1932

Abstract

Tuberculosis claims more human lives than any other bacterial infectious disease and represents a clear and present danger to global health as new tools for vaccination, treatment, and interruption of transmission have been slow to emerge. Additionally, tuberculosis presents with notable clinical heterogeneity, which complicates diagnosis, treatment, and the establishment of nonrelapsing cure. How this heterogeneity is driven by the diversity ofclinical isolates of the causative agent, , has recently garnered attention. Herein, we review advances in the understanding of how naturally occurring variation in clinical isolates affects transmissibility, pathogenesis, immune modulation, and drug resistance. We also summarize how specific changes in transcriptional responses can modulate infection or disease outcome, together with strain-specific effects on gene essentiality. Further understanding of how this diversity of isolates affects disease and treatment outcomes will enable the development of more effective therapeutic options and vaccines for this dreaded disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-022820-085940
2020-11-23
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genet/54/1/annurev-genet-022820-085940.html?itemId=/content/journals/10.1146/annurev-genet-022820-085940&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adams KN, Verma AK, Gopalaswamy R, Adikesavalu H, Singhal DK et al. 2019. Diverse clinical isolates of Mycobacterium tuberculosis develop macrophage-induced rifampin tolerance. J. Infect. Dis. 219:101554–58
    [Google Scholar]
  2. 2. 
    Advani J, Verma R, Chatterjee O, Pachouri PK, Upadhyay P et al. 2019. Whole genome sequencing of Mycobacterium tuberculosis clinical isolates from India reveals genetic heterogeneity and region-specific variations that might affect drug susceptibility. Front. Microbiol. 10:309
    [Google Scholar]
  3. 3. 
    Aguilar-López BA, Correa F, Moreno- Altamirano MMB, Espitia C, Hernández-Longoria R et al. 2019. LprG and PE_PGRS33 Mycobacterium tuberculosis virulence factors induce differential mitochondrial dynamics in macrophages. Scand. J. Immunol. 89:e12728
    [Google Scholar]
  4. 4. 
    Asare P, Asante-Poku A, Prah DA, Borrell S, Osei-Wusu S et al. 2018. Reduced transmission of Mycobacterium africanum compared to Mycobacterium tuberculosis in urban West Africa. Int. J. Infect. Dis. 73:30–42
    [Google Scholar]
  5. 5. 
    Ates LS. 2020. New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol. Microbiol. 113:14–21
    [Google Scholar]
  6. 6. 
    Ates LS, Dippenaar A, Ummels R, Piersma SR, Van Der Woude AD et al. 2018. Mutations in ppe38 block PE-PGRS secretion and increase virulence of Mycobacterium tuberculosis. Nat. Microbiol 3:2181–88
    [Google Scholar]
  7. 7. 
    Baena A, Cabarcas F, Alvarez-Eraso KLF, Isaza JP, Alzate JF, Barrera LF 2019. Differential determinants of virulence in two Mycobacterium tuberculosis Colombian clinical isolates of the LAM09 family. Virulence 10:1695–710
    [Google Scholar]
  8. 8. 
    Baker L, Brown T, Maiden MC, Drobniewski F 2004. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg. Infect. Dis 10:91568–77
    [Google Scholar]
  9. 9. 
    Bettencourt P, Pires D, Anes E 2016. Immunomodulating microRNAs of mycobacterial infections. Tuberculosis 97:1–7
    [Google Scholar]
  10. 10. 
    Bifani PJ, Mathema B, Kurepina NE, Kreiswirth BN 2002. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol 10:145–52
    [Google Scholar]
  11. 11. 
    Birhanu AG, Yimer SA, Kalayou S, Riaz T, Zegeye ED et al. 2019. Ample glycosylation in membrane and cell envelope proteins may explain the phenotypic diversity and virulence in the Mycobacterium tuberculosis complex. Sci. Rep. 9:2927
    [Google Scholar]
  12. 12. 
    Boritsch EC, Frigui W, Cascioferro A, Malaga W, Etienne G et al. 2016. pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nat. Microbiol. 1:15019
    [Google Scholar]
  13. 13. 
    Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N et al. 2014. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514:7253494–97
    [Google Scholar]
  14. 14. 
    Brennan MJ. 2017. The enigmatic PE/PPE multigene family of mycobacteria and tuberculosis vaccination. Infect. Immun. 85:e00969–16
    [Google Scholar]
  15. 15. 
