1932

Abstract

Neurons are characterized by a complex morphology that enables the generation of subcellular compartments with unique biochemical and biophysical properties, such as dendrites, axons, and synapses. To sustain these different compartments and carry a wide array of elaborate operations, neurons express a diverse repertoire of gene products. Extensive regulation at both the messenger RNA (mRNA) and protein levels allows for the differentiation of subcellular compartments as well as numerous forms of plasticity in response to variable stimuli. Among the multiple mechanisms that control cellular functions, mRNA translation is manipulated by neurons to regulate where and when a protein emerges. Interestingly, transcriptomic and translatomic profiles of both dendrites and axons have revealed that the mRNA population only partially predicts the local protein population and that this relation significantly varies between different gene groups. Here, we describe the space that local translation occupies within the large molecular and regulatory complexity of neurons, in contrast to other modes of regulation. We then discuss the specialized organization of mRNAs within different neuronal compartments, as revealed by profiles of the local transcriptome. Finally, we discuss the features and functional implications of both locally correlated—and anticorrelated—mRNA-protein relations both under baseline conditions and during synaptic plasticity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-030321-054851
2021-11-23
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-030321-054851.html?itemId=/content/journals/10.1146/annurev-genet-030321-054851&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alon S, Goodwin DR, Sinha A, Wassie AT, Chen F et al. 2021. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science 371:6528eaax2656
    [Google Scholar]
  2. 2. 
    Alvarez-Castelao B, tom Dieck S, Fusco CM, Donlin-Asp P, Perez JD, Schuman EM 2020. The switch-like expression of heme-regulated kinase 1 mediates neuronal proteostasis following proteasome inhibition. eLife 9:e52714
    [Google Scholar]
  3. 3. 
    An H, Harper JW. 2019. Ribosome abundance control via the ubiquitin-proteasome system and autophagy. J. Mol. Biol. 432:1170–84
    [Google Scholar]
  4. 4. 
    Arrigoni E, Greene RW. 2004. Schaffer collateral and perforant path inputs activate different subtypes of NMDA receptors on the same CA1 pyramidal cell. Br. J. Pharmacol. 142:2317–22
    [Google Scholar]
  5. 5. 
    Asano S, Fukuda Y, Beck F, Aufderheide A, Förster F et al. 2015. A molecular census of 26S proteasomes in intact neurons. Science 347:6220439–42
    [Google Scholar]
  6. 6. 
    Bae B, Miura P. 2020. Emerging roles for 3′ UTRs in neurons. Int. J. Mol. Sci. 21:103413
    [Google Scholar]
  7. 7. 
    Baleriola J, Walker CA, Jean YY, Crary JF, Troy CM et al. 2014. Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell 158:51159–72
    [Google Scholar]
  8. 8. 
    Batista AFR, Martínez JC, Hengst U. 2017. Intra-axonal synthesis of SNAP25 is required for the formation of presynaptic terminals. Cell Rep. 20:133085–98
    [Google Scholar]
  9. 9. 
    Bayer KU, Schulman H. 2019. CaM kinase: still inspiring at 40. Neuron 103:3380–94
    [Google Scholar]
  10. 10. 
    Ben-Yaakov K, Dagan SY, Segal-Ruder Y, Shalem O, Vuppalanchi D et al. 2012. Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J 31:61350–63
    [Google Scholar]
  11. 11. 
    Biederer T, Kaeser PS, Blanpied TA. 2017. Transcellular nanoalignment of synaptic function. Neuron 96:3680–96
    [Google Scholar]
  12. 12. 
    Biever A, Glock C, Tushev G, Ciirdaeva E, Dalmay T et al. 2020. Monosomes actively translate synaptic mRNAs in neuronal processes. Science 367:6477eaay4991
    [Google Scholar]
  13. 13. 
    Bingol B, Schuman EM. 2006. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441:70971144–48
    [Google Scholar]
  14. 14. 
    Bingol B, Wang C-F, Arnott D, Cheng D, Peng J, Sheng M. 2010. Autophosphorylated CaMKIIα acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140:4567–78
    [Google Scholar]
  15. 15. 
    Bohnsack KE, Bohnsack MT. 2019. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J 38:13e100278
    [Google Scholar]
  16. 16. 
    Brigidi GS, Hayes MGB, Delos Santos NP, Hartzell AL, Texari L et al. 2019. Genomic decoding of neuronal depolarization by stimulus-specific NPAS4 heterodimers. Cell 179:2373–391.E27
    [Google Scholar]
  17. 17. 
    Briz V, Zhu G, Wang Y, Liu Y, Avetisyan M et al. 2015. Activity-dependent rapid local RhoA synthesis is required for hippocampal synaptic plasticity. J. Neurosci. 35:52269–82
    [Google Scholar]
  18. 18. 
    Brüning F, Noya SB, Bange T, Koutsouli S, Rudolph JD et al. 2019. Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 366:6462eaav3617
    [Google Scholar]
  19. 19. 
    Buccitelli C, Selbach M. 2020. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21:10630–44
    [Google Scholar]
  20. 20. 
    Buffington SA, Huang W, Costa-Mattioli M. 2014. Translational control in synaptic plasticity and cognitive dysfunction. Annu. Rev. Neurosci. 37:17–38
    [Google Scholar]
  21. 21. 
