1932

Abstract

Life expectancy has dramatically increased over the past 200 years, but modern life factors such as environmental exposure, antibiotic overuse, C-section deliveries, limited breast-feeding, and diets poor in fibers and microbes could be associated with the rise of noncommunicable diseases such as overweight, obesity, diabetes, food allergies, and colorectal cancer as well as other conditions such as mental disorders. Microbial interventions that range from transplanting a whole undefined microbial community from a healthy gut to an ill one, e.g., so-called fecal microbiota transplantation or vaginal seeding, to the administration of selected well-characterized microbes, either live (probiotics) or not (postbiotics), with efficacy demonstrated in clinical trials, may be effective tools to treat or prevent acute and chronic diseases that humans still face, enhancing the quality of life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-052720-011545
2022-03-25
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/food/13/1/annurev-food-052720-011545.html?itemId=/content/journals/10.1146/annurev-food-052720-011545&mimeType=html&fmt=ahah

Literature Cited

  1. Adams CA. 2010. The probiotic paradox: live and dead cells are biological response modifiers. Nutr. Res. Rev. 23:137–46
    [Google Scholar]
  2. Angelov A, Yaneva-Marinova T, Gotcheva V. 2018. Oats as a matrix of choice for developing fermented functional beverages. J. Food Sci. Technol. 55:72351–60
    [Google Scholar]
  3. Antunes AEC, Vinderola G, Xavier-Santos D, Sivieri K. 2020. Potential contribution of beneficial microbes to face the COVID-19 pandemic. Food Res. Int. 136:109577
    [Google Scholar]
  4. Bellali S, Khalil JB, Fontanini A, Raoult D, Lagier J. 2020. A new protectant medium preserving bacterial viability after freeze drying. Microbiol. Res. 236:126454
    [Google Scholar]
  5. Binda S, Hill C, Johansen E, Obis D, Pot B et al. 2020. Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements. Front. Microbiol. 11:1662
    [Google Scholar]
  6. Bircher L, Geirnaert A, Hammes F, Lacroix C, Schwab C. 2018. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes. Microb. Biotechnol. 11:4721–33
    [Google Scholar]
  7. Bousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC et al. 2021. Cabbage and fermented vegetables: from death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy 76:3735–50
    [Google Scholar]
  8. Brodmann T, Endo A, Gueimonde M, Vinderola G, Kneifel W et al. 2017. Safety of novel microbes for human consumption: practical examples of assessment in the European Union. Front. Microbiol. 8:1725
    [Google Scholar]
  9. Broeckx G, Vandenheuvel D, Claes IJJ, Lebeer S, Kiekens F 2016. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. Int. J. Pharm. 505:1–2303–18
    [Google Scholar]
  10. Brüssow H. 2020. Problems with the concept of gut microbiota dysbiosis. Microb. Biotechnol. 13:2423–34
    [Google Scholar]
  11. Buckow R, Chandry PS, Ng SY, McAuley CM, Swanson BG 2014. Opportunities and challenges in pulsed electric field processing of dairy products. Int. Dairy J. 34:2199–212
    [Google Scholar]
  12. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A et al. 2011. Moving pictures of the human microbiome. Genome Biol 12:5R50
    [Google Scholar]
  13. Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P. 2004. Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int. Dairy J. 14:10835–47
    [Google Scholar]
  14. Champagne CP. 2006. Starter cultures biotechnology: the production of concentrated lactic cultures in alginate beads and their applications in the nutraceutical and food industries. Chem. Ind. Chem. Eng. Q. 12:111–17
    [Google Scholar]
  15. Champagne CP, Gardner NJ. 2002. Effect of process parameters on the production and drying of Leuconostoc mesenteroides cultures. J. Ind. Microbiol. Biotechnol. 28:5291–96