    Broset E, Martín C, Gonzalo-Asensio J 2015. Evolutionary landscape of the Mycobacterium tuberculosis complex from the viewpoint of PhoPR: implications for virulence regulation and application to vaccine development. mBio 6:5e01289–15
    [Google Scholar]
  16. 16. 
    Brown T, Nikolayevskyy V, Velji P, Drobniewski F 2010. Associations between Mycobacterium tuberculosis strains and phenotypes. Emerg. Infect. Dis. 16:2272–80
    [Google Scholar]
  17. 17. 
    Brynildsrud OB, Pepperell CS, Suffys P, Grandjean L, Monteserin J et al. 2018. Global expansion of Mycobacterium tuberculosis lineage 4 shaped by colonial migration and local adaptation. Sci. Adv. 4:10eaat5869
    [Google Scholar]
  18. 18. 
    Cambier CJ, Falkow S, Ramakrishnan L 2014. Host evasion and exploitation schemes of Mycobacterium tuberculosis. . Cell 159:71497–509
    [Google Scholar]
  19. 19. 
    Cantrell SA, Pascopella L, Flood J, Crane CM, Kendall LV et al. 2008. Community-wide transmission of a strain of Mycobacterium tuberculosis that causes reduced lung pathology in mice. J. Med. Microbiol. 57:21–27
    [Google Scholar]
  20. 20. 
    Carey AF, Rock JM, Krieger IV, Chase MR, Fernandez-Suarez M et al. 2018. TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLOS Pathog 14:3e1006939 Erratum. 2019. PLOS Pathog. 15(6):e1007846
    [Google Scholar]
  21. 21. 
    Chandran A, Antony C, Jose L, Mundayoor S, Natarajan K et al. 2015. Mycobacterium tuberculosis infection induces HDAC1-mediated suppression of IL-12B gene expression in macrophages. Front. Cell. Infect. Microbiol. 5:90
    [Google Scholar]
  22. 22. 
    Chen YY, Chang JR, Huang WF, Hsu SC, Kuo SC et al. 2014. The pattern of cytokine production in vitro induced by ancient and modern Beijing Mycobacterium tuberculosis strains. PLOS ONE 9:4e94296
    [Google Scholar]
  23. 23. 
    Chengalroyen MD, Beukes GM, Gordhan BG, Streicher EM, Churchyard G et al. 2016. Detection and quantification of differentially culturable tubercle bacteria in sputum from tuberculosis patients. Am. J. Respir. Crit. Care Med. 194:121532–40
    [Google Scholar]
  24. 24. 
    Chiner-Oms Á, Berney M, Boinett C, González-Candelas F, Young DB et al. 2019. Genome-wide mutational biases fuel transcriptional diversity in the Mycobacterium tuberculosis complex. Nat. Commun. 10:3994
    [Google Scholar]
  25. 25. 
    Chiner-Oms Á, González-Candelas F, Comas I 2018. Gene expression models based on a reference laboratory strain are poor predictors of Mycobacterium tuberculosis complex transcriptional diversity. Sci. Rep. 8:3813
    [Google Scholar]
  26. 26. 
    Chiner-Oms Á, Sánchez-Busó L, Corander J, Gagneux S, Harris SR et al. 2019. Genomic determinants of speciation and spread of the Mycobacterium tuberculosis complex. Sci. Adv. 5:eaaw3307
    [Google Scholar]
  27. 27. 
    Colangeli R, Jedrey H, Kim S, Al E 2018. Bacterial factors that predict relapse after tuberculosis therapy. N. Engl. J. Med. 379:823–33
    [Google Scholar]
  28. 28. 
    Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:6685537–44
    [Google Scholar]
  29. 29. 
    Comas I, Chakravartti J, Small PM, Galagan J, Niemann S et al. 2010. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat. Genet. 42:6498–503
    [Google Scholar]
  30. 30. 
    Comas I, Coscolla M, Luo T, Borrell S, Holt KE et al. 2014. Out-of-Africa migration and Neolithic co-expansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45:101176–82
    [Google Scholar]
  31. 31. 
    Coscolla M, Gagneux S. 2014. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin. Immunol 26:6431–44
    [Google Scholar]
  32. 32. 
    de Jong BC, Hill PC, Aiken A, Awine T, Antonio M et al. 2008. Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in the Gambia. J. Infect. Dis. 198:71037–43
    [Google Scholar]
  33. 33. 
    de Souza GA, Fortuin S, Aguilar D, Pando RH, McEvoy CRE et al. 2010. Using a label-free proteomics method to identify differentially abundant proteins in closely related hypo- and hypervirulent clinical Mycobacterium tuberculosis Beijing isolates. Mol. Cell. Proteom. 9:112414–23
    [Google Scholar]
  34. 34. 
