1932

Abstract

An increasing number of foodborne outbreaks, growing consumer desire for healthier products, and surging numbers of food allergy cases necessitate strict handling and screening of foods at every step of the food supply chain. Current standard procedures for detecting food toxins, contaminants, allergens, and pathogens require costly analytical devices, skilled technicians, and long sample preparation times. These challenges can be overcome with the use of biosensors because they provide accurate, rapid, selective, qualitative, and quantitative detection of analytes. Their ease of use, low-cost production, portability, and nondestructive measurement techniques also enable on-site detection of analytes. For this reason, biosensors find many applications in food safety and quality assessments. The detection mechanisms of biosensors can be varied with the use of different transducers, such as optical, electrochemical, or mechanical. These options provide a more appropriate selection of the biosensors for the intended use. In this review, recent studies focusing on the fabrication of biosensors for food safety or food quality purposes are summarized. To differentiate the detection mechanisms, the review is divided into sections based on the transducer type used.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-062520-082307
2021-03-25
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/food/12/1/annurev-food-062520-082307.html?itemId=/content/journals/10.1146/annurev-food-062520-082307&mimeType=html&fmt=ahah

Literature Cited

  1. Abdelnour A, Fonseca N, Rennane A, Kaddour D, Tedjini S. 2019. Design of RFID sensor tag for cheese quality monitoring. Proceedings of the 2019 IEEE MTT-S International Microwave Symposium290–92 Piscataway, NJ: IEEE
    [Google Scholar]
  2. Aghaei Z, Ghorani B, Emadzadeh B, Kadkhodaee R, Tucker N. 2020. Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control 111:107065
    [Google Scholar]
  3. Aghoutane Y, Diouf A, Österlund L, Bouchikhi B, El Bari N 2020. Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry 132:107404
    [Google Scholar]
  4. Ansari S, Bozkurt F, Yazar G, Ryan V, Bhunia A, Kokini J. 2015. Probing the distribution of gliadin proteins in dough and baked bread using conjugated quantum dots as a labeling tool. J. Cereal Sci. 63:41–48
    [Google Scholar]
  5. Arlett JL, Myers EB, Roukes ML. 2011. Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6:4203–15
    [Google Scholar]
  6. Baek SH, Park CY, Nguyen TP, Kim MW, Park JP et al. 2020. Novel peptides functionalized gold nanoparticles decorated tungsten disulfide nanoflowers as the electrochemical sensing platforms for the norovirus in an oyster. Food Control 114:107225
    [Google Scholar]
  7. Bagheri N, Khataee A, Habibi B, Hassanzadeh J. 2018. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 179:710–18
    [Google Scholar]
  8. Barber EA, Turasan H, Gezer PG, Devina D, Liu GL, Kokini J. 2019. Effect of plasticizing and crosslinking at room temperature on microstructure replication using soft lithography on zein films. J. Food Eng. 250:55–64
    [Google Scholar]
  9. Bashir R. 2004. BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 56:111565–86
    [Google Scholar]
  10. Becker MM, Ribeiro EB, de Oliveira Marques PRB, Marty J-L, Nunes GS, Catanante G 2019. Development of a highly sensitive xanthine oxidase-based biosensor for the determination of antioxidant capacity in Amazonian fruit samples. Talanta 204:626–32
    [Google Scholar]
  11. Bera MK, Mohapatra S. 2020. Ultrasensitive detection of glyphosate through effective photoelectron transfer between CdTe and chitosan derived carbon dot. Colloids Surf. A 596:124710
    [Google Scholar]
  12. Boisen A, Dohn S, Keller SS, Schmid S, Tenje M. 2011. Cantilever-like micromechanical sensors. Rep. Prog. Phys. 74:3036101
    [Google Scholar]
  13. Bonilla JC, Bernal-Crespo V, Schaber JA, Bhunia AK, Kokini JL. 2019a. Simultaneous immunofluorescent imaging of gliadins, low molecular weight glutenins, and high molecular weight glutenins in wheat flour dough with antibody-quantum dot complexes. Food Res. Int. 120:776–83