    [Google Scholar]
  16. Champagne CP, Gomes da Cruz A, Daga M. 2018. Strategies to improve the functionality of probiotics in supplements and foods. Curr. Opin. Food Sci. 22:160–66
    [Google Scholar]
  17. Champagne CP, Raymond Y, Guertin N, Belanger G. 2015. Effects of storage conditions, microencapsulation and inclusion in chocolate particles on the stability of probiotic bacteria in ice cream. Int. Dairy J. 47:109–17
    [Google Scholar]
  18. Champagne CP, Ross RP, Saarela M, Hansen KF, Charalampopoulos D. 2011. Recommendations for the viability assessment of probiotics as concentrated cultures and in food matrices. Int. J. Food Microbiol. 149:3185–93
    [Google Scholar]
  19. Cheng FS, Pan D, Chang B, Jiang M, Sang LX 2020. Probiotic mixture VSL#3: an overview of basic and clinical studies in chronic diseases. World J. Clin. Cases 8:81361–84
    [Google Scholar]
  20. Chia LW, Hornung BVH, Aalvink S, Schaap PJ, de Vos WM et al. 2018. Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek 111:6859–73
    [Google Scholar]
  21. Chiron C, Tompkins TA, Burguière P. 2018. Flow cytometry: a versatile technology for specific quantification and viability assessment of micro-organisms in multistrain probiotic products. J. Appl. Microbiol. 124:2572–84
    [Google Scholar]
  22. Comas-Riu J, Vives-Rego J. 2002. Cytometric monitoring of growth, sporogenesis and spore cell sorting in Paenibacillus polymyxa (formerly Bacillus polymyxa). J. Appl. Microbiol. 92:3475–81
    [Google Scholar]
  23. Corry JEL, Jarvis B, Passmore S, Hedges A 2007. A critical review of measurement uncertainty in the enumeration of food micro-organisms. Food Microbiol 24:3230–53
    [Google Scholar]
  24. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS et al. 2019. The microbiota-gut-brain axis. Physiol. Rev. 99:41877–2013
    [Google Scholar]
  25. Cunningham M, Vinderola G, Charalampopoulos D, Lebeer S, Sanders ME, Grimald R 2021. Applying probiotics and prebiotics in new delivery formats: Is the clinical evidence transferable?. Trends Food Sci. Technol. 112:495–506
    [Google Scholar]
  26. Davis C. 2014. Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. J. Microbiol. Methods 103:9–17
    [Google Scholar]
  27. Depommier C, Everard A, Druart C, Plovier H et al. 2019. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25:71096–103
    [Google Scholar]
  28. Derrien M, Vaughan EE, Plugge CM, de Vos WM. 2004. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54:Pt. 51469–76
    [Google Scholar]
  29. Dhar D, Mohanty A. 2020. Gut microbiota and Covid-19: possible link and implications. Virus Res 285:198018
    [Google Scholar]
  30. Dronkers TMG, Ouwehand AC, Rijkers GT. 2020. Global analysis of clinical trials with probiotics. Heliyon 6:7e04467
    [Google Scholar]
  31. EFSA Panel Diet. Prod. Nutr. Allerg. (NDA) 2010. Scientific opinion on the substantiation of health claims related to live yoghurt cultures and improved lactose digestion (ID 1143, 2976) pursuant to Article 13(1) of Regulation (EC) No 1924/20061. EFSA J. 8:101763 https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2010.1763
    [Google Scholar]
  32. Feehley T, Plunkett CH, Bao R, Hong SMC, Culleen E et al. 2019. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat. Med. 25:3448–53
    [Google Scholar]
  33. Fenster K, Freeburg B, Hollard C, Wong C, Laursen RR, Ouwehand AC. 2019. The production and delivery of probiotics: a review of a practical approach. Microorganisms 7:383
    [Google Scholar]
  34. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. 2016. How colonization by microbiota in early life shapes the immune system. Science 352:6285539–44
    [Google Scholar]
  35. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ et al. 2014. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11:8506–14