    Devasundaram S, Khan I, Kumar N, Das S, Raja A 2015. The influence of reduced oxygen availability on gene expression in laboratory (H37Rv) and clinical strains (S7 and S10) of Mycobacterium tuberculosis. J. Biotechnol 210:70–80
    [Google Scholar]
  35. 35. 
    Devasundaram S, Raja A. 2016. Variable transcriptional adaptation between the laboratory (H37Rv) and clinical strains (S7 and S10) of Mycobacterium tuberculosis under hypoxia. Infect. Genet. Evol. 40:21–28
    [Google Scholar]
  36. 36. 
    Domenech P, Kolly GS, Leon-Solis L, Fallow A, Reed MB 2010. Massive gene duplication event among clinical isolates of the Mycobacterium tuberculosis W/Beijing family. J. Bacteriol. 192:184562–70
    [Google Scholar]
  37. 37. 
    Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG 2018. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection. Clin. Microbiol. Rev. 31:4e00021–18
    [Google Scholar]
  38. 38. 
    Ebrahimi-Rad M, Bifani P, Martin C, Kremer K, Samper S et al. 2003. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg. Infect. Dis. 9:7838–45
    [Google Scholar]
  39. 39. 
    Fenner L, Egger M, Bodmer T, Furrer H, Ballif M et al. 2013. HIV infection disrupts the sympatric host-pathogen relationship in human tuberculosis. PLOS Genet 9:3e1003318
    [Google Scholar]
  40. 40. 
    Fishbein S, van Wyk N, Warren RM, Sampson SL 2015. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol. Microbiol. 96:5901–16
    [Google Scholar]
  41. 41. 
    Gagneux S. 2012. Host-pathogen coevolution in human tuberculosis. Philos. Trans. R. Soc. B 367:1590850–59
    [Google Scholar]
  42. 42. 
    Gagneux S, Narayanan S, Nicol M, Niemann S, Kremer K et al. 2006. Variable host–pathogen compatibility in Mycobacterium tuberculosis. . PNAS 103:82869–73
    [Google Scholar]
  43. 43. 
    Gagneux S, Small PM. 2007. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect. Dis. 7:5328–37
    [Google Scholar]
  44. 44. 
    Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T et al. 2006. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 368:1575–80
    [Google Scholar]
  45. 45. 
    Glynn JR. 1998. Resurgence of tuberculosis and the impact of HIV infection. Br. Med. Bull. 54:3579–93
    [Google Scholar]
  46. 46. 
    Godana Birhanu A, Abebe Yimer S, Holm-Hansen C, Norheim G, Aseffa A et al. 2017. N ε-and O-acetylation in Mycobacterium tuberculosis lineage 7 and lineage 4 strains: Proteins involved in bioenergetics, virulence, and antimicrobial resistance are acetylated. J. Proteome Res. 16:114045–59
    [Google Scholar]
  47. 47. 
    Gómez-Díaz E, Jordà M, Peinado MA, Riviero A 2012. Epigenetics of host-pathogen interactions: the road ahead and the road behind. PLOS Pathog 8:11e1003007
    [Google Scholar]
  48. 48. 
    Gomez-Gonzalez PJ, Andreu N, Phelan JE, Florez de Sessions P, Glynn JR et al. 2019. An integrated whole genome analysis of Mycobacterium tuberculosis reveals insights into relationship between its genome, transcriptome and methylome. Sci. Rep. 9:5204
    [Google Scholar]
  49. 49. 
    González-Escalante L, Peñuelas-Urquides K, Said-Fernández S, Silva-Ramírez B, de León MB 2015. Differential expression of putative drug resistance genes in Mycobacterium tuberculosis clinical isolates. FEMS Microbiol. Lett. 362:23fnv194
    [Google Scholar]
  50. 50. 
    Gonzalo-Asensio J, Malaga W, Pawlik A, Astarie-Dequeker C, Passemar C et al. 2014. Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. PNAS 111:3111491–96
    [Google Scholar]
  51. 51. 
    Gonzalo-Asensio J, Pérez I, Aguiló N, Uranga S, Picó A et al. 2018. New insights into the transposition mechanisms of IS6110 and its dynamic distribution between Mycobacterium tuberculosis complex lineages. PLOS Genet 14:4e1007282
    [Google Scholar]
  52. 52. 