    Burgin KE, Waxham MN, Rickling S, Westgate SA, Mobley WC, Kelly PT. 1990. In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J. Neurosci. 10:61788–98
    [Google Scholar]
  22. 22. 
    Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N, Schuman EM. 2012. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74:3453–66
    [Google Scholar]
  23. 23. 
    Campbell DS, Holt CE. 2001. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32:61013–26
    [Google Scholar]
  24. 24. 
    Campbell RR, Wood MA. 2019. How the epigenome integrates information and reshapes the synapse. Nat. Rev. Neurosci. 20:3133–47
    [Google Scholar]
  25. 25. 
    Chen X, Wu X, Wu H, Zhang M. 2020. Phase separation at the synapse. Nat. Neurosci. 23:3301–10
    [Google Scholar]
  26. 26. 
    Chirillo MA, Waters MS, Lindsey LF, Bourne JN, Harris KM. 2019. Local resources of polyribosomes and SER promote synapse enlargement and spine clustering after long-term potentiation in adult rat hippocampus. Sci. Rep. 9:3861
    [Google Scholar]
  27. 27. 
    Chiu CQ, Barberis A, Higley MJ. 2019. Preserving the balance: diverse forms of long-term GABAergic synaptic plasticity. Nat. Rev. Neurosci. 20:5272–81
    [Google Scholar]
  28. 28. 
    Ciolli Mattioli C, Rom A, Franke V, Imami K, Arrey G et al. 2019. Alternative 3′UTRs direct localization of functionally diverse protein isoforms in neuronal compartments. Nucleic Acids Res 47:52560–73
    [Google Scholar]
  29. 29. 
    Cioni J-M, Lin JQ, Holtermann AV, Koppers M, Jakobs MAH et al. 2019. Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176:1–256–72.e15
    [Google Scholar]
  30. 30. 
    Citri A, Malenka RC. 2008. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:118–41
    [Google Scholar]
  31. 31. 
    Collins GA, Goldberg AL. 2017. The logic of the 26S proteasome. Cell 169:5792–806
    [Google Scholar]
  32. 32. 
    Costa RO, Martins H, Martins LF, Cwetsch AW, Mele M et al. 2019. Synaptogenesis stimulates a proteasome-mediated ribosome reduction in axons. Cell Rep. 28:4864–76.e6
    [Google Scholar]
  33. 33. 
    Cox LJ, Hengst U, Gurskaya NG, Lukyanov KA, Jaffrey SR. 2008. Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat. Cell Biol. 10:2149–59
    [Google Scholar]
  34. 34. 
    Cserép C, Pósfai B, Schwarcz AD, Dénes Á. 2018. Mitochondrial ultrastructure is coupled to synaptic performance at axonal release sites. eNeuro 5:1ENEURO.0390-17 2018
    [Google Scholar]
  35. 35. 
    Dalla Costa I, Buchanan CN, Zdradzinski MD, Sahoo PK, Smith TP et al. 2021. The functional organization of axonal mRNA transport and translation. Nat. Rev. Neurosci. 22:277–91
    [Google Scholar]
  36. 36. 
    Delgado T, Petralia RS, Freeman DW, Sedlacek M, Wang Y-X et al. 2019. Comparing 3D ultrastructure of presynaptic and postsynaptic mitochondria. Biol. Open 8:8bio044834
    [Google Scholar]
  37. 37. 
    Dermit M, Dodel M, Lee FCY, Azman MS, Schwenzer H et al. 2020. Subcellular mRNA localization regulates ribosome biogenesis in migrating cells. Dev. Cell 55:3298–313.e10
    [Google Scholar]
  38. 38. 
    Desch K, Langer JD, Schuman EM. 2021. Dynamic bi-directional phosphorylation events associated with the reciprocal regulation of synapses during homeostatic up- and down-scaling. bioRxiv 2021.03.26.437166. https://doi.org/10.1101/2021.03.26.437166
  39. 39. 
    Diering GH, Huganir RL. 2018. The AMPA receptor code of synaptic plasticity. Neuron 100:2314–29
    [Google Scholar]
  40. 40. 
    Dieterich DC, Karpova A, Mikhaylova M, Zdobnova I, König I et al. 2008. Caldendrin–Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus. PLOS Biol 6:2e34 Erratum. 2009. PLOS Biol. 7:e1000022
    [Google Scholar]
  41. 41. 
    Dinamarca MC, Guzzetti F, Karpova A, Lim D, Mitro N et al. 2016. Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus. eLife 5:e12430
    [Google Scholar]
  42. 42. 
    Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN. 2009. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 284:3926655–65
    [Google Scholar]
  43. 43. 
    Donato A, Kagias K, Zhang Y, Hilliard MA. 2019. Neuronal sub-compartmentalization: a strategy to optimize neuronal function. Biol. Rev. 94:31023–37
    [Google Scholar]
  44. 44. 
    Dörrbaum AR, Alvarez-Castelao B, Nassim-Assir B, Langer JD, Schuman EM 2020. Proteome dynamics during homeostatic scaling in cultured neurons. eLife 9:e52939
    [Google Scholar]
  45. 45. 
