1932

Abstract

Out of many intracellular bacteria, only the mitochondria and chloroplasts abandoned their independence billions of years ago and became endosymbionts within the host eukaryotic cell. Consequently, one cannot grow eukaryotic cells without their mitochondria, and the mitochondria cannot divide outside of the cell, thus reflecting interdependence. Here, we argue that such interdependence underlies the fundamental role of mitochondrial activities in the emergence of metazoans. Several lines of evidence support our hypothesis: () Differentiation and embryogenesis rely on mitochondrial function; () mitochondrial metabolites are primary precursors for epigenetic modifications (such as methyl and acetyl), which are critical for chromatin remodeling and gene expression, particularly during differentiation and embryogenesis; and () mitonuclear coregulation adapted to accommodate both housekeeping and tissue-dependent metabolic needs. We discuss the evolution of the unique mitochondrial genetic system, mitochondrial metabolites, mitonuclear coregulation, and their critical roles in the emergence of metazoans and in human disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-021920-105545
2020-11-23
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/genet/54/1/annurev-genet-021920-105545.html?itemId=/content/journals/10.1146/annurev-genet-021920-105545&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahn B-H, Kim H-S, Song S, Lee IH, Liu J et al. 2008. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. PNAS 105:14447–52
    [Google Scholar]
  2. 2. 
    Arai M, Ohshima S. 1997. Maternally inherited diabetes and deafness with cerebellar ataxia: a new clinical phenotype associated with the mitochondrial DNA 3243 mutation. J. Neurol. 244:468–69
    [Google Scholar]
  3. 3. 
    Arnaudo E, Hirano M, Seelan RS, Milatovich A, Hsieh CL et al. 1992. Tissue-specific expression and chromosome assignment of genes specifying two isoforms of subunit VIIa of human cytochrome c oxidase. Gene 119:299–305
    [Google Scholar]
  4. 4. 
    Asin-Cayuela J, Schwend T, Farge G, Gustafsson CM 2005. The human mitochondrial transcription termination factor (mTERF) is fully active in vitro in the non-phosphorylated form. J. Biol. Chem. 280:25499–505
    [Google Scholar]
  5. 5. 
    Barshad G, Blumberg A, Cohen T, Mishmar D 2018. Human primitive brain displays negative mitochondrial-nuclear expression correlation of respiratory genes. Genome Res 28:952–67
    [Google Scholar]
  6. 6. 
    Barshad G, Marom S, Cohen T, Mishmar D 2018. Mitochondrial DNA transcription and its regulation: an evolutionary perspective. Trends Genet 34:682–92
    [Google Scholar]
  7. 7. 
    Barve A, Vega A, Shah PP, Ghare S, Casson L et al. 2019. Perturbation of methionine/S-adenosylmethionine metabolism as a novel vulnerability in MLL rearranged leukemia. Cells 8:1322
    [Google Scholar]
  8. 8. 
    Bateson P. 2017. Adaptability and evolution. Interface Focus 7:20160126
    [Google Scholar]
  9. 9. 
    Blumberg A, Danko CG, Kundaje A, Mishmar D 2018. A common pattern of DNase I footprinting throughout the human mtDNA unveils clues for a chromatin-like organization. Genome Res 28:1158–68
    [Google Scholar]
  10. 10. 
    Blumberg A, Rice EJ, Kundaje A, Danko CG, Mishmar D 2017. Initiation of mtDNA transcription is followed by pausing, and diverges across human cell types and during evolution. Genome Res 27:362–73
    [Google Scholar]
  11. 11. 
    Blumberg A, Sailaja BS, Kundaje A, Levin L, Dadon S et al. 2014. Transcription factors bind negatively selected sites within human mtDNA genes. Genome Biol. Evol. 6:2634–46
    [Google Scholar]
  12. 12. 
    Calvo SE, Clauser KR, Mootha VK 2016. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44:D1251–57
    [Google Scholar]
  13. 13. 
    Camus MF, Wolff JN, Sgrò CM, Dowling DK 2017. Experimental support that natural selection has shaped the latitudinal distribution of mitochondrial haplotypes in Australian Drosophila melanogaster. Mol. Biol. Evol 34:2600–12
    [Google Scholar]
  14. 14. 