    [Google Scholar]
  36. Holscher HD, Hutkins R, Sanders ME. 2021. Evidence-based use of probiotics, prebiotics and fermented foods for digestive health. Today's Dietitian March 9. http://viewer.zmags.com/publication/c85ca1bd#/c85ca1bd/1
    [Google Scholar]
  37. Huang S, Vignolles ML, Chen XD, Le Loir Y, Jan G et al. 2017. Spray drying of probiotics and other food-grade bacteria: a review. Trends Food Sci. Technol. 63:1–17
    [Google Scholar]
  38. Ishimwe N, Daliri EB, Lee BH, Fang F, Du G. 2015. The perspective on cholesterol-lowering mechanisms of probiotics. Mol. Nutr. Food Res. 59:94–105
    [Google Scholar]
  39. ISO (Int. Organ. Stand.) 2015. Milk and milk products—starter cultures, probiotics and fermented products—quantification of lactic acid bacteria by flow cytometry ISO Stand. 19344:2015, ISO Geneva, Switz: https://www.iso.org/standard/64658.html
    [Google Scholar]
  40. Jackson SA, Schoeni JL, Vegge C, Pane M, Stahl B et al. 2019. Improving end-user trust in the quality of commercial probiotic products. Front. Microbiol. 10:739
    [Google Scholar]
  41. Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D et al. 2015. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 149:1223–37
    [Google Scholar]
  42. Khan MM, Pyle BH, Camper AK. 2010. Specific and rapid enumeration of viable but nonculturable and viable-culturable gram-negative bacteria by using flow cytometry. Appl. Environ. Microbiol. 76:155088–96
    [Google Scholar]
  43. Kolaček S, Hojsak I, Berni Canani R, Guarino A, Indrio F et al. 2017. Commercial probiotic products: a call for improved quality control. A position paper by the ESPGHAN Working Group for Probiotics and Prebiotics. J. Pediatr. Gastroenterol. Nutr. 65:1117–24
    [Google Scholar]
  44. Konar N, Toker OS, Oba S, Sagdic O 2016. Improving functionality of chocolate: a review on probiotic, prebiotic, and/or synbiotic characteristics. Trends Food Sci. Technol. 49:35–44
    [Google Scholar]
  45. Kurtmann L, Skibsted LH, Carlsen CU. 2009. Browning of freeze-dried probiotic bacteria cultures in relation to loss of viability during storage. J. Agric. Food Chem. 57:156736–41
    [Google Scholar]
  46. Machado D, Almeida D, Seabra CL, Andrade JC et al. 2020. Uncovering Akkermansia muciniphila resilience or susceptibility to different temperatures, atmospheres and gastrointestinal conditions. Anaerobe 61:102135
    [Google Scholar]
  47. Marcial-Coba MS, Knøchel S, Nielsen DS. 2019. Low-moisture food matrices as probiotic carriers. FEMS Microbiol. Lett. 366:2fnz006
    [Google Scholar]
  48. Marco ML, Bongers RS, de Vos WM, Kleerebezem M. 2007. Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. Appl. Environ. Microbiol. 73:1124–32
    [Google Scholar]
  49. Marco ML, Hill C, Hutkins R, Slavin J, Tancredi DJ et al. 2020. Should there be a recommended daily intake of microbes?. J. Nutr. 150:123061–67
    [Google Scholar]
  50. Melini F, Melini V, Luziatelli F, Ficca AG, Ruzzi M. 2019. Health-promoting components in fermented foods: an up-to-date systematic review. Nutrients 11:51189
    [Google Scholar]
  51. Moineau-Jean A, Champagne CP, Roy D, Raymond Y, LaPointe G 2019. Effect of Greek-style yoghurt manufacturing processes on starter and probiotic bacteria populations during storage. Int. Dairy J. 93:35–44
    [Google Scholar]
  52. Molin G. 2001. Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. Am. J. Clin. Nutr. 73:2380s–85
    [Google Scholar]
  53. Morelli L, Capurso L. 2012. FAO/WHO guidelines on probiotics: 10 years later. J. Clin. Gastroenterol. 46:S1–2
    [Google Scholar]
  54. Muka T, Imo D, Jaspers L, Colpani V, Chaker L et al. 2015. The global impact of non-communicable diseases on healthcare spending and national income: a systematic review. Eur. J. Epidemiol. 30:4251–77