    [Google Scholar]
  14. Bonilla JC, Bozkurt F, Ansari S, Sozer N, Kokini JL. 2016. Applications of quantum dots in food science and biology. Trends Food Sci. Technol. 53:75–89
    [Google Scholar]
  15. Bonilla JC, Erturk MY, Kokini JL. 2020a. Understanding the role of gluten subunits (LMW, HMW glutenins and gliadin) in the networking behavior of a weak soft wheat dough and a strong semolina wheat flour dough and the relationship with linear and non-linear rheology. Food Hydrocoll 108:106002
    [Google Scholar]
  16. Bonilla JC, Erturk MY, Schaber JA, Kokini JL. 2020b. Distribution and function of LMW glutenins, HMW glutenins, and gliadins in wheat doughs analyzed with ‘in situ’ detection and quantitative imaging techniques. J. Cereal Sci. 93:102931
    [Google Scholar]
  17. Bonilla JC, Ryan V, Yazar G, Kokini JL, Bhunia AK. 2018. Conjugation of specifically developed antibodies for high- and low-molecular-weight glutenins with fluorescent quantum dots as a tool for their detection in wheat flour dough. J. Agric. Food Chem. 66:164259–66
    [Google Scholar]
  18. Bonilla JC, Schaber JA, Bhunia AK, Kokini JL. 2019b. Mixing dynamics and molecular interactions of HMW glutenins, LMW glutenins, and gliadins analyzed by fluorescent co-localization and protein network quantification. J. Cereal Sci. 89:102792
    [Google Scholar]
  19. Bozkurt F, Ansari S, Yau P, Yazar G, Ryan V, Kokini J 2014. Distribution and location of ethanol soluble proteins (Osborne gliadin) as a function of mixing time in strong wheat flour dough using quantum dots as a labeling tool with confocal laser scanning microscopy. Food Res. Int. 66:279–88
    [Google Scholar]
  20. Brainina K, Tarasov A, Khamzina E, Stozhko N, Vidrevich M. 2020. Contact hybrid potentiometric method for on-site and in situ estimation of the antioxidant activity of fruits and vegetables. Food Chem 309:125703
    [Google Scholar]
  21. Bunney J, Williamson S, Atkin D, Jeanneret M, Cozzolino D, Chapman J. 2017. The use of electrochemical biosensors in food analysis. Curr. Res. Nutr. Food Sci. J. 5:3183–95
    [Google Scholar]
  22. Cai S, Li W, Xu P, Xia X, Yu H et al. 2019. In situ construction of metal-organic framework (MOF) UiO-66 film on Parylene-patterned resonant microcantilever for trace organophosphorus molecules detection. Analyst 144:123729–35
    [Google Scholar]
  23. Chambers JP, Arulanandam BP, Matta LL, Weis A, Valdes JJ. 2008. Biosensor recognition elements. Curr. Issues Mol. Biol. 10:1–21–12
    [Google Scholar]
  24. Chen G-H, Chen W-Y, Yen Y-C, Wang C-W, Chang H-T, Chen C-F 2014. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 86:146843–49
    [Google Scholar]
  25. Chen X, Bai X, Li H, Zhang B. 2015. Aptamer-based microcantilever array biosensor for detection of fumonisin B-1. RSC Adv 5:4535448–52
    [Google Scholar]
  26. Chen Y, Liu L, Xu L, Song S, Kuang H et al. 2017. Gold immunochromatographic sensor for the rapid detection of twenty-six sulfonamides in foods. Nano Res 10:82833–44
    [Google Scholar]
  27. Claussen JC, Franklin AD, Ul Haque A, Porterfield DM, Fisher TS 2009. Electrochemical biosensor of nanocube-augmented carbon nanotube networks. ACS Nano 3:137–44
    [Google Scholar]
  28. Costa C, Antonucci F, Pallottino F, Aguzzi J, Sarriá D, Menesatti P. 2013. A review on agri-food supply chain traceability by means of RFID technology. Food Bioprocess Technol 6:2353–66
    [Google Scholar]
  29. Costa CAB, Grazhdan D, Fiutowski J, Nebling E, Blohm L et al. 2020. Meat and fish freshness evaluation by functionalized cantilever-based biosensors. Microsyst. Technol. 26:3867–71
    [Google Scholar]
  30. da Silva W, Ghica ME, Ajayi RF, Iwuoha EI, Brett CMA. 2019. Tyrosinase based amperometric biosensor for determination of tyramine in fermented food and beverages with gold nanoparticle doped poly(8-anilino-1-naphthalene sulphonic acid) modified electrode. Food Chem 282:18–26
    [Google Scholar]