    Dörrbaum AR, Kochen L, Langer JD, Schuman EM 2018. Local and global influences on protein turnover in neurons and glia. eLife 7:e34202
    [Google Scholar]
  46. 46. 
    Elamri I, Heumüller M, Herzig L-M, Stirnal E, Wachtveitl J et al. 2018. A new photocaged puromycin for an efficient labeling of newly translated proteins in living neurons. ChemBioChem 19:232458–64
    [Google Scholar]
  47. 47. 
    Emmott E, Jovanovic M, Slavov N. 2018. Ribosome stoichiometry: from form to function. Trends Biochem. Sci. 44:295–109
    [Google Scholar]
  48. 48. 
    Engholm-Keller K, Waardenberg AJ, Müller JA, Wark JR, Fernando RN et al. 2019. The temporal profile of activity-dependent presynaptic phospho-signalling reveals long-lasting patterns of poststimulus regulation. PLOS Biol 17:3e3000170
    [Google Scholar]
  49. 49. 
    Farris S, Ward JM, Carstens KE, Samadi M, Wang Y, Dudek SM. 2019. Hippocampal subregions express distinct dendritic transcriptomes that reveal differences in mitochondrial function in CA2. Cell Rep. 29:2522–39.e6
    [Google Scholar]
  50. 50. 
    Ferretti MB, Ghalei H, Ward EA, Potts EL, Karbstein K. 2017. Rps26 directs mRNA-specific translation by recognition of Kozak sequence elements. Nat. Struct. Mol. Biol. 24:9700–7
    [Google Scholar]
  51. 51. 
    Foley AG, Hartz BP, Gallagher HC, Rønn LCB, Berezin V et al. 2000. A synthetic peptide ligand of neural cell adhesion molecule (NCAM) IgI domain prevents NCAM internalization and disrupts passive avoidance learning. J. Neurochem. 74:62607–13
    [Google Scholar]
  52. 52. 
    Fonkeu Y, Kraynyukova N, Hafner A-S, Kochen L, Sartori F et al. 2019. How mRNA localization and protein synthesis sites influence dendritic protein distribution and dynamics. Neuron 103:61109–22.E7
    [Google Scholar]
  53. 53. 
    Fonseca R, Vabulas RM, Hartl FU, Bonhoeffer T, Nägerl UV. 2006. A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron 52:2239–45
    [Google Scholar]
  54. 54. 
    Formicola N, Vijayakumar J, Besse F. 2019. Neuronal ribonucleoprotein granules: dynamic sensors of localized signals. Traffic 20:9639–49
    [Google Scholar]
  55. 55. 
    Fornasiero EF, Mandad S, Wildhagen H, Alevra M, Rammner B et al. 2018. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat. Comm. 9:14230
    [Google Scholar]
  56. 56. 
    Frey U, Krug M, Reymann KG, Matthies H. 1988. Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res 452:1–257–65
    [Google Scholar]
  57. 57. 
    Fusco CM, Desch K, Dörrbaum AR, Wang M, Staab A et al. 2021. Neuronal ribosomes dynamically exchange ribosomal proteins in a context-dependent manner. bioRxiv 2021.03.25.437026. https://doi.org/10.1101/2021.03.25.437026
  58. 58. 
    Gale JR, Aschrafi A, Gioio AE, Kaplan BB. 2018. Nuclear-encoded mitochondrial mRNAs: a powerful force in axonal growth and development. Neuroscientist 24:2142–55
    [Google Scholar]
  59. 59. 
    Giorgi C, Yeo GW, Stone ME, Katz DB, Burge C et al. 2007. The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell 130:1179–91
    [Google Scholar]
  60. 60. 
    Glancy B, Kim Y, Katti P, Willingham TB 2020. The functional impact of mitochondrial structure across subcellular scales. Front. Physiol. 11:541040
    [Google Scholar]
  61. 61. 
    Glock C, Biever A, Tushev G, Bartnik I, Nassim-Assir B et al. 2020. The mRNA translation landscape in the synaptic neuropil. bioRxiv 2020.06.09.141960. https://doi.org/10.1101/2020.06.09.141960
  62. 62. 
    Glock C, Heumüller M, Schuman EM. 2017. MRNA transport & local translation in neurons. Curr. Opin. Neurobiol. 45:169–77
    [Google Scholar]
  63. 63. 
    Goard M, Aakalu G, Fedoryak OD, Quinonez C, St. Julien J et al. 2005. Light-mediated inhibition of protein synthesis. Chem. Biol. 12:6685–93
    [Google Scholar]
  64. 64. 
    Goncalves J, Bartol TM, Camus C, Levet F, Menegolla AP et al. 2020. Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses. PNAS 117:2514503–11
    [Google Scholar]
  65. 65. 
    Granneman S, Tollervey D. 2007. Building ribosomes: even more expensive than expected?. Curr. Biol. 17:11R415–17
    [Google Scholar]
  66. 66. 
    Guedes-Dias P, Holzbaur ELF. 2019. Axonal transport: driving synaptic function. Science 366:6462eaaw9997
    [Google Scholar]
  67. 67. 
    Gumy LF, Yeo GSH, Tung Y-CL, Zivraj KH, Willis D et al. 2011. Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 17:185–98
    [Google Scholar]
  68. 68. 