    [Google Scholar]
  55. Nicolò MS, Gioffrè A, Carnazza S, Platania G, Silvestro ID, Guglielmino SP. 2011. Viable but nonculturable state of foodborne pathogens in grapefruit juice: a study of laboratory. Foodborne Pathog. Dis. 8:111–17
    [Google Scholar]
  56. Olsen R, Hess-Erga O, Larsen A, Hoffmann F, Thuestad G, Hoell I 2016. Dual staining with CFDA-AM and SYTOX Blue in flow cytometry analysis of UV-irradiated Tetraselmis suecica to evaluate vitality. Aquat. Biol. 25:39–52
    [Google Scholar]
  57. Ouwehand AC, Salminen SJ. 1998. The health effects of cultured milk products with viable and non-viable bacteria. Int. Dairy J. 8:9749–58
    [Google Scholar]
  58. Ouwerkerk JP, Aalvink S, Belzer C, de Vos WM. 2017. Preparation and preservation of viable Akkermansia muciniphila cells for therapeutic interventions. Benef. Microbes 8:2163–69
    [Google Scholar]
  59. Panelli S, Epis S, Cococcioni L, Perini M, Paroni M et al. 2020. Inflammatory bowel diseases, the hygiene hypothesis and the other side of the microbiota: parasites and fungi. Pharmacol. Res. 159:104962
    [Google Scholar]
  60. Pasqualin Cavalheiro C, Ruiz-Capillas C, Herrero AM, Jiménez-Colmenero F, Ragagnin De Menezes C, Martins Fries LL. 2015. Application of probiotic delivery systems in meat products. Trends Food Sci. Technol. 46:1120–31
    [Google Scholar]
  61. Pérez-Torrado R, Gamero E, Gómez-Pastor R, Garre E, Aranda A, Matallana E 2015. Yeast biomass, an optimised product with myriad applications in the food industry. Trends Food Sci. Technol. 46:2167–75
    [Google Scholar]
  62. Pinto D, Santos MA, Chambel L 2015. Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit. Rev. Microbiol. 41:161–76
    [Google Scholar]
  63. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:728559–65
    [Google Scholar]
  64. Raymond Y, Champagne CP 2015. The use of flow cytometry to accurately ascertain total and viable counts of Lactobacillus rhamnosus in chocolate. Food Microbiol 46:176–83
    [Google Scholar]
  65. Reid G, Gadir AA, Dhir R. 2019. Probiotics: reiterating what they are and what they are not. Front. Microbiol. 10:424
    [Google Scholar]
  66. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:61501241214
    [Google Scholar]
  67. Rodríguez-Nogales A, Algieri F, Vezza T, Garrido-Mesa N, Olivares M et al. 2015. The viability of Lactobacillus fermentum CECT5716 is not essential to exert intestinal anti-inflammatory properties. Food Funct 6:41176–84
    [Google Scholar]
  68. Rosini R, Nicchi S, Pizza M, Rappuoli R. 2020. Vaccines against antimicrobial resistance. Front. Immunol. 11:1048
    [Google Scholar]
  69. Saarela MH. 2019. Safety aspects of next generation probiotics. Curr. Opin. Food Sci. 30:8–13
    [Google Scholar]
  70. Salem I, Ramser A, Isham N, Ghannoum MA. 2018. The gut microbiome as a major regulator of the gut-skin axis. Front. Microbiol. 9:1459
    [Google Scholar]
  71. Salminen S, Collado MC, Endo A, Hill C, Lebeer S et al. 2021. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18:9649–67
    [Google Scholar]
  72. Salminen S, Stahl B, Vinderola G, Szajewska H. 2020. Infant formula supplemented with biotics: current knowledge and future perspectives. Nutrients 12:71952
    [Google Scholar]
  73. Sarkar S. 2018. Whether viable and dead probiotic are equally efficacious?. Nutr. Food Sci. 48:2285–300
    [Google Scholar]
  74. Schoeni JL 2015. Probiotics. Compendium of Methods for the Microbiological Examination of Foods Y Salfinger, M Tortorello 237–76 Washington DC: APHA Press
    [Google Scholar]
  75. Segli F, Melian C, Muñoz V, Vignolo G, Castellano P. 2021. Bioprotective extracts from Lactobacillus acidophilus CRL641 and Latilactobacillus curvatus CRL705 inhibit a spoilage exopolysaccharide producer in a refrigerated meat system. Food Microbiol. 97:103739