    Gutacker MM, Mathema B, Soini H, Shashkina E, Kreiswirth BN et al. 2006. Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J. Infect. Dis. 193:121–28
    [Google Scholar]
  53. 53. 
    Hanekom M, van Pittius NCG, McEvoy C, Victor TC, Van Helden PD, Warren RM 2011. Mycobacterium tuberculosis Beijing genotype: a template for success. Tuberculosis 91:6510–23
    [Google Scholar]
  54. 54. 
    Hanekom M, van der Spuy GD, Streicher E, Ndabambi SL, McEvoy CRE et al. 2007. A recently evolved sublineage of the Mycobacterium tuberculosis Beijing strain family is associated with an increased ability to spread and cause disease. J. Clin. Microbiol. 45:51483–90
    [Google Scholar]
  55. 55. 
    Harapan H, Fitra F, Ichsan I, Mulyadi M, Miotto P et al. 2013. The roles of microRNAs on tuberculosis infection: meaning or myth. ? Tuberculosis 93:6596–605
    [Google Scholar]
  56. 56. 
    Harboe M, Oettinger T, Wiker HG, Rosenkrands I, Andersen P 1996. Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG. Infect. Immun. 64:16–22
    [Google Scholar]
  57. 57. 
    Heemskerk D, Caws M, Marais B, Farrar J 2015. Epidemiology. Tuberculosis in Adults and Children1–56 London: Springer
    [Google Scholar]
  58. 58. 
    Homolka S, Niemann S, Russell DG, Rohde KH 2010. Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival. PLOS Pathog 6:7e1000988
    [Google Scholar]
  59. 59. 
    Huet G, Constant P, Malaga W, Lanéele MA, Kremer K et al. 2009. A lipid profile typifies the Beijing strains of Mycobacterium tuberculosis. Identification of a mutation responsible for a modification of the structures of phthiocerol dimycocerosates and phenolic glycolipids. J. Biol. Chem. 284:4027101–13
    [Google Scholar]
  60. 60. 
    Iantomasi R, Sali M, Cascioferro A, Palucci I, Zumbo A et al. 2012. PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis. Cell. Microbiol 14:3356–67
    [Google Scholar]
  61. 61. 
    Iwamoto T, Grandjean L, Arikawa K, Nakanishi N, Caviedes L et al. 2012. Genetic diversity and transmission characteristics of Beijing family strains of Mycobacterium tuberculosis in Peru. PLOS ONE 7:11e49651
    [Google Scholar]
  62. 62. 
    Jia X, Yang L, Dong M, Chen S, Lv L et al. 2017. The bioinformatics analysis of comparative genomics of Mycobacterium tuberculosis complex (MTBC) provides insight into dissimilarities between intraspecific groups differing in host association, virulence, and epitope diversity. Front. Cell. Infect. Microbiol. 7:88
    [Google Scholar]
  63. 63. 
    Kathirvel M, Mahadevan S. 2016. The role of epigenetics in tuberculosis infection. Epigenomics 8:4547–49
    [Google Scholar]
  64. 64. 
    Kavvas ES, Catoiu E, Mih N, Yurkovich JT, Seif Y et al. 2018. Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nat. Commun. 9:4306
    [Google Scholar]
  65. 65. 
    Khosla S, Sharma G, Yaseen I 2016. Learning epigenetic regulation from mycobacteria. Microb. Cell 3:292–94
    [Google Scholar]
  66. 66. 
    Konstantynovska O, Rekrotchuk M, Hrek I, Rohozhyn A, Rudova N et al. 2019. Severe clinical outcomes of tuberculosis in Kharkiv Region, Ukraine, are associated with Beijing strains of Mycobacterium tuberculosis. . Pathogens 8:75
    [Google Scholar]
  67. 67. 
    Koo M-S, Subbian S, Kaplan G 2012. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages. Cell Commun. Signal. 10:12
    [Google Scholar]
  68. 68. 
    Koster K, Largen A, Foster JT, Drees KP, Qian L et al. 2018. Whole genome SNP analysis suggests unique virulence factor differences of the Beijing and Manila families of Mycobacterium tuberculosis found in Hawaii. PLOS ONE 13:7e0201146
    [Google Scholar]
  69. 69. 