    Chae S, Ahn BY, Byun K, Cho YM, Yu M-H et al. 2013. A systems approach for decoding mitochondrial retrograde signaling pathways. Sci. Signal. 6:rs4
    [Google Scholar]
  15. 15. 
    Chang DD, Clayton DA. 1984. Precise identification of individual promoter for transcription of each strand of human mitochondrial DNA. Cell 36:635–43
    [Google Scholar]
  16. 16. 
    Charmpilas N, Tavernarakis N. 2020. Mitochondrial maturation drives germline stem cell differentiation in Caenorhabditis elegans. . Cell Death Differ 27:601–17
    [Google Scholar]
  17. 17. 
    Chatterjee A, Seyfferth J, Lucci J, Gilsbach R, Preissl S et al. 2016. MOF acetyl transferase regulates transcription and respiration in mitochondria. Cell 167:722–38.e23
    [Google Scholar]
  18. 18. 
    Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A 2007. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4:Suppl. 1S60–67
    [Google Scholar]
  19. 19. 
    Couvillion MT, Soto IC, Shipkovenska G, Churchman LS 2016. Synchronized mitochondrial and cytosolic translation programs. Nature 533:499–503
    [Google Scholar]
  20. 20. 
    Craven L, Alston CL, Taylor RW, Turnbull DM 2017. Recent advances in mitochondrial disease. Annu. Rev. Genom. Hum. Genet. 18:257–75
    [Google Scholar]
  21. 21. 
    de Mendoza A, Sebe-Pedros A, Sestak MS, Matejcic M, Torruella G et al. 2013. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. PNAS 110:E4858–66
    [Google Scholar]
  22. 22. 
    Dibley MG, Ryan MT, Stroud DA 2017. A novel isoform of the human mitochondrial complex I subunit NDUFV 3. FEBS Lett 591:109–17
    [Google Scholar]
  23. 23. 
    Dunn CD. 2017. Some liked it hot: a hypothesis regarding establishment of the proto-mitochondrial endosymbiont during eukaryogenesis. J. Mol. Evol. 85:99–106
    [Google Scholar]
  24. 24. 
    Enriquez JA, Fernandez-Silva P, Garrido-Perez N, Lopez-Perez MJ, Perez-Martos A, Montoya J 1999. Direct regulation of mitochondrial RNA synthesis by thyroid hormone. Mol. Cell. Biol. 19:657–70
    [Google Scholar]
  25. 25. 
    Fernandez-Silva P, Martinez-Azorin F, Micol V, Attardi G 1997. The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. EMBO J 16:1066–79
    [Google Scholar]
  26. 26. 
    Fernandez-Vizarra E, Enriquez JA, Perez-Martos A, Montoya J, Fernandez-Silva P 2011. Tissue-specific differences in mitochondrial activity and biogenesis. Mitochondrion 11:207–13
    [Google Scholar]
  27. 27. 
    Filippi MD, Ghaffari S. 2019. Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities. Blood 133:1943–52
    [Google Scholar]
  28. 28. 
    Fisher RP, Parisi MA, Clayton DA 1989. Flexible recognition of rapidly evolving promoter sequences by mitochondrial transcription factor 1. Genes Dev 3:2202–17
    [Google Scholar]
  29. 29. 
    Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS et al. 2016. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–14
    [Google Scholar]
  30. 30. 
    Folmes CD, Dzeja PP, Nelson TJ, Terzic A 2012. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11:596–606
    [Google Scholar]
  31. 31. 
    Folmes CDL, Ma H, Mitalipov S, Terzic A 2016. Mitochondria in pluripotent stem cells: stemness regulators and disease targets. Curr. Opin. Genet. Dev. 38:1–7
    [Google Scholar]
  32. 32. 
    Gaspari M, Falkenberg M, Larsson NG, Gustafsson CM 2004. The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. EMBO J 23:4606–14
    [Google Scholar]
  33. 33. 
    Gerencser AA, Chinopoulos C, Birket MJ, Jastroch M, Vitelli C et al. 2012. Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J. Physiol. 590:2845–71
    [Google Scholar]
  34. 34. 
