. Zhang Q-L, Zhang J, Xia P-F, Peng X-J, Li H-L et al. 2019. Anti-inflammatory activities of gentiopicroside against iNOS and COX-2 targets. Chin. Herb. Med. 11:108–12
    [Google Scholar]
  145. Zhou P, Feng R, Luo Z, Li X, Wang L, Gao L 2020. Synthesis, identification and bioavailability of Juglans regia L. polyphenols–Hohenbuehelia serotina polysaccharides nanoparticles. Food Chem. 329:127158
    [Google Scholar]
  146. Zhu F. 2018. Interactions between cell wall polysaccharides and polyphenols. Crit. Rev. Food Sci. Nutr. 58:1808–31
    [Google Scholar]
  147. Zhu J, Zhang D, Tang H, Zhao G. 2018. Structure relationship of non-covalent interactions between phenolic acids and arabinan-rich pectic polysaccharides from rapeseed meal. Int. J. Biol. Macromol. 120:2597–603
    [Google Scholar]
  148. Zhu W, Zhang Z. 2014. Preparation and characterization of catechin-grafted chitosan with antioxidant and antidiabetic potential. Int. J. Biol. Macromol. 70:150–55
    [Google Scholar]
/content/journals/10.1146/annurev-food-052720-010354
Loading
/content/journals/10.1146/annurev-food-052720-010354
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error