    Krishnan N, Malaga W, Constant P, Caws M, Thi Hoang Chau T et al. 2011. Mycobacterium tuberculosis lineage influences innate immune response and virulence and is associated with distinct cell envelope lipid profiles. PLOS ONE 6:9e23870
    [Google Scholar]
  70. 70. 
    Lanzas F, Karakousis PC, Sacchettini JC, Ioerger TR 2013. Multidrug-resistant tuberculosis in Panama is driven by clonal expansion of a multidrug-resistant Mycobacterium tuberculosis strain related to the KZN extensively drug-resistant M. tuberculosis strain from South Africa. J. Clin. Microbiol. 51:103277–85
    [Google Scholar]
  71. 71. 
    Lari N, Rindi L, Bonanni D, Tortoli E, Garzelli C et al. 2018. Mutations in mutT genes of Mycobacterium tuberculosis isolates of Beijing genotype. J. Med. Microbiol. 55:5599–603
    [Google Scholar]
  72. 72. 
    Lewis KN, Liao R, Guinn KM, Hickey MJ, Smith S et al. 2003. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guérin attenuation. J. Infect. Dis. 187:1117–23
    [Google Scholar]
  73. 73. 
    Liang S, Song Z, Wu Y, Gao Y 2018. MicroRNA-27b modulates inflammatory response and apoptosis during Mycobacterium tuberculosis infection. J. Immunol. 200:103506–18
    [Google Scholar]
  74. 74. 
    Liu CF, Tonini L, Malaga W, Beau M, Stella A et al. 2013. Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis. . PNAS 110:166560–65
    [Google Scholar]
  75. 75. 
    Liu F, Chen J, Wang P, Li H, Zhou Y et al. 2018. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat. Commun. 9:4295
    [Google Scholar]
  76. 76. 
    Liu Q, Luo T, Dong X, Sun G, Liu Z et al. 2016. Genetic features of Mycobacterium tuberculosis modern Beijing sublineage. Emerg. Microbes Infect. 5:e14
    [Google Scholar]
  77. 77. 
    Liu Q, Wang D, Martinez L, Lu P, Zhu L, Lu W 2019. Mycobacterium tuberculosis Beijing genotype strains and unfavorable treatment outcomes: a systematic review and meta-analysis. Clin. Microbiol. Infect. 26:2180–88
    [Google Scholar]
  78. 78. 
    López B, Aguilar D, Hernández-Pando R, Orozco H, Burger M et al. 2003. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin. Exp. Immunol. 133:30–37
    [Google Scholar]
  79. 79. 
    Ma S, Minch KJ, Rustad TR, Hobbs S, Zhou SL et al. 2015. Integrated modeling of gene regulatory and metabolic networks in Mycobacterium tuberculosis. PLOS Comput. Biol 11:11e1004543
    [Google Scholar]
  80. 80. 
    Mai TQ, Martinez E, Menon R, Van Anh NT, Hien NT et al. 2018. Mycobacterium tuberculosis drug resistance and transmission among human immunodeficiency virus-infected patients in Ho Chi Minh City, Vietnam. Am. J. Trop. Med. Hyg. 99:61397–406
    [Google Scholar]
  81. 81. 
    McEvoy CRE, Cloete R, Müller B, Schürch AC, van Helden PD et al. 2012. Comparative analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an apparent absence of selective constraints. PLOS ONE 7:4e30593
    [Google Scholar]
  82. 82. 
    Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S et al. 2015. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat. Genet. 47:3242–49
    [Google Scholar]
  83. 83. 
    Minato Y, Gohl DM, Thiede JM, Maruyama F, Baughn AD, Harcombe WR 2019. Genomewide assessment of Mycobacterium tuberculosis conditionally essential metabolic pathways. Mol. Biol. Physiol. 4:e00070–19
    [Google Scholar]
  84. 84. 
    Naidoo P, Theron G, Rangaka MX, Chihota VN, Vaughan L et al. 2017. The South African tuberculosis care cascade: estimated losses and methodological challenges. J. Infect. Dis. 216:AprilS702–13
    [Google Scholar]
  85. 85. 
    Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F et al. 2018. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N. Engl. J. Med. 379:2138–49
    [Google Scholar]
  86. 86. 
    Ngabonziza JCS, Loiseau C, Marceau M, Jouet A, Menardo F et al. 2020. A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nat. Commun. 11:2917
    [Google Scholar]
  87. 87. 
    O'Neill MB, Mortimer TD, Pepperell CS 2015. Diversity of Mycobacterium tuberculosis across evolutionary scales. PLOS Pathog 11:e1005257
    [Google Scholar]
  88. 88. 