    Gershoni M, Templeton AR, Mishmar D 2009. Mitochondrial bioenergetics as a major motive force of speciation. Bioessays 31:642–50
    [Google Scholar]
  35. 35. 
    Goto Y, Nonaka I, Horai S 1990. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348:651–53
    [Google Scholar]
  36. 36. 
    Gray MW, Burger G, Lang BF 1999. Mitochondrial evolution. Science 283:1476–81
    [Google Scholar]
  37. 37. 
    Gu M, Dong X, Shi L, Shi L, Lin K et al. 2012. Differences in mtDNA whole sequence between Tibetan and Han populations suggesting adaptive selection to high altitude. Gene 496:37–44
    [Google Scholar]
  38. 38. 
    Guerrero-Castillo S, Cabrera-Orefice A, Huynen MA, Arnold S 2017. Identification and evolutionary analysis of tissue-specific isoforms of mitochondrial complex I subunit NDUFV3. Biochim. Biophys. Acta Bioenerg. 1858:208–17
    [Google Scholar]
  39. 39. 
    Gustafsson CM, Falkenberg M, Larsson NG 2016. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85:133–60
    [Google Scholar]
  40. 40. 
    Hance N, Ekstrand MI, Trifunovic A 2005. Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum. Mol. Genet. 14:1775–83
    [Google Scholar]
  41. 41. 
    Herbers E, Kekäläinen NJ, Hangas A, Pohjoismäki JL, Goffart S 2019. Tissue specific differences in mitochondrial DNA maintenance and expression. Mitochondrion 44:85–92
    [Google Scholar]
  42. 42. 
    Herzberg NH, Zwart R, Wolterman RA, Ruiter JP, Wanders RJ et al. 1993. Differentiation and proliferation of respiration-deficient human myoblasts. Biochim. Biophys. Acta 1181:63–67
    [Google Scholar]
  43. 43. 
    Hillen HS, Morozov YI, Sarfallah A, Temiakov D, Cramer P 2017. Structural basis of mitochondrial transcription initiation. Cell 171:1072–81.e10
    [Google Scholar]
  44. 44. 
    Hinman VF, Davidson EH. 2007. Evolutionary plasticity of developmental gene regulatory network architecture. PNAS 104:19404–9
    [Google Scholar]
  45. 45. 
    Hoffert KM, Higginbotham KSP, Gibson JT, Oehrle S, Strome ED 2019. Mutations in the S-adenosylmethionine synthetase genes SAM1 and SAM2 differentially affect genome stability in Saccharomyces cerevisiae. . Genetics 213:97–112
    [Google Scholar]
  46. 46. 
    Isaac RS, McShane E, Churchman LS 2018. The multiple levels of mitonuclear coregulation. Annu. Rev. Genet. 52:511–33
    [Google Scholar]
  47. 47. 
    Jansen A, Verstrepen KJ. 2011. Nucleosome positioning in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev 75:301–20
    [Google Scholar]
  48. 48. 
    Ji F, Sharpley MS, Derbeneva O, Alves LS, Qian P et al. 2012. Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. PNAS 109:7391–96
    [Google Scholar]
  49. 49. 
    Karnkowska A, Vacek V, Zubacova Z, Treitli SC, Petrzelkova R et al. 2016. A eukaryote without a mitochondrial organelle. Curr. Biol. 26:1274–84
    [Google Scholar]
  50. 50. 
    Kelly J, Murphy JE. 2018. Mitochondrial gene expression changes in cultured human skin cells following simulated sunlight irradiation. J. Photochem. Photobiol. B 179:167–74
    [Google Scholar]
  51. 51. 
    Khacho M, Slack RS. 2018. Mitochondrial dynamics in the regulation of neurogenesis: from development to the adult brain. Dev. Dyn. 247:47–53
    [Google Scholar]
  52. 52. 
    Knoll AH, Carroll SB. 1999. Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–37
    [Google Scholar]
  53. 53. 
    Kopinski PK, Janssen KA, Schaefer PM, Trefely S, Perry CE et al. 2019. Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. PNAS 116:16028–35
    [Google Scholar]
  54. 54. 
    Kumar RP, Ray S, Home P, Saha B, Bhattacharya B et al. 2018. Regulation of energy metabolism during early mammalian development: TEAD4 controls mitochondrial transcription. Development 145:dev162644
    [Google Scholar]
  55. 55. 
