1932

Abstract

Transposable elements (TEs) are mobile DNA sequences that propagate within genomes. Through diverse invasion strategies, TEs have come to occupy a substantial fraction of nearly all eukaryotic genomes, and they represent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic behavior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-040620-022145
2020-11-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/genet/54/1/annurev-genet-040620-022145.html?itemId=/content/journals/10.1146/annurev-genet-040620-022145&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ågren JA, Wright SI. 2011. Co-evolution between transposable elements and their hosts: a major factor in genome size evolution. ? Chromosom. Res. 19:6777–86
    [Google Scholar]
  2. 2. 
    Amselem J, Cornut G, Choisne N, Alaux M, Alfama-Depauw F et al. 2019. RepetDB: a unified resource for transposable element references. Mob. DNA 10:6
    [Google Scholar]
  3. 3. 
    Aravin AA, Hannon GJ, Brennecke J 2007. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318:5851761–64
    [Google Scholar]
  4. 4. 
    Arkhipova IR. 2017. Using bioinformatic and phylogenetic approaches to classify transposable elements and understand their complex evolutionary histories. Mob. DNA 8:19
    [Google Scholar]
  5. 5. 
    Arkhipova IR, Pyatkov KI, Meselson M, Evgen'ev MB 2003. Retroelements containing introns in diverse invertebrate taxa. Nat. Genet. 33:2123–24
    [Google Scholar]
  6. 6. 
    Arkhipova IR, Yushenova IA, Angert E 2019. Giant transposons in eukaryotes: Is bigger better. ? Genome Biol. Evol. 11:3906–18
    [Google Scholar]
  7. 7. 
    Aziz RK, Breitbart M, Edwards RA 2010. Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res 38:134207–17
    [Google Scholar]
  8. 8. 
    Bao W, Jurka MG, Kapitonov VV, Jurka J 2009. New superfamilies of eukaryotic DNA transposons and their internal divisions. Mol. Biol. Evol. 26:5983–93
    [Google Scholar]
  9. 9. 
    Bast J, Jaron KS, Schuseil D, Roze D, Schwander T 2019. Asexual reproduction reduces transposable element load in experimental yeast populations. eLife 8:e48548
    [Google Scholar]
  10. 10. 
    Batzer MA, Deininger PL. 2002. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3:5370–79
    [Google Scholar]
  11. 11. 
    Bellas CM, Sommaruga R. 2019. Polinton-like viruses and virophages are widespread in aquatic ecosystems. bioRxiv 2019.12.13.875310. https://doi.org/10.1101/2019.12.13.875310
    [Crossref]
  12. 12. 
    Bourgeois Y, Boissinot S. 2019. On the population dynamics of junk: a review on the population genomics of transposable elements. Genes 10:6419
    [Google Scholar]
  13. 13. 
    Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A et al. 2018. Ten things you should know about transposable elements. Genome Biol 19:1199
    [Google Scholar]
  14. 14. 
    Bridier-Nahmias A, Tchalikian-Cosson A, Baller JA, Menouni R, Fayol H et al. 2015. An RNA polymerase III subunit determines sites of retrotransposon integration. Science 348:6234585–88
    [Google Scholar]
  15. 15. 
    Britten RJ, Davidson EH. 1969. Gene regulation for higher cells: a theory. Science 165:3891349–57
    [Google Scholar]
  16. 16. 
    Britten RJ, Kohne DE. 1968. Repeated sequences in DNA. Science 161:3841529–40
    [Google Scholar]
  17. 17. 
    Burke WD, Calalang CC, Eickbush TH 1987. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme. Mol. Cell. Biol. 7:62221–30
    [Google Scholar]
  18. 18. 
    Burki F, Roger AJ, Brown MW, Simpson AGB 2020. The new tree of eukaryotes. Trends Ecol. Evol. 35:143–55
    [Google Scholar]
  19. 19. 
    Cappello J, Handelsman K, Lodish HF 1985. Sequence of Dictyostelium DIRS-1: an apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence. Cell 43:1105–15
    [Google Scholar]
  20. 20. 
    Carbone L, Harris RA, Mootnick AR, Milosavljevic A, Martin DIK et al. 2012. Centromere remodeling in Hoolock leuconedys (Hylobatidae) by a new transposable element unique to the gibbons. Genome Biol. Evol. 4:7648–58
    [Google Scholar]
  21. 21. 
    Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M et al. 2007. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. . Science 315:5809207–12
    [Google Scholar]
  22. 22. 
    Chang C-H, Chavan A, Palladino J, Wei X, Martins NMC et al. 2019. Islands of retroelements are major components of Drosophila centromeres. PLOS Biol 17:5e3000241
    [Google Scholar]
  23. 23. 
    Chang GS, Hong Y, Ko KD, Bhardwaj G, Holmes EC et al. 2008. Phylogenetic profiles reveal evolutionary relationships within the “twilight zone” of sequence similarity. PNAS 105:3613474–79
    [Google Scholar]
  24. 24. 