    Guo X, Huang X, Chen MJ. 2017. Reversible phosphorylation of the 26S proteasome. Protein Cell 8:4255–72
    [Google Scholar]
  69. 69. 
    Hafner A-S, Donlin-Asp PG, Leitch B, Herzog E, Schuman EM. 2019. Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science 364:6441eaau3644
    [Google Scholar]
  70. 70. 
    Hamilton AM, Oh WC, Vega-Ramirez H, Stein IS, Hell JW et al. 2012. Activity-dependent growth of new dendritic spines is regulated by the proteasome. Neuron 74:61023–30
    [Google Scholar]
  71. 71. 
    Hantak MP, Einstein J, Kearns RB, Shepherd JD. 2021. Intercellular communication in the nervous system goes viral. Trends Neurosci 44:4248–59
    [Google Scholar]
  72. 72. 
    Hanus C, Geptin H, Tushev G, Garg S, Alvarez-Castelao B et al. 2016. Unconventional secretory processing diversifies neuronal ion channel properties. eLife 5:e20609
    [Google Scholar]
  73. 73. 
    Harris JJ, Jolivet R, Attwell D. 2012. Synaptic energy use and supply. Neuron 75:5762–77
    [Google Scholar]
  74. 74. 
    Hegde AN. 2017. Proteolysis, synaptic plasticity and memory. Neurobiol. Learn. Mem. 138:98–110
    [Google Scholar]
  75. 75. 
    Hegde AN, Goldberg AL, Schwartz JH 1993. Regulatory subunits of cAMP-dependent protein kinases are degraded after conjugation to ubiquitin: a molecular mechanism underlying long-term synaptic plasticity. PNAS 90:167436–40
    [Google Scholar]
  76. 76. 
    Herbst WA, Martin KC. 2017. Regulated transport of signaling proteins from synapse to nucleus. Curr. Opin. Neurobiol. 45:78–84
    [Google Scholar]
  77. 77. 
    Heumüller M, Glock C, Rangaraju V, Biever A, Schuman EM. 2019. A genetically encodable cell-type-specific protein synthesis inhibitor. Nat. Methods 16:8699–702
    [Google Scholar]
  78. 78. 
    Higgins R, Gendron JM, Rising L, Mak R, Webb K et al. 2015. The unfolded protein response triggers site-specific regulatory ubiquitylation of 40S ribosomal proteins. Mol. Cell 59:135–49
    [Google Scholar]
  79. 79. 
    Holt CE, Martin KC, Schuman EM. 2019. Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol. 26:7557–66
    [Google Scholar]
  80. 80. 
    Horton AC, Ehlers MD. 2003. Neuronal polarity and trafficking. Neuron 40:2277–95
    [Google Scholar]
  81. 81. 
    Hsu M-T, Guo C-L, Liou AY, Chang T-Y, Ng M-C et al. 2015. Stage-dependent axon transport of proteasomes contributes to axon development. Dev. Cell 35:4418–31
    [Google Scholar]
  82. 82. 
    Huganir RL, Nicoll RA. 2013. AMPARs and synaptic plasticity: the last 25 years. Neuron 80:3704–17
    [Google Scholar]
  83. 83. 
    Ivanova D, Dirks A, Montenegro-Venegas C, Schöne C, Altrock WD et al. 2015. Synaptic activity controls localization and function of CtBP1 via binding to Bassoon and Piccolo. EMBO J 34:81056–77
    [Google Scholar]
  84. 84. 
    Jarome TJ, Ferrara NC, Kwapis JL, Helmstetter FJ. 2016. CaMKII regulates proteasome phosphor-ylation and activity and promotes memory destabilization following retrieval. Neurobiol. Learn. Mem. 128:C103–9
    [Google Scholar]
  85. 85. 
    Jarome TJ, Kwapis JL, Ruenzel WL, Helmstetter FJ. 2013. CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories. Front. Behav. Neurosci. 7:115
    [Google Scholar]
  86. 86. 
    Ji S-J, Jaffrey SR. 2012. Intra-axonal translation of SMAD1/5/8 mediates retrograde regulation of trigeminal ganglia subtype specification. Neuron 74:195–107
    [Google Scholar]
  87. 87. 
    Ju W, Morishita W, Tsui J, Gaietta G, Deerinck TJ et al. 2004. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat. Neurosci. 7:3244–53
    [Google Scholar]
  88. 88. 
    Jung Y, Seo J-Y, Ryu HG, Kim D-Y, Lee K-H, Kim K-T. 2020. BDNF-induced local translation of GluA1 is regulated by HNRNP A2/B1. Sci. Adv. 6:47eabd2163
    [Google Scholar]
  89. 89. 
    Juszkiewicz S, Hegde RS. 2017. Initiation of quality control during poly(A) translation requires site-specific ribosome ubiquitination. Mol. Cell 65:4743–50.E4
    [Google Scholar]
  90. 90. 
    Juszkiewicz S, Hegde RS. 2018. Quality control of orphaned proteins. Mol. Cell 71:3443–57
    [Google Scholar]
  91. 91. 