    Lambertini E, Penolazzi L, Morganti C, Lisignoli G, Zini N et al. 2015. Osteogenic differentiation of human MSCs: specific occupancy of the mitochondrial DNA by NFATc1 transcription factor. Int. J. Biochem. Cell Biol. 64:212–19
    [Google Scholar]
  56. 56. 
    Lane N, Martin W. 2010. The energetics of genome complexity. Nature 467:929–34
    [Google Scholar]
  57. 57. 
    Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P et al. 1998. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18:231–36
    [Google Scholar]
  58. 58. 
    Levin L, Blumberg A, Barshad G, Mishmar D 2014. Mito-nuclear co-evolution: the positive and negative sides of functional ancient mutations. Front. Genet. 5:448
    [Google Scholar]
  59. 59. 
    Litonin D, Sologub M, Shi Y, Savkina M, Anikin M et al. 2010. Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J. Biol. Chem. 285:18129–33
    [Google Scholar]
  60. 60. 
    Liu HY, Han J, Cao SY, Hong T, Zhuo D et al. 2009. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 284:31484–92
    [Google Scholar]
  61. 61. 
    Lozoya OA, Wang T, Grenet D, Wolfgang TC, Sobhany M et al. 2019. Mitochondrial acetyl-CoA reversibly regulates locus-specific histone acetylation and gene expression. Life Sci. Alliance 2:e201800228
    [Google Scholar]
  62. 62. 
    Lu F, Liu Y, Inoue A, Suzuki T, Zhao K, Zhang Y 2016. Establishing chromatin regulatory landscape during mouse preimplantation development. Cell 165:1375–88
    [Google Scholar]
  63. 63. 
    Ma X, Kang J, Chen W, Zhou C, He S 2015. Biogeographic history and high-elevation adaptations inferred from the mitochondrial genome of Glyptosternoid fishes (Sisoridae, Siluriformes) from the southeastern Tibetan Plateau. BMC Evol. Biol. 15:233
    [Google Scholar]
  64. 64. 
    Mandal S, Lindgren AG, Srivastava AS, Clark AT, Banerjee U 2011. Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells 29:486–95
    [Google Scholar]
  65. 65. 
    Marom S, Blumberg A, Kundaje A, Mishmar D 2019. mtDNA chromatin-like organization is gradually established during mammalian embryogenesis. iScience 12:141–51
    [Google Scholar]
  66. 66. 
    Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA et al. 2011. The human mitochondrial transcriptome. Cell 146:645–58
    [Google Scholar]
  67. 67. 
    Mills DB, Canfield DE. 2014. Oxygen and animal evolution: Did a rise of atmospheric oxygen “trigger” the origin of animals. ? Bioessays 36:1145–55
    [Google Scholar]
  68. 68. 
    Minczuk M, He J, Duch AM, Ettema TJ, Chlebowski A et al. 2011. TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res 39:4284–99
    [Google Scholar]
  69. 69. 
    Mishmar D, Levin R, Naeem MM, Sondheimer N 2019. Higher order organization of the mtDNA: beyond mitochondrial transcription factor A. Front. Genet. 10:1285
    [Google Scholar]
  70. 70. 
    Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG et al. 2003. Natural selection shaped regional mtDNA variation in humans. PNAS 100:171–76
    [Google Scholar]
  71. 71. 
    Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G 1982. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. PNAS 79:7195–99
    [Google Scholar]
  72. 72. 
    Morrish F, Noonan J, Perez-Olsen C, Gafken PR, Fitzgibbon M et al. 2010. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J. Biol. Chem. 285:36267–74
    [Google Scholar]
  73. 73. 
    Mutvei A, Kuzela S, Nelson BD 1989. Control of mitochondrial transcription by thyroid hormone. Eur. J. Biochem. 180:235–40
    [Google Scholar]
  74. 74. 
    Nagaraj R, Sharpley MS, Chi F, Braas D, Zhou Y et al. 2017. Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. Cell 168:210–23.e11
    [Google Scholar]
  75. 75. 