    [Google Scholar]
  76. Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B et al. 2019. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177:61600–18
    [Google Scholar]
  77. Shaw-Taylor L. 2020. An introduction to the history of infectious diseases, epidemics and the early phases of the long-run decline in mortality. Econ. Hist. Rev. 73:3E1–19
    [Google Scholar]
  78. Skórka A, Piescik-Lech M, Kolodziej M, Szajewska H. 2017. To add or not to add probiotics to infant formulae? An updated systematic review. Benef. Microbes 8:5717–25
    [Google Scholar]
  79. Sonnenburg JL, Sonnenburg ED. 2019. Vulnerability of the industrialized microbiota. Science 366:6464eaaw9255
    [Google Scholar]
  80. Sridharan S, Das KMS. 2019. A study on suitable non dairy food matrix for probiotic bacteria: a systematic review. Curr. Res. Nutr. Food Sci. 7:5–16
    [Google Scholar]
  81. Sun F, Zhang Q, Zhao J, Zhang H, Zhai Q et al. 2019. A potential species of next-generation probiotics? The dark and light sides of Bacteroides fragilis in health. Food Res. Int. 126:108590
    [Google Scholar]
  82. Sung V, D'Amico F, Cabana MD, Chau K, Koren G et al. 2018. Lactobacillus reuteri to treat infant colic: a meta-analysis. Pediatrics 141:1e201171181
    [Google Scholar]
  83. Talwalkar A, Kailasapathy K. 2004. Comparison of selective and differential media for the accurate enumeration of strains of Lactobacillus acidophilus, Bifidobacterium spp. and Lactobacillus casei complex from commercial yoghurts. Int. Dairy J. 14:2143–49
    [Google Scholar]
  84. Taylor BC, Lejzerowicz F, Poirel M, Shaffer JP, Jiang L et al. 2020. Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome. mSystems 5:2e00901–91
    [Google Scholar]
  85. Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R et al. 2018. The gut-liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15:7397–411
    [Google Scholar]
  86. Turroni F, Milani C, Duranti S, Lugli GA, Bernasconi S et al. 2020. The infant gut microbiome as a microbial organ influencing host well-being. Ital. J. Pediatr. 46:16
    [Google Scholar]
  87. Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M. 2019. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives. Curr. Obes. Rep. 8:3317–32
    [Google Scholar]
  88. van der Ark KCH, Aalvink S, Suarez-Diez M, Schaap PJ, de Vos WM, Belzer C. 2018. Model-driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation. Microb. Biotechnol. 11:3476–85
    [Google Scholar]
  89. Vinderola G, Reinheimer J, Salminen S. 2019. The enumeration of probiotics issues: from unavailable standardized culture media to a recommended procedure?. Int. Dairy J. 96:58–65
    [Google Scholar]
  90. Wang T, Goyal A, Dubinkina V, Maslov S. 2019. Evidence for a multi-level trophic organization of the human gut microbiome. PLOS Comput. Biol. 15:12e1007524
    [Google Scholar]
  91. Wong C, Ustunol Z. 2006. Mode of inactivation of probiotic bacteria affects interleukin 6 and interleukin 8 production in human intestinal epithelial-like Caco-2 cells. J. Food Prot. 69:2285–88
    [Google Scholar]
  92. Zhao H, Xu H, Chen S, He J, Zhou Y, Nie Y. 2021. Systematic review and meta-analysis of the role of Faecalibacterium prausnitzii alteration in inflammatory bowel disease. J. Gastroenterol. Hepatol. 36:2320–28
    [Google Scholar]
  93. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. 2020. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70:42782–858
    [Google Scholar]
  94. Zhou JC, Zhang XW. 2019. Akkermansia muciniphila: a promising target for the therapy of metabolic syndrome and related diseases. Chin. J. Nat. Med. 17:11835–41
    [Google Scholar]
/content/journals/10.1146/annurev-food-052720-011545
Loading
/content/journals/10.1146/annurev-food-052720-011545
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error