  31. Damborský P, Švitel J, Katrlík J. 2016. Optical biosensors. Essays Biochem 60:191–100
    [Google Scholar]
  32. Dridi F, Marrakchi M, Gargouri M, Saulnier J, Jaffrezic-Renault N, Lagarde F 2017. Nanomaterial-based electrochemical biosensors for food safety and quality assessment. Nanobiosensors AM Grumezescu 167–204 Cambridge, MA: Academic
    [Google Scholar]
  33. Ebralidze II, Laschuk NO, Poisson J, Zenkina OV 2019. Colorimetric sensors and sensor arrays. Nanomaterials Design for Sensing Applications OV Zenkina 1–39 New York: Elsevier
    [Google Scholar]
  34. Eom K-H, Hyun K-H, Lin S, Kim J-W. 2014. The meat freshness monitoring system using the smart RFID tag. Int. J. Distrib. Sens. Netw. https://doi.org/10.1155/2014/591812
    [Google Scholar]
  35. Ercole C, Del Gallo M, Mosiello L, Baccella S, Lepidi A 2003. Escherichia coli detection in vegetable food by a potentiometric biosensor. Sens. Actuators B 91:1163–68
    [Google Scholar]
  36. Estrela P, Damborský P, Švitel J, Katrlík J. 2016. Optical biosensors. Essays Biochem 60:191–100
    [Google Scholar]
  37. FDA 2020. Survey data on acrylamide in food. FDA https://www.fda.gov/food/chemicals/survey-data-acrylamide-food
    [Google Scholar]
  38. Gardner JW, Bartlett PN. 1994. A brief history of electronic noses. Sens. Actuators B 18:1210–11
    [Google Scholar]
  39. Gezer PG, Hsiao A, Kokini JL, Liu GL. 2016a. Simultaneous transfer of noble metals and three-dimensional micro- and nanopatterns onto zein for fabrication of nanophotonic platforms. J. Mater. Sci. 51:83806–16
    [Google Scholar]
  40. Gezer PG, Liu GL, Kokini JL. 2016b. Detection of acrylamide using a biodegradable zein-based sensor with surface enhanced Raman spectroscopy. Food Control 68:7–13
    [Google Scholar]
  41. Gezer PG, Liu GL, Kokini JL. 2016c. Development of a biodegradable sensor platform from gold coated zein nanophotonic films to detect peanut allergen, Ara h1, using surface enhanced raman spectroscopy. Talanta 150:224–32
    [Google Scholar]
  42. Girigoswami K, Akhtar N. 2019. Nanobiosensors and fluorescence based biosensors: an overview. Int. J. Nano Dimens. 10:11–17
    [Google Scholar]
  43. Gonzalez Viejo C, Fuentes S, Godbole A, Widdicombe B, Unnithan RR 2020. Development of a low-cost e-nose to assess aroma profiles: an artificial intelligence application to assess beer quality. Sens. Actuators B 308:127688
    [Google Scholar]
  44. Grieshaber D, MacKenzie R, Vörös J, Reimhult E. 2008. Electrochemical biosensors: sensor principles and architectures. Sensors 8:31400–58
    [Google Scholar]
  45. Grimm JB, Heckman LM, Lavis LD. 2013. The chemistry of small-molecule fluorogenic probes. Progress in Molecular Biology and Translational Science 113 MC Morris 1–34 Cambridge, MA: Academic
    [Google Scholar]
  46. Guan J-G, Miao Y-Q, Zhang Q-J. 2004. Impedimetric biosensors. J. Biosci. Bioeng. 97:4219–26
    [Google Scholar]
  47. Gupta A, Akin D, Bashir R. 2004. Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators. J. Vac. Sci. Technol. B 22:62785–91
    [Google Scholar]
  48. Han S, Deng R, Xie X, Liu X. 2014. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem. Int. Ed. 53:4411702–15
    [Google Scholar]
  49. He L, Chen T, Labuza TP 2014. Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy. Food Chem 148:42–46
    [Google Scholar]
  50. He L, Lamont E, Veeregowda B, Sreevatsan S, Haynes CL et al. 2011. Aptamer-based surface-enhanced Raman scattering detection of ricin in liquid foods. Chem. Sci. 2:81579–82
    [Google Scholar]
  51. He L, Liu Y, Lin M, Mustapha A, Wang Y. 2008. Detecting single Bacillus spores by surface enhanced Raman spectroscopy. Sens. Instrum. Food Qual. Saf. 2:4247
    [Google Scholar]
  52. Henao-Escobar W, del Torno-de Román L, Domínguez-Renedo O, Alonso-Lomillo MA, Arcos-Martínez MJ 2016. Dual enzymatic biosensor for simultaneous amperometric determination of histamine and putrescine. Food Chem 190:818–23
    [Google Scholar]
  53. Herrero JL, Lozano J, Santos JP, Suárez JI. 2016. On-line classification of pollutants in water using wireless portable electronic noses. Chemosphere 152:107–16