    Kang H, Schuman EM. 1996. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273:52801402–6
    [Google Scholar]
  92. 92. 
    Kapur M, Monaghan CE, Ackerman SL. 2017. Regulation of mRNA translation in neurons—a matter of life and death. Neuron 96:3616–37
    [Google Scholar]
  93. 93. 
    Kelmer Sacramento E, Kirkpatrick JM, Mazzetto M, Baumgart M, Bartolome A et al. 2020. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol. Syst. Biol. 16:6e9596
    [Google Scholar]
  94. 94. 
    Klein ME, Castillo PE, Jordan BA. 2015. Coordination between translation and degradation regulates inducibility of mGluR-LTD. Cell Rep. 10:91459–66
    [Google Scholar]
  95. 95. 
    Kock M, Nunes MM, Hemann M, Kube S, Jürgen Dohmen R et al. 2015. Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1–Pba2 chaperone. Nat. Comm. 6:6123
    [Google Scholar]
  96. 96. 
    von Kügelgen N, Chekulaeva M. 2020. Conservation of a core neurite transcriptome across neuronal types and species. WIREs RNA 11:e1590
    [Google Scholar]
  97. 97. 
    Kulkarni VV, Maday S. 2018. Compartment-specific dynamics and functions of autophagy in neurons. Dev. Neurobiol. 78:3298–310
    [Google Scholar]
  98. 98. 
    Kuzniewska B, Cysewski D, Wasilewski M, Sakowska P, Milek J et al. 2020. Mitochondrial protein biogenesis in the synapse is supported by local translation. EMBO Rep 21:e48882
    [Google Scholar]
  99. 99. 
    Lee S-H, Choi J-H, Lee N, Lee H-R, Kim J-I et al. 2008. Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319:58671253–56
    [Google Scholar]
  100. 100. 
    Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A et al. 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:7124168–76
    [Google Scholar]
  101. 101. 
    Levy S, Avni D, Hariharan N, Perry RP, Meyuhas O 1991. Oligopyrimidine tract at the 5′end of mammalian ribosomal protein mRNAs is required for their translational control. PNAS 88:83319–23
    [Google Scholar]
  102. 102. 
    Licznerski P, Park H-A, Rolyan H, Chen R, Mnatsakanyan N et al. 2020. ATP synthase c-subunit leak causes aberrant cellular metabolism in Fragile X syndrome. Cell 182:51170–85.e9
    [Google Scholar]
  103. 103. 
    Lin JQ, van Tartwijk FW, Holt CE. 2021. Axonal mRNA translation in neurological disorders. RNA Biol. 18:793661
    [Google Scholar]
  104. 104. 
    Liu K, Jones S, Minis A, Rodriguez J, Molina H, Steller H. 2019. PI31 is an adaptor protein for proteasome transport in axons and required for synaptic development. Dev. Cell 50:4509–24.e10
    [Google Scholar]
  105. 105. 
    Lokireddy S, Kukushkin NV, Goldberg AL 2015. cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. PNAS 112:52E7176–85
    [Google Scholar]
  106. 106. 
    Lopez-Salon M, Alonso M, Vianna MRM, Viola H, Mello e Souza T et al. 2001. The ubiquitin-proteasome cascade is required for mammalian long-term memory formation. Eur. J. Neurosci. 14:111820–26
    [Google Scholar]
  107. 107. 
    Lörincz A, Notomi T, Tamás G, Shigemoto R, Nusser Z. 2002. Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat. Neurosci. 5:111185–93
    [Google Scholar]
  108. 108. 
    Mabb AM, Je HS, Wall MJ, Robinson CG, Larsen RS et al. 2014. Triad3A regulates synaptic strength by ubiquitination of Arc. Neuron 82:61299–316
    [Google Scholar]
  109. 109. 
    Majzoub K, Hafirassou ML, Meignin C, Goto A, Marzi S et al. 2014. RACK1 controls IRES-mediated translation of viruses. Cell 159:51086–95
    [Google Scholar]
  110. 110. 
    Mardakheh FK, Paul A, Kümper S, Sadok A, Paterson H et al. 2015. Global analysis of mRNA, translation, and protein localization: Local translation is a key regulator of cell protrusions. Dev. Cell 35:3344–57
    [Google Scholar]
  111. 111. 
    Martínez JC, Randolph LK, Iascone DM, Pernice HF, Polleux F, Hengst U. 2019. Pum2 shapes the transcriptome in developing axons through retention of target mRNAs in the cell body. Neuron 104:5931–46.e5
    [Google Scholar]
  112. 112. 
    Mazaré N, Oudart M, Moulard J, Cheung G, Tortuyaux R et al. 2020. Local translation in perisynaptic astrocytic processes is specific and changes after fear conditioning. Cell Rep. 32:8108076
    [Google Scholar]
  113. 113. 
    Merkin J, Russell C, Chen P, Burge CB 2012. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338:61141593–99
    [Google Scholar]
  114. 114. 
    Miller CA, Gavin CF, White JA, Parrish RR, Honasoge A et al. 2010. Cortical DNA methylation maintains remote memory. Nat. Neurosci. 13:6664–66
    [Google Scholar]
  115. 115. 