    Orgeur M, Brosch R. 2018. Evolution of virulence in the Mycobacterium tuberculosis complex. Curr. Opin. Microbiol. 41:68–75
    [Google Scholar]
  89. 89. 
    Øyås O, Borrell S, Trauner A, Zimmermann M, Feldmann J 2020. Model-based integration of genomics and metabolomics reveals SNP functionality in Mycobacterium tuberculosis. . PNAS 117:158494–502
    [Google Scholar]
  90. 90. 
    Perrone R, Lavezzo E, Riello E, Manganelli R, Palù G et al. 2017. Mapping and characterization of G-quadruplexes in Mycobacterium tuberculosis gene promoter regions. Sci. Rep. 7:5743
    [Google Scholar]
  91. 91. 
    Peterson EJR, Ma S, Sherman DR, Baliga NS 2016. Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis. Nat. Microbiol 1:16078
    [Google Scholar]
  92. 92. 
    Pheiffer C, Betts JC, Flynn HR, Lukey PT, van Helden P 2005. Protein expression by a Beijing strain differs from that of another clinical isolate and Mycobacterium tuberculosis H37Rv. Microbiology 151:41139–50
    [Google Scholar]
  93. 93. 
    Phelan J, de Sessions PF, Tientcheu L, Perdigao J, Machado D et al. 2018. Methylation in Mycobacterium tuberculosis is lineage specific with associated mutations present globally. Sci. Rep. 8:160
    [Google Scholar]
  94. 94. 
    Portevin D, Sukumar S, Coscolla M, Shui G, Li B 2014. Lipidomics and genomics of Mycobacterium tuberculosis reveal lineage-specific trends in mycolic acid biosynthesis. MicrobiologyOpen 3:6823–35
    [Google Scholar]
  95. 95. 
    Rajwani R, Yam WC, Zhang Y, Kang Y, Wong BKC et al. 2018. Comparative whole-genomic analysis of an ancient L2 lineage Mycobacterium tuberculosis reveals a novel phylogenetic clade and common genetic determinants of hypervirulent strains. Front. Cell. Infect. Microbiol. 7:539
    [Google Scholar]
  96. 96. 
    Raman K, Rajagopalan P, Chandra N 2005. Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLOS Comput. Biol. 1:5e46
    [Google Scholar]
  97. 97. 
    Ranjbar S, Boshoff HI, Mulder A, Siddiqi N, Rubin EJ, Goldfeld AE 2009. HIV-1 replication is differentially regulated by distinct clinical strains of Mycobacterium tuberculosis. . PLOS ONE 4:7e6116
    [Google Scholar]
  98. 98. 
    Reed MB, Domenech P, Manca C, Su H, Barczak AK et al. 2004. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:700484–87
    [Google Scholar]
  99. 99. 
    Reed MB, Gagneux S, DeRiemer K, Small PM, Barry CE 2007. The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J. Bacteriol. 189:72583–89
    [Google Scholar]
  100. 100. 
    Reva O, Korotetskiy I, Ilin A 2015. Role of the horizontal gene exchange in evolution of pathogenic Mycobacteria. BMC Evol. Biol. 15:S2
    [Google Scholar]
  101. 101. 
    Richard-Greenblatt M, Av-Gay Y. 2017. Epigenetic phosphorylation control of Mycobacterium tuberculosis infection and persistence. Microbiol. Spectr. 5:2TBTB2-0005–2015
    [Google Scholar]
  102. 102. 
    Rutaihwa LK, Menardo F, Stucki D, Gygli SM, Ley SD et al. 2019. Multiple introductions of Mycobacterium tuberculosis lineage 2-Beijing into Africa over centuries. Front. Ecol. Evol. 7:112
    [Google Scholar]
  103. 103. 
    Ryoo SW, Park YK, Park S-N, Shim YS, Liew H et al. 2007. Comparative proteomic analysis of virulent Korean Mycobacterium tuberculosis K-strain with other mycobacteria strain following infection of U-937 macrophage. J. Microbiol. 45:3268–71
    [Google Scholar]
  104. 104. 
    Saini NK, Baena A, Ng TW, Venkataswamy MM, Kennedy SC et al. 2016. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE-PGRS47. Nat. Microbiol. 1:16133
    [Google Scholar]
  105. 105. 
    Sampson SL. 2011. Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin. Dev. Immunol. 2011:497203
    [Google Scholar]
  106. 106. 