    [Google Scholar]
  54. Hua QT, Ruecha N, Hiruta Y, Citterio D. 2019. Disposable electrochemical biosensor based on surface-modified screen-printed electrodes for organophosphorus pesticide analysis. Anal. Methods. 11:273439–45
    [Google Scholar]
  55. Jia F, Barber E, Turasan H, Seo S, Dai R et al. 2019. Detection of pyocyanin using a new biodegradable SERS biosensor fabricated using gold coated zein nanostructures further decorated with gold nanoparticles. J. Agric. Food Chem. 67:164603–10
    [Google Scholar]
  56. Jia Z, Shi C, Wang Y, Yang X, Zhang J, Ji Z 2020. Nondestructive determination of salmon fillet freshness during storage at different temperatures by electronic nose system combined with radial basis function neural networks. Int. J. Food Sci. Technol. 55:52080–91
    [Google Scholar]
  57. Kamel AH, Amr AE-GE, Abdalla NS, El-Naggar M, Al-Omar MA, Almehizia AA. 2020. Modified screen-printed potentiometric sensors based on man-tailored biomimetics for diquat herbicide determination. Int. J. Environ. Res. Public. Health. 17:41138
    [Google Scholar]
  58. Kaur I, Sharma M, Kaur S, Kaur A. 2020. Ultra-sensitive electrochemical sensors based on self-assembled chelating dithiol on gold electrode for trace level detection of copper(II) ions. Sens. Actuators B 312:127935
    [Google Scholar]
  59. Khan R, Ben Aissa S, Sherazi TA, Catanante G, Hayat A, Marty JL 2019. Development of an impedimetric aptasensor for label free detection of patulin in apple juice. Molecules 24:61017
    [Google Scholar]
  60. Khemthongcharoen N, Wonglumsom W, Suppat A, Jaruwongrungsee K, Tuantranont A, Promptmas C. 2015. Piezoresistive microcantilever-based DNA sensor for sensitive detection of pathogenic Vibrio cholerae O1 in food sample. Biosens. Bioelectron. 63:347–53
    [Google Scholar]
  61. Kumar P, Reinitz HW, Simunovic J, Sandeep KP, Franzon PD. 2009. Overview of RFID technology and its applications in the food industry. J. Food Sci. 74:8R101–6
    [Google Scholar]
  62. Kumar S, Dilbaghi N, Barnela M, Bhanjana G, Kumar R. 2012. Biosensors as novel platforms for detection of food pathogens and allergens. BioNanoScience 2:4196–217
    [Google Scholar]
  63. Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ. 2008. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 37:5898–911
    [Google Scholar]
  64. Lamont EA, He L, Warriner K, Labuza TP, Sreevatsan S. 2011. A single DNA aptamer functions as a biosensor for ricin. Analyst 136:193884–95
    [Google Scholar]
  65. Li A, Tang L, Song D, Song S, Ma W et al. 2016. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Nanoscale 8:41873–78
    [Google Scholar]
  66. Li H, Ahmad W, Rong Y, Chen Q, Zuo M et al. 2020. Designing an aptamer based magnetic and upconversion nanoparticles conjugated fluorescence sensor for screening Escherichia coli in food. Food Control 107:106761
    [Google Scholar]
  67. Li J, Zhou YX, Guo YX, Wang GY, Maier RRJ et al. 2018. Label-free ferrule-top optical fiber micro-cantilever biosensor. Sens. Actuators Phys. 280:505–12
    [Google Scholar]
  68. Lin L, Wu X, Cui G, Song S, Kuang H, Xu C. 2020. Colloidal gold immunochromatographic strip assay for the detection of azaperone in pork and pork liver. ACS Omega 5:31346–51
    [Google Scholar]
  69. Lin M, He L, Awika J, Yang L, Ledoux DR et al. 2008. Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC. J. Food Sci. 73:8T129–34
    [Google Scholar]
  70. Liu N, Nie D, Tan Y, Zhao Z, Liao Y et al. 2017. An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Microchim. Acta. 184:1147–53
    [Google Scholar]
  71. Liu T, Zhang W, Yuwono M, Zhang M, Ueland M et al. 2020. A data-driven meat freshness monitoring and evaluation method using rapid centroid estimation and hidden Markov models. Sens. Actuators B 311:127868
    [Google Scholar]
  72. Lobnik A, Urek SK, Turel M 2012. Quantum dots based optical sensors. Diffusion in Solids and Liquids A Ochsner, GE Murch, A Shokuhfar, J Delgado 682–89 Zurich: Trans Tech Publ.