    Miller S, Yasuda M, Coats JK, Jones Y, Martone ME, Mayford M. 2002. Disruption of dendritic translation of CaMKIIα impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36:3507–19
    [Google Scholar]
  116. 116. 
    Misgeld T, Schwarz TL. 2017. Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron 96:3651–66
    [Google Scholar]
  117. 117. 
    Monday HR, Bourdenx M, Jordan BA, Castillo PE 2020. CB1-receptor-mediated inhibitory LTD triggers presynaptic remodeling via protein synthesis and ubiquitination. eLife 9:e54812
    [Google Scholar]
  118. 118. 
    Monday HR, Younts TJ, Castillo PE. 2018. Long-term plasticity of neurotransmitter release: emerging mechanisms and contributions to brain function and disease. Annu. Rev. Neurosci. 41:299–322
    [Google Scholar]
  119. 119. 
    Moor AE, Golan M, Massasa EE, Lemze D, Weizman T et al. 2017. Global mRNA polarization regulates translation efficiency in the intestinal epithelium. Science 357:63571299–303
    [Google Scholar]
  120. 120. 
    Moritz CP, Mühlhaus T, Tenzer S, Schulenborg T, Friauf E. 2019. Poor transcript-protein correlation in the brain: Negatively correlating gene products reveal neuronal polarity as a potential cause. J. Neurochem. 149:5582–604
    [Google Scholar]
  121. 121. 
    Motosugi R, Murata S. 2019. Dynamic regulation of proteasome expression. Front. Mol. Biosci. 6:30
    [Google Scholar]
  122. 122. 
    Murata S, Yashiroda H, Tanaka K. 2009. Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell Biol. 10:2104–15
    [Google Scholar]
  123. 123. 
    Nader K, Schafe GE, Le Doux JE 2000. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:6797722–26
    [Google Scholar]
  124. 124. 
    Nagano S, Jinno J, Abdelhamid RF, Jin Y, Shibata M et al. 2020. TDP-43 transports ribosomal protein mRNA to regulate axonal local translation in neuronal axons. Acta Neuropathol 140:695–713
    [Google Scholar]
  125. 125. 
    Nelson AD, Jenkins PM. 2017. Axonal membranes and their domains: assembly and function of the axon initial segment and node of Ranvier. Front. Cell Neurosci. 11:136
    [Google Scholar]
  126. 126. 
    Nishiyama J, Yasuda R. 2015. Biochemical computation for spine structural plasticity. Neuron 87:163–75
    [Google Scholar]
  127. 127. 
    Noya SB, Colameo D, Brüning F, Spinnler A, Mircsof D et al. 2019. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 366:6462eaav2642
    [Google Scholar]
  128. 128. 
    Okuno H, Akashi K, Ishii Y, Yagishita-Kyo N, Suzuki K et al. 2012. Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 149:4886–98
    [Google Scholar]
  129. 129. 
    Ostroff LE, Santini E, Sears R, Deane Z, Kanadia RN et al. 2019. Axon TRAP reveals learning-associated alterations in cortical axonal mRNAs in the lateral amygdala. eLife 8:e51607
    [Google Scholar]
  130. 130. 
    Parvin S, Takeda R, Sugiura Y, Neyazaki M, Nogi T, Sasaki Y. 2019. Fragile X mental retardation protein regulates accumulation of the active zone protein Munc18-1 in presynapses via local translation in axons during synaptogenesis. Neurosci. Res. 146:36–47
    [Google Scholar]
  131. 131. 
    Patrick GN, Bingol B, Weld HA, Schuman EM. 2003. Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Curr. Biol. 13:232073–81
    [Google Scholar]
  132. 132. 
    Perez JD, tom Dieck S, Alvarez-Castelao B, Tushev G, Chan IC, Schuman EM 2021. Subcellular sequencing of single neurons reveals the dendritic transcriptome of GABAergic interneurons. eLife 10:e63092
    [Google Scholar]
  133. 133. 
    Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M. 2005. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45:5715–26
    [Google Scholar]
  134. 134. 
    Perry RB-T, Doron-Mandel E, Iavnilovitch E, Rishal I, Dagan SY et al. 2012. Subcellular knockout of importin β1 perturbs axonal retrograde signaling. Neuron 75:2294–305
    [Google Scholar]
  135. 135. 
    Popov V, Medvedev NI, Davies HA, Stewart MG. 2005. Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: a three-dimensional ultrastructural study. J. Comp. Neurol. 492:150–65
    [Google Scholar]
  136. 136. 
    Poulopoulos A, Murphy AJ, Ozkan A, Davis P, Hatch J et al. 2019. Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature 565:7739356–60
    [Google Scholar]
  137. 137. 
    Ramachandran KV, Fu JM, Schaffer TB, Na CH, Delannoy M, Margolis SS. 2018. Activity-dependent degradation of the nascentome by the neuronal membrane proteasome. Mol. Cell 71:1169–177.E6
    [Google Scholar]
  138. 138. 
    Ramachandran KV, Margolis SS. 2017. A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function. Nat. Struct. Mol. Biol. 24:4419–30
    [Google Scholar]
  139. 139. 
    Ramsköld D, Wang ET, Burge CB, Sandberg R. 2009. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLOS Comput. Biol. 5:12e1000598
    [Google Scholar]
  140. 140. 