    Paillard L, Omilli F, Legagneux V, Bassez T, Maniey D, Osborne HB 1998. EDEN and EDEN-BP, a cis element and an associated factor that mediate sequence-specific mRNA deadenylation in Xenopus embryos. EMBO J 17:278–87
    [Google Scholar]
  76. 76. 
    Peterson KJ, Dietrich MR, McPeek MA 2009. MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 31:736–47
    [Google Scholar]
  77. 77. 
    Rackham O, Shearwood AM, Mercer TR, Davies SM, Mattick JS, Filipovska A 2011. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA 17:2085–93
    [Google Scholar]
  78. 78. 
    Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J 2011. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–83
    [Google Scholar]
  79. 79. 
    Regenass U, Mett H, Stanek J, Mueller M, Kramer D, Porter CW 1994. CGP 48664, a new S-adenosylmethionine decarboxylase inhibitor with broad spectrum antiproliferative and antitumor activity. Cancer Res 54:3210–17
    [Google Scholar]
  80. 80. 
    Reid BD, Parsons P. 1971. Partial purification of mitochondrial RNA polymerase from rat liver. PNAS 68:2830–34
    [Google Scholar]
  81. 81. 
    Reid MA, Dai Z, Locasale JW 2017. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19:1298–306
    [Google Scholar]
  82. 82. 
    Ren L, Zhang C, Tao L, Hao J, Tan K et al. 2017. High-resolution profiles of gene expression and DNA methylation highlight mitochondrial modifications during early embryonic development. J. Reprod. Dev. 63:247–61
    [Google Scholar]
  83. 83. 
    Ringel R, Sologub M, Morozov YI, Litonin D, Cramer P, Temiakov D 2011. Structure of human mitochondrial RNA polymerase. Nature 478:269–73
    [Google Scholar]
  84. 84. 
    Rosenberg SM. 2009. Life, death, differentiation, and the multicellularity of bacteria. PLOS Genet 5:e1000418
    [Google Scholar]
  85. 85. 
    Rutter GA, Rizzuto R. 2000. Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem. Sci. 25:215–21
    [Google Scholar]
  86. 86. 
    Sagan L. 1967. On the origin of mitosing cells. J. Theor. Biol. 14:255–74
    [Google Scholar]
  87. 87. 
    Scott GR, Elogio TS, Lui MA, Storz JF, Cheviron ZA 2015. Adaptive modifications of muscle phenotype in high-altitude deer mice are associated with evolved changes in gene regulation. Mol. Biol. Evol. 32:1962–76
    [Google Scholar]
  88. 88. 
    Scott GR, Schulte PM, Egginton S, Scott AL, Richards JG, Milsom WK 2011. Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the bar-headed goose. Mol. Biol. Evol. 28:351–63
    [Google Scholar]
  89. 89. 
    She H, Yang Q, Shepherd K, Smith Y, Miller G et al. 2011. Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients. J. Clin. Investig. 121:930–40
    [Google Scholar]
  90. 90. 
    Sogabe S, Hatleberg WL, Kocot KM, Say TE, Stoupin D et al. 2019. Pluripotency and the origin of animal multicellularity. Nature 570:519–22
    [Google Scholar]
  91. 91. 
    Sogin ML. 1991. Early evolution and the origin of eukaryotes. Curr. Opin. Genet. Dev. 1:457–63
    [Google Scholar]
  92. 92. 
    Spikings EC, Alderson J, St. John JC 2007. Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol. Reprod. 76:327–35
    [Google Scholar]
  93. 93. 
    Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME et al. 2010. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–26
    [Google Scholar]
  94. 94. 
    Struhl K. 1999. Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell 98:1–4
    [Google Scholar]
  95. 95. 
    Sue CM, Bruno C, Andreu AL, Cargan A, Mendell JR et al. 1999. Infantile encephalopathy associated with the MELAS A3243G mutation. J. Pediatr. 134:696–700
    [Google Scholar]
  96. 96. 
    Tadros W, Lipshitz HD. 2009. The maternal-to-zygotic transition: a play in two acts. Development 136:3033–42
    [Google Scholar]
  97. 97. 
    Tajima H, Niikura T, Hashimoto Y, Ito Y, Kita Y et al. 2002. Evidence for in vivo production of Humanin peptide, a neuroprotective factor against Alzheimer's disease-related insults. Neurosci. Lett. 324:227–31
    [Google Scholar]
  98. 98. 