    [Google Scholar]
  73. Luka G, Ahmadi A, Najjaran H, Alocilja E, DeRosa M et al. 2015. Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications. Sensors 15:1230011–31
    [Google Scholar]
  74. Ma X, Turasan H, Jia F, Seo S, Wang Z et al. 2020. A novel biodegradable ESERS (enhanced SERS) platform with deposition of Au, Ag and Au/Ag nanoparticles on gold coated zein nanophotonic structures for the detection of food analytes. Vib. Spectrosc. 106:103013
    [Google Scholar]
  75. Maher RC 2012. SERS hot spots. Raman Spectroscopy for Nanomaterials Characterization CSSR Kumar 215–60 Berlin: Springer
    [Google Scholar]
  76. Malvano F, Albanese D, Pilloton R, Di Matteo M 2017. A new label-free impedimetric aptasensor for gluten detection. Food Control 79:200–6
    [Google Scholar]
  77. Malvano F, Pilloton R, Albanese D. 2020. Label-free impedimetric biosensors for the control of food safety: a review. Int. J. Environ. Anal. Chem. 100:4468–91
    [Google Scholar]
  78. Mansouri M, Khalilzadeh B, Barzegari A, Shoeibi S, Isildak S et al. 2020. Design a highly specific sequence for electrochemical evaluation of meat adulteration in cooked sausages. Biosens. Bioelectron. 150:111916
    [Google Scholar]
  79. Milovanovic M, Žeravík J, Obořil M, Pelcová M, Lacina K et al. 2019. A novel method for classification of wine based on organic acids. Food Chem 284:296–302
    [Google Scholar]
  80. Misun PM, Rothe J, Schmid YRF, Hierlemann A, Frey O. 2016. Multi-analyte biosensor interface for real-time monitoring of 3D microtissue spheroids in hanging-drop networks. Microsyst. Nanoeng. 2:16022
    [Google Scholar]
  81. Mohtar LG, Aranda P, Messina GA, Nazareno MA, Pereira SV et al. 2019. Amperometric biosensor based on laccase immobilized onto a nanostructured screen-printed electrode for determination of polyphenols in propolis. Microchem. J. 144:13–18
    [Google Scholar]
  82. Morris MC 2013. Introduction. Progress in Molecular Biology and Translational Science 113 MC Morris xv–xviii Cambridge, MA: Academic
    [Google Scholar]
  83. Narang J, Chauhan N, Singh A, Pundir CS. 2011. A nylon membrane based amperometric biosensor for polyphenol determination. J. Mol. Catal. B 72:3276–81
    [Google Scholar]
  84. Narsaiah K, Jha SN, Bhardwaj R, Sharma R, Kumar R. 2012. Optical biosensors for food quality and safety assurance—a review. J. Food Sci. Technol. 49:4383–406
    [Google Scholar]
  85. Nguyen SD, Pham TT, Blanc EF, Le NN, Dang CM, Tedjini S. 2013. Approach for quality detection of food by RFID-based wireless sensor tag. Electron. Lett. 49:251588–89
    [Google Scholar]
  86. Özcan ŞM, Sesal NC, Şener MK, Koca A. 2020. An alternative strategy to detect bacterial contamination in milk and water: a newly designed electrochemical biosensor. Eur. Food Res. Technol. 246:61317–24
    [Google Scholar]
  87. Pang S, Labuza TP, He L. 2014. Development of a single aptamer-based surface enhanced Raman scattering method for rapid detection of multiple pesticides. Analyst 139:81895–901
    [Google Scholar]
  88. Park K, Jang J, Irimia D, Sturgis J, Lee J et al. 2008.. ‘ Living cantilever arrays’ for characterization of mass of single live cells in fluids. Lab Chip 8:71034–41
    [Google Scholar]
  89. Persaud K, Dodd G. 1982. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:5881352–55
    [Google Scholar]
  90. Potyrailo RA, Morris WG, Sivavec T, Tomlinson HW, Klensmeden S, Lindh K. 2009. RFID sensors based on ubiquitous passive 13.56-MHz RFID tags and complex impedance detection. Wirel. Commun. Mob. Comput. 9:101318–30