    Rangaraju V, Lauterbach M, Schuman EM. 2019. Spatially stable mitochondrial compartments fuel local translation during plasticity. Cell 176:1–273–84.e15
    [Google Scholar]
  141. 141. 
    Rangaraju V, Lewis TL, Hirabayashi Y, Bergami M, Motori E et al. 2019. Pleiotropic mitochondria: the influence of mitochondria on neuronal development and disease. J. Neurosci. 39:428200–8
    [Google Scholar]
  142. 142. 
    Rishal I, Fainzilber M. 2014. Axon–soma communication in neuronal injury. Nat. Rev. Neurosci. 15:132–42
    [Google Scholar]
  143. 143. 
    Rizalar FS, Roosen DA, Haucke V. 2021. A presynaptic perspective on transport and assembly mechanisms for synapse formation. Neuron 109:127–41
    [Google Scholar]
  144. 144. 
    Rousseau A, Bertolotti A. 2018. Regulation of proteasome assembly and activity in health and disease. Nat. Rev. Mol. Cell Biol. 19:697–712
    [Google Scholar]
  145. 145. 
    Sakers K, Lake AM, Khazanchi R, Ouwenga R, Vasek MJ et al. 2017. Astrocytes locally translate transcripts in their peripheral processes. PNAS 114:19E3830–38
    [Google Scholar]
  146. 146. 
    Scarnati MS, Kataria R, Biswas M, Paradiso KG 2018. Active presynaptic ribosomes in the mammalian brain, and altered transmitter release after protein synthesis inhibition. eLife 7:e36697
    [Google Scholar]
  147. 147. 
    Schmidt-Hieber C, Nolan MF. 2017. Synaptic integrative mechanisms for spatial cognition. Nat. Neurosci. 20:111483–92
    [Google Scholar]
  148. 148. 
    Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME et al. 2006. A brain-specific microRNA regulates dendritic spine development. Nature 439:7074283–89
    [Google Scholar]
  149. 149. 
    Shigeoka T, Jung H, Jung J, Turner-Bridger B, Ohk J et al. 2016. Dynamic axonal translation in developing and mature visual circuits. Cell 166:1181–92
    [Google Scholar]
  150. 150. 
    Shigeoka T, Koppers M, Wong HH-W, Lin JQ, Cagnetta R et al. 2019. On-site ribosome remodeling by locally synthesized ribosomal proteins in axons. Cell Rep. 29:113605–19.e10
    [Google Scholar]
  151. 151. 
    Shrestha P, Ayata P, Herrero-Vidal P, Longo F, Gastone A et al. 2020. Cell-type-specific drug-inducible protein synthesis inhibition demonstrates that memory consolidation requires rapid neuronal translation. Nat. Neurosci. 23:2281–92
    [Google Scholar]
  152. 152. 
    Silva AJ, Stevens CF, Tonegawa S, Wang Y. 1992. Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257:5067201–6
    [Google Scholar]
  153. 153. 
    Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N et al. 2020. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367:6482eaay5947
    [Google Scholar]
  154. 154. 
    Spillane M, Ketschek A, Merianda TT, Twiss JL, Gallo G. 2013. Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep. 5:61564–75
    [Google Scholar]
  155. 155. 
    Steward O, Farris S, Pirbhoy PS, Darnell J, Van Driesche SJ. 2014. Localization and local translation of Arc/Arg3.1 mRNA at synapses: some observations and paradoxes. Front. Mol. Neurosci. 7:101
    [Google Scholar]
  156. 156. 
    Steward O, Wallace CS, Lyford GL, Worley PF. 1998. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21:4741–51
    [Google Scholar]
  157. 157. 
    Sun C, Nold A, Tchumatchenko T, Heilemann M, Schuman EM. 2020. The spatial scale of synaptic protein allocation during homeostatic plasticity. bioRxiv 2020.04.29.068833. https://doi.org/10.1101/2020.04.29.068833
  158. 158. 
    Sutton MA, Ito HT, Cressy P, Kempf C, Woo JC, Schuman EM. 2006. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125:4785–99
    [Google Scholar]
  159. 159. 
    Tai H-C, Schuman EM. 2008. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9:11826–38
    [Google Scholar]
  160. 160. 
    Takabatake M, Goshima Y, Sasaki Y. 2020. Semaphorin-3A promotes degradation of Fragile X mental retardation protein in growth cones via the ubiquitin-proteasome pathway. Front. Neural Circuits 14:5
    [Google Scholar]
  161. 161. 
    Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN et al. 2018. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563:772972–78
    [Google Scholar]
  162. 162. 
    Taylor AM, Berchtold NC, Perreau VM, Tu CH, Jeon NL, Cotman CW. 2009. Axonal mRNA in uninjured and regenerating cortical mammalian axons. J. Neurosci. 29:154697–707
    [Google Scholar]
  163. 163. 
    Taylor AM, Wu J, Tai H-C, Schuman EM. 2013. Axonal translation of β-catenin regulates synaptic vesicle dynamics. J. Neurosci. 33:135584–89
    [Google Scholar]
  164. 164. 
    Trapman J, Retèl J, Planta RJ. 1975. Ribosomal precursor particles from yeast. Exp. Cell Res. 90:195–104
    [Google Scholar]
  165. 165. 
    Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. 1998. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:6670892–96
    [Google Scholar]
  166. 166. 
    Tushev G, Glock C, Heumüller M, Biever A, Jovanovic M, Schuman EM. 2018. Alternative 3′ UTRs modify the localization, regulatory potential, stability, and plasticity of mRNAs in neuronal compartments. Neuron 98:3495–511.e6
    [Google Scholar]
  167. 167. 
    Tyssowski KM, DeStefino NR, Cho J-H, Dunn CJ, Poston RG et al. 2018. Different neuronal activity patterns induce different gene expression programs. Neuron 98:3530–546.e11
    [Google Scholar]
  168. 168. 
    Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P et al. 2015. Tissue-based map of the human proteome. Science 347:62201260419
    [Google Scholar]
  169. 169. 
    van Niekerk EA, Willis DE, Chang JH, Reumann K, Heise T, Twiss JL 2007. Sumoylation in axons triggers retrograde transport of the RNA-binding protein La. PNAS 104:3112913–18
    [Google Scholar]
  170. 170. 
    Villarin JM, McCurdy EP, Martínez JC, Hengst U. 2016. Local synthesis of dynein cofactors matches retrograde transport to acutely changing demands. Nat. Comm. 7:113865
    [Google Scholar]
  171. 171. 
    Völgyi K, Gulyássy P, Háden K, Kis V, Badics K et al. 2015. Synaptic mitochondria: a brain mitochondria cluster with a specific proteome. J. Proteom. 120:142–57
    [Google Scholar]
  172. 172. 
    Wang G, Ang C-E, Fan J, Wang A, Moffitt JR, Zhuang X 2020. Spatial organization of the transcriptome in individual neurons. bioRxiv 2020.12.07.414060. https://doi.org/10.1101/2020.12.07.414060
  173. 173. 
    Wang X, You X, Langer JD, Hou J, Rupprecht F et al. 2019. Full-length transcriptome reconstruction reveals a large diversity of RNA and protein isoforms in rat hippocampus. Nat. Comm. 10:15009
    [Google Scholar]
  174. 174. 
    Wang Z, Ma J, Miyoshi C, Li Y, Sato M et al. 2018. Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 558:7710435–439
    [Google Scholar]
  175. 175. 
    Warner JR. 1999. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24:11437–40
    [Google Scholar]
  176. 176. 
    Waung MW, Pfeiffer BE, Nosyreva ED, Ronesi JA, Huber KM. 2008. Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron 59:184–97
    [Google Scholar]
  177. 177. 
    Wilhelm BG, Mandad S, Truckenbrodt S, Kröhnert K, Schäfer C et al. 2014. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344:61871023–28
    [Google Scholar]
  178. 178. 
    Willis DE, van Niekerk EA, Sasaki Y, Mesngon M, Merianda TT et al. 2007. Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J. Cell Biol. 178:6965–80
    [Google Scholar]
  179. 179. 
    Xue S, Tian S, Fujii K, Kladwang W, Das R, Barna M. 2015. RNA regulons in Hox 5′ UTRs confer ribosome specificity to gene regulation. Nature 517:753233–38
    [Google Scholar]
  180. 180. 
    Yap E-L, Greenberg ME. 2018. Activity-regulated transcription: bridging the gap between neural activity and behavior. Neuron 100:2330–48
    [Google Scholar]
  181. 181. 
    Yogev S, Shen K. 2017. Establishing neuronal polarity with environmental and intrinsic mechanisms. Neuron 96:3638–50
    [Google Scholar]
  182. 182. 
    Yoon YJ, Wu B, Buxbaum AR, Das S, Tsai A et al. 2016. Glutamate-induced RNA localization and translation in neurons. PNAS 113:44E6877–86
    [Google Scholar]
  183. 183. 
    Younts TJ, Monday HR, Dudok B, Klein ME, Jordan BA et al. 2016. Presynaptic protein synthesis is required for long-term plasticity of GABA release. Neuron 92:2479–92
    [Google Scholar]
  184. 184. 
    Yudin D, Hanz S, Yoo S, Iavnilovitch E, Willis D et al. 2008. Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. Neuron 59:2241–52
    [Google Scholar]
  185. 185. 
    Zappulo A, van den Bruck D, Ciolli Mattioli C, Franke V, Imami K et al. 2017. RNA localization is a key determinant of neurite-enriched proteome. Nat. Comm. 8:583
    [Google Scholar]
  186. 186. 
    Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F et al. 2018. Molecular architecture of the mouse nervous system. Cell 174:4999–1014.E22
    [Google Scholar]
  187. 187. 
    Zhai S, Ark ED, Parra-Bueno P, Yasuda R. 2013. Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342:61621107–11
    [Google Scholar]
  188. 188. 
    Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR et al. 2014. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34:3611929–47
    [Google Scholar]
  189. 189. 
    Zovkic IB, Paulukaitis BS, Day JJ, Etikala DM, Sweatt JD. 2014. Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. Nature 515:7528582–86
    [Google Scholar]
/content/journals/10.1146/annurev-genet-030321-054851
Loading
/content/journals/10.1146/annurev-genet-030321-054851
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error