    Seif Y, Kavvas E, Lachance JC, Yurkovich JT, Nuccio SP et al. 2018. Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nat. Commun. 9:3771
    [Google Scholar]
  107. 107. 
    Sharma G, Upadhyay S, Srilalitha M, Nandicoori VK, Khosla S 2015. The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding. Nucleic Acids Res 43:83922–37
    [Google Scholar]
  108. 108. 
    Shell SS, Prestwich EG, Baek S-H, Shah RR, Sassetti CM et al. 2013. DNA methylation impacts gene expression and ensures hypoxic survival of Mycobacterium tuberculosis. . PLOS Pathog 9:7e1003419
    [Google Scholar]
  109. 109. 
    Shitikov E, Kolchenko S, Mokrousov I, Bespyatykh J, Ischenko D et al. 2017. Evolutionary pathway analysis and unified classification of East Asian lineage of Mycobacterium tuberculosis. Sci. Rep 7:9227
    [Google Scholar]
  110. 110. 
    Sigal GB, Segal MR, Mathew A, Jarlsberg L, Wang M et al. 2017. Biomarkers of tuberculosis severity and treatment effect: a directed screen of 70 host markers in a randomized clinical trial. EBioMedicine 25:112–21
    [Google Scholar]
  111. 111. 
    Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN et al. 1997. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. PNAS 94:189869–74
    [Google Scholar]
  112. 112. 
    Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q et al. 2016. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat. Genet. 48:121535–43
    [Google Scholar]
  113. 113. 
    Su H, Peng B, Zhang Z, Liu Z, Zhang Z 2019. The Mycobacterium tuberculosis glycoprotein Rv1016c protein inhibits dendritic cell maturation, and impairs Th1 /Th17 responses during mycobacteria infection. Mol. Immunol. 109:58–70
    [Google Scholar]
  114. 114. 
    Supply P, Brosch R. 2017. The biology and epidemiology of Mycobacterium canettii. Adv. Exp. Med. Biol 1019:27–41
    [Google Scholar]
  115. 115. 
    Supply P, Marceau M, Mangenot S, Roche D, Rouanet C et al. 2013. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat. Genet 45:172–79
    [Google Scholar]
  116. 116. 
    Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E et al. 2019. Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis. N. Engl. J. Med. 381:252429–39
    [Google Scholar]
  117. 117. 
    Thwaites G, Caws M, Chau TTH, D'Sa A, Lan NTN et al. 2008. Relationship between Mycobacterium tuberculosis genotype and the clinical phenotype of pulmonary and meningeal tuberculosis. J. Clin. Microbiol. 46:41363–68
    [Google Scholar]
  118. 118. 
    Thye T, Niemann S, Walter K, Homolka S, Intemann CD et al. 2011. Variant G57E of Mannose Binding Lectin associated with protection against tuberculosis caused by Mycobacterium africanum but not by M. tuberculosis. . PLOS ONE 6:6e20908
    [Google Scholar]
  119. 119. 
    Toungoussova OS, Sandven P, Mariandyshev AO, Nizovtseva NI, Bjune G, Caugant DA 2002. Spread of drug-resistant Mycobacterium tuberculosis strains of the Beijing genotype in the Archangel Oblast, Russia. J. Clin. Microbiol. 40:61930–37
    [Google Scholar]
  120. 120. 
    Tracevska T, Jansone I, Baumanis V, Marga O, Lillebaek T 2003. Prevalence of Beijing genotype in Latvian multidrug-resistant Mycobacterium tuberculosis isolates. Int. J. Tuberc. Lung Dis. 7:1097–103
    [Google Scholar]
  121. 121. 
    Trinh QM, Nguyen HL, Nguyen VN, Nguyen TVA, Sintchenko V, Marais BJ 2015. Tuberculosis and HIV co-infection—focus on the Asia-Pacific region. Int. J. Infect. Dis. 32:170–78
    [Google Scholar]
  122. 122. 
    Tsenova L, Ellison E, Harbacheuski R, Moreira AL, Kurepina N et al. 2005. Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J. Infect. Dis. 192:198–106
    [Google Scholar]
  123. 123. 
    Van den Bossche A, Varet H, Sury A, Sismeiro O, Legendre R et al. 2019. Transcriptional profiling of a laboratory and clinical Mycobacterium tuberculosis strain suggests respiratory poisoning upon exposure to delamanid. Tuberculosis 117:18–23
    [Google Scholar]
  124. 124. 
    Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M et al. 2018. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N. Engl. J. Med. 379:171621–34
    [Google Scholar]
  125. 125. 
    van Soolingen D, Hermans PW, de Haas PE, Soll DR, van Embden JD 1991. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J. Clin. Microbiol. 29:112578–86
    [Google Scholar]
  126. 126. 
    van Soolingen D, Qian L, de Haas PE, Douglas JT, Traore H et al. 2000. Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. J. Clin. Microbiol. 33:123234–38
    [Google Scholar]
  127. 127. 
    van Tong H, Velavan TP, Thye T, Meyer CG 2017. Human genetic factors in tuberculosis: an update. Trop. Med. Int. Heal. 22:91063–71
    [Google Scholar]
  128. 128. 
    Vander Beken S, Al Dulayymi JR, Naessens T, Koza G, Maza-Iglesias M et al. 2011. Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern. Eur. J. Immunol. 41:2450–60
    [Google Scholar]
  129. 129. 
    Veyrier FJ, Dufort A, Behr MA 2011. The rise and fall of the Mycobacterium tuberculosis genome. Trends Microbiol 19:156–61
    [Google Scholar]
  130. 130. 
    Viegas SO, Machado A, Groenheit R, Ghebremichael S, Pennhag A et al. 2013. Mycobacterium tuberculosis Beijing genotype is associated with HIV infection in Mozambique. PLOS ONE 8:8e71999
    [Google Scholar]
  131. 131. 
    Wampande EM, Mupere E, Jaganath D, Nsereko M, Mayanja HK et al. 2015. Distribution and transmission of Mycobacterium tuberculosis complex lineages among children in peri-urban Kampala, Uganda. BMC Pediatr 15:140
    [Google Scholar]
  132. 132. 
    Wang J, Jia Z, Wei B, Zhou Y, Niu C et al. 2017. MicroRNA-27a restrains the immune response to Mycobacterium tuberculosis infection by targeting IRAK4, a promoter of the NF-κB pathway. Int. J. Clin. Exp. Pathol. 10:99894–901
    [Google Scholar]
  133. 133. 
    Weiner B, Gomez J, Victor TC, Warren RM, Sloutsky A et al. 2012. Independent large scale duplications in multiple M. tuberculosis lineages overlapping the same genomic region. PLOS ONE 7:2e26038
    [Google Scholar]
  134. 134. 
    WHO (World Health Organ.) 2012. Global Tuberculosis Report 2012 Geneva: WHO
  135. 135. 
    Wiens KE, Woyczynski LP, Ledesma JR, Ross JM, Zenteno-Cuevas R et al. 2018. Global variation in bacterial strains that cause tuberculosis disease: a systematic review and meta-analysis. BMC Med 16:196
    [Google Scholar]
  136. 136. 
    Yadav V, Dwivedi VP, Bhattacharya D, Mittal A, Das G 2015. Understanding the host epigenetics in Mycobacterium tuberculosis infection. J. Genet. Genome Res. 2:016
    [Google Scholar]
  137. 137. 
    Yang H, Sha W, Liu Z, Tang T, Liu H et al. 2018. Lysine acetylation of DosR regulates the hypoxia response of Mycobacterium tuberculosis. Emerg. Microbes Infect 7:134
    [Google Scholar]
  138. 138. 
    Yang Y, Walker TM, Walker AS, Wilson DJ, Peto TEA et al. 2019. DeepAMR for predicting co-occurrent resistance of Mycobacterium tuberculosis. . Bioinformatics 35:183240–49
    [Google Scholar]
  139. 139. 
    Yaseen I, Kaur P, Nandicoori VK, Khosla S 2015. Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat. Commun. 6:8922
    [Google Scholar]
  140. 140. 
    Yesilkaya H, Dale JW, Strachan NJC, Forbes KJ 2005. Natural transposon mutagenesis of clinical isolates of Mycobacterium tuberculosis: How many genes does a pathogen need. ? J. Bacteriol. 187:196726–32
    [Google Scholar]
  141. 141. 
    Yong YK, Tan HY, Saeidi A, Wong WF, Vignesh R et al. 2019. Immune biomarkers for diagnosis and treatment monitoring of tuberculosis: current developments and future prospects. Front. Microbiol. 10:2789
    [Google Scholar]
/content/journals/10.1146/annurev-genet-022820-085940
Loading
/content/journals/10.1146/annurev-genet-022820-085940
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error