    [Google Scholar]
  91. Potyrailo RA, Nagraj N, Tang Z, Mondello FJ, Surman C, Morris W. 2012. Battery-free radio frequency identification (RFID) sensors for food quality and safety. J. Agric. Food Chem. 60:358535–43
    [Google Scholar]
  92. Ren W, Ballou DR, FitzGerald R, Irudayaraj J 2019. Plasmonic enhancement in lateral flow sensors for improved sensing of E. coli O157:H7. Biosens. Bioelectron. 126:324–31
    [Google Scholar]
  93. Ronkainen NJ, Halsall HB, Heineman WR. 2010. Electrochemical biosensors. Chem. Soc. Rev. 39:51747–63
    [Google Scholar]
  94. Rouf TB, Díaz-Amaya S, Stanciu L, Kokini J. 2020. Application of corn zein as an anchoring molecule in a carbon nanotube enhanced electrochemical sensor for the detection of gliadin. Food Control 117:107350
    [Google Scholar]
  95. Ruiz-Garcia L, Lunadei L, Barreiro P, Robla I. 2009. A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends. Sensors 9:64728–50
    [Google Scholar]
  96. Rusinek R, Gancarz M, Nawrocka A. 2020. Application of an electronic nose with novel method for generation of smellprints for testing the suitability for consumption of wheat bread during 4-day storage. LWT Food Sci. Technol. 117:108665
    [Google Scholar]
  97. Sha T, Liu J, Sun M, Li L, Bai J et al. 2019. Green and low-cost synthesis of nitrogen-doped graphene-like mesoporous nanosheets from the biomass waste of okara for the amperometric detection of vitamin C in real samples. Talanta200–3006
    [Google Scholar]
  98. Sharma A, Khan R, Catanante G, Sherazi TA, Bhand S et al. 2018. Designed strategies for fluorescence-based biosensors for the detection of mycotoxins. Toxins 10:5197
    [Google Scholar]
  99. Silva NFD, Almeida CMR, Magalhães JMCS, Gonçalves MP, Freire C, Delerue-Matos C. 2019. Development of a disposable paper-based potentiometric immunosensor for real-time detection of a foodborne pathogen. Biosens. Bioelectron. 141:111317
    [Google Scholar]
  100. Soylemez S, Goker S, Toppare L. 2019. A promising enzyme anchoring probe for selective ethanol sensing in beverages. Int. J. Biol. Macromol. 133:1228–35
    [Google Scholar]
  101. Sozer N, Kokini JL. 2014. Use of quantum nanodot crystals as imaging probes for cereal proteins. Food Res. Int. 57:142–51
    [Google Scholar]
  102. Sun X, Guan L, Shan X, Zhang Y, Li Z. 2012. Electrochemical detection of peanut allergen Ara h 1 using a sensitive DNA biosensor based on stem-loop probe. J. Agric. Food Chem. 60:4410979–84
    [Google Scholar]
  103. Suni II. 2008. Impedance methods for electrochemical sensors using nanomaterials. TrAC Trends Anal. Chem. 27:7604–11
    [Google Scholar]
  104. Tao H, Brenckle MA, Yang M, Zhang J, Liu M et al. 2012. Silk-based conformal, adhesive, edible food sensors. Adv. Mater. 24:81067–72
    [Google Scholar]
  105. Thakur MS, Ragavan KV. 2013. Biosensors in food processing. J. Food Sci. Technol. 50:4625–41
    [Google Scholar]
  106. Tian Y, Liang T, Zhu P, Chen Y, Chen W et al. 2019. Label-free detection of E. coli O157:H7 DNA using light-addressable potentiometric sensors with highly oriented ZnO nanorod arrays. Sensors 19:245473
    [Google Scholar]
  107. Tria SA, Lopez-Ferber D, Gonzalez C, Bazin I, Guiseppi-Elie A. 2016. Microfabricated biosensor for the simultaneous amperometric and luminescence detection and monitoring of ochratoxin A. Biosens. Bioelectron. 79:835–42
    [Google Scholar]