    Tang S, Fang Y, Huang G, Xu X, Padilla-Banks E et al. 2017. Methionine metabolism is essential for SIRT1-regulated mouse embryonic stem cell maintenance and embryonic development. EMBO J 36:3175–93
    [Google Scholar]
  99. 99. 
    Thundathil J, Filion F, Smith LC 2005. Molecular control of mitochondrial function in preimplantation mouse embryos. Mol. Reprod. Dev. 71:405–13
    [Google Scholar]
  100. 100. 
    Torroni A, Miller JA, Moore LG, Zamudio S, Zhuang J et al. 1994. Mitochondrial DNA analysis in Tibet: Implications for the origin of the Tibetan population and its adaptation to high altitude. Am. J. Phys. Anthropol. 93:189–99
    [Google Scholar]
  101. 101. 
    Van Blerkom J. 2004. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 128:269–80
    [Google Scholar]
  102. 102. 
    Van Kuilenburg AB, Van Beeumen JJ, Van der Meer NM, Muijsers AO 1992. Subunits VIIa,b,c of human cytochrome c oxidase. Identification of both ‘heart-type’ and ‘liver-type’ isoforms of subunit VIIa in human heart. Eur. J. Biochem. 203:193–99
    [Google Scholar]
  103. 103. 
    Varuzhanyan G, Rojansky R, Sweredoski MJ, Graham RL, Hess S et al. 2019. Mitochondrial fusion is required for spermatogonial differentiation and meiosis. eLife 8:e51601
    [Google Scholar]
  104. 104. 
    Vivian CJ, Brinker AE, Graw S, Koestler DC, Legendre C et al. 2017. Mitochondrial genomic backgrounds affect nuclear DNA methylation and gene expression. Cancer Res 77:6202–14
    [Google Scholar]
  105. 105. 
    Wallace DC. 1999. Mitochondrial diseases in man and mouse. Science 283:1482–88
    [Google Scholar]
  106. 106. 
    Wallace DC. 2018. Mitochondrial genetic medicine. Nat. Genet. 50:1642–49
    [Google Scholar]
  107. 107. 
    Webb JS, Givskov M, Kjelleberg S 2003. Bacterial biofilms: prokaryotic adventures in multicellularity. Curr. Opin. Microbiol. 6:578–85
    [Google Scholar]
  108. 108. 
    Wen YA, Xiong X, Scott T, Li AT, Wang C et al. 2019. The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer. Cell Death Differ 26:1955–69
    [Google Scholar]
  109. 109. 
    Whitfield CD, Bostedor R, Goodrum D, Haak M, Chu EH 1981. Hamster cell mutants unable to grow on galactose and exhibiting an overlapping complementation pattern are defective in the electron transport chain. J. Biol. Chem. 256:6651–56
    [Google Scholar]
  110. 110. 
    Wotton D, Pemberton LF, Merrill-Schools J 2017. SUMO and chromatin remodeling. Adv. Exp. Med. Biol. 963:35–50
    [Google Scholar]
  111. 111. 
    Wu J, Huang B, Chen H, Yin Q, Liu Y et al. 2016. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534:652–57
    [Google Scholar]
  112. 112. 
    Zachar I, Szathmary E. 2017. Breath-giving cooperation: critical review of origin of mitochondria hypotheses: Major unanswered questions point to the importance of early ecology. Biol. Direct 12:19
    [Google Scholar]
  113. 113. 
    Zarrabi AJ, Kao D, Nguyen DT, Loscalzo J, Handy DE 2017. Hypoxia-induced suppression of c-Myc by HIF-2α in human pulmonary endothelial cells attenuates TFAM expression. Cell. Signal. 38:230–37
    [Google Scholar]
  114. 114. 
    Zhang C, Montooth KL, Calvi BR 2017. Incompatibility between mitochondrial and nuclear genomes during oogenesis results in ovarian failure and embryonic lethality. Development 144:2490–503
    [Google Scholar]
/content/journals/10.1146/annurev-genet-021920-105545
Loading
/content/journals/10.1146/annurev-genet-021920-105545
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error