  108. Turasan H, Cakmak M, Kokini J. 2019. Fabrication of zein-based electrospun nanofiber decorated with gold nanoparticles as a SERS platform. J. Mater. Sci. 54:128872–91
    [Google Scholar]
  109. Wang J, Jiang L, Chu Q, Ye J 2010. Residue analysis of melamine in milk products by micellar electrokinetic capillary chromatography with amperometric detection. Food Chem 121:1215–19
    [Google Scholar]
  110. Wang L, Hu Q, Pei F, Mugambi MA, Yang W 2020. Detection and identification of fungal growth on freeze-dried Agaricus bisporus using spectra and olfactory sensors. J. Sci. Food Agric. 100:73136–46
    [Google Scholar]
  111. Wang P, Li H, Hassan MM, Guo Z, Zhang Z-Z, Chen Q 2019. Fabricating an acetylcholinesterase modulated UCNPs-Cu2+ fluorescence biosensor for ultrasensitive detection of organophosphorus pesticides-diazinon in food. J. Agric. Food Chem. 67:144071–79
    [Google Scholar]
  112. Weston M, Kuchel RP, Ciftci M, Boyer C, Chandrawati R. 2020. A polydiacetylene-based colorimetric sensor as an active use-by date indicator for milk. J. Colloid Interface Sci. 572:31–38
    [Google Scholar]
  113. Wijaya W, Pang S, Labuza TP, He L. 2014. Rapid detection of acetamiprid in foods using surface-enhanced raman spectroscopy (SERS). J. Food Sci. 79:4T743–47
    [Google Scholar]
  114. Wu H-Y, Choi CJ, Cunningham BT. 2012. Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array. Small 8:182878–85
    [Google Scholar]
  115. Wu Z, Xu E, Chughtai MFJ, Jin Z, Irudayaraj J 2017. Highly sensitive fluorescence sensing of zearalenone using a novel aptasensor based on upconverting nanoparticles. Food Chem 230:673–80
    [Google Scholar]
  116. Xu L, Yu X, Liu L, Zhang R. 2016. A novel method for qualitative analysis of edible oil oxidation using an electronic nose. Food Chem 202:229–35
    [Google Scholar]
  117. Xu Y, Niu X, Zhang H, Xu L, Zhao S et al. 2015. Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg2+ chemosensor. J. Agric. Food Chem. 63:61747–55
    [Google Scholar]
  118. Yagati AK, Chavan SG, Baek C, Lee M-H, Min J 2018. Label-free impedance sensing of aflatoxin B1 with polyaniline nanofibers/Au nanoparticle electrode array. Sensors 18:51320
    [Google Scholar]
  119. Yang T, Zhang Z, Zhao B, Hou R, Kinchla A et al. 2016. Real-time and in situ monitoring of pesticide penetration in edible leaves by surface-enhanced Raman scattering mapping. Anal. Chem. 88:105243–50
    [Google Scholar]
  120. Yin M, Jing C, Li H, Deng Q, Wang S 2020. Surface chemistry modified upconversion nanoparticles as fluorescent sensor array for discrimination of foodborne pathogenic bacteria. J. Nanobiotechnol. 18:141
    [Google Scholar]
  121. Yun Y, Pan M, Wang L, Li S, Wang Y et al. 2019. Fabrication and evaluation of a label-free piezoelectric immunosensor for sensitive and selective detection of amantadine in foods of animal origin. Anal. Bioanal. Chem. 411:225745–53
    [Google Scholar]
  122. Zhang X, Liu Q, Chen Z, Zuo X 2020. Colorimetric sensor array for accurate detection and identification of antioxidants based on metal ions as sensor receptors. Talanta 215:120935
    [Google Scholar]
  123. Zhu Y, Wu J, Han L, Wang X, Li W et al. 2020. Nanozyme sensor arrays based on heteroatom-doped graphene for detecting pesticides. Anal. Chem. 92:117444–52
    [Google Scholar]
/content/journals/10.1146/annurev-food-062520-082307
Loading
/content/journals/10.1146/annurev-food-062520-082307
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error