    Christensen S, Pont-Kingdon G, Carroll D 2000. Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retrotransposon, Tx1L. Mol. Cell. Biol. 20:41219–26
    [Google Scholar]
  25. 25. 
    Chuong EB, Elde NC, Feschotte C 2017. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18:271–86
    [Google Scholar]
  26. 26. 
    Corradi N, Pombert J-F, Farinelli L, Didier ES, Keeling PJ 2010. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat. Commun 1:177
    [Google Scholar]
  27. 27. 
    Cosby RL, Chang N-C, Feschotte C 2019. Host-transposon interactions: conflict, cooperation, and cooption. Genes Dev 33:17–181098–116
    [Google Scholar]
  28. 28. 
    Curcio MJ, Derbyshire KM. 2003. The outs and ins of transposition: from Mu to Kangaroo. Nat. Rev. Mol. Cell Biol. 4:11865–77
    [Google Scholar]
  29. 29. 
    Dawson A, Hartswood E, Paterson T, Finnegan DJ 1997. A LINE-like transposable element in Drosophila, the I factor, encodes a protein with properties similar to those of retroviral nucleocapsids. EMBO J 16:144448–55
    [Google Scholar]
  30. 30. 
    Devos KM, Brown JKM, Bennetzen JL 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. . Genome Res 12:71075–79
    [Google Scholar]
  31. 31. 
    Dewannieux M, Heidmann T. 2005. LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling. Cytogenet. Genome Res. 110:1–435–48
    [Google Scholar]
  32. 32. 
    Doak TG, Doerder FP, Jahn CL, Herrick G 1994. A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. PNAS 91:3942–46
    [Google Scholar]
  33. 33. 
    Duret L, Marais G, Biémont C 2000. Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans. . Genetics 156:41661–69
    [Google Scholar]
  34. 34. 
    Eickbush TH, Eickbush DG. 2015. Integration, regulation, and long-term stability of R2 retrotransposons. Microbiol. Spectr. 3:2MDNA3–0011-2014
    [Google Scholar]
  35. 35. 
    Eickbush TH, Malik HS. 2002. Origins and evolution of retrotransposons. Mobile DNA II NL Craig, R Craigie, M Gellert, AM Lambowitz 1111–44 Washington, DC: Am. Soc. Microbiol.
    [Google Scholar]
  36. 36. 
    El Baidouri M, Panaud O 2013. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution. Genome Biol. Evol. 5:5954–65
    [Google Scholar]
  37. 37. 
    Elewa A, Wang H, Talavera-López C, Joven A, Brito G et al. 2017. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nat. Commun. 8:12286
    [Google Scholar]
  38. 38. 
    Elliott TA, Gregory TR. 2015. Do larger genomes contain more diverse transposable elements. ? BMC Evol. Biol. 15:169
    [Google Scholar]
  39. 39. 
    Elsik CG, Worley KC, Bennett AK, Beye M, Camara F et al. 2014. Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genom 15:186
    [Google Scholar]
  40. 40. 
    Engels WR, Johnson-Schlitz DM, Eggleston WB, Sved J 1990. High-frequency P element loss in Drosophila is homolog dependent. Cell 62:3515–25
    [Google Scholar]
  41. 41. 
    Esnault C, Lee M, Ham C, Levin HL 2019. Transposable element insertions in fission yeast drive adaptation to environmental stress. Genome Res 29:185–95
    [Google Scholar]
  42. 42. 
    Evgen'ev MB, Arkhipova IR. 2005. Penelope-like elements—a new class of retroelements: distribution, function and possible evolutionary significance. Cytogenet. Genome Res. 110:1–4510–21
    [Google Scholar]
  43. 43. 
    Evgen'ev MB, Zelentsova H, Shostak N, Kozitsina M, Barskyi V et al. 1997. Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis in Drosophila virilis. . PNAS 94:1196–201
    [Google Scholar]
  44. 44. 
    Fedoroff NV. 2012. Transposable elements, epigenetics, and genome evolution. Science 338:6108758–67
    [Google Scholar]
  45. 45. 
    Feng Q, Moran JV, Kazazian HH, Boeke JD 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:5905–16
    [Google Scholar]
  46. 46. 
    Fernandes JD, Haeussler M, Armstrong J, Tigyi K, Gu J et al. 2018. KRAB Zinc Finger Proteins coordinate across evolutionary time scales to battle retroelements. bioRxiv 429563. https://doi.org/10.1101/429563
    [Crossref]
  47. 47. 
    Feschotte C, Gilbert C. 2012. Endogenous viruses: insights into viral evolution and impact on host biology. Nat. Rev. Genet. 13:4283–96
    [Google Scholar]
  48. 48. 
    Feschotte C, Pritham EJ. 2005. Non-mammalian c-integrases are encoded by giant transposable elements. Trends Genet 21:10551–52
    [Google Scholar]
  49. 49. 
    Feschotte C, Pritham EJ. 2007. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41:331–68
    [Google Scholar]
  50. 50. 
    Feschotte C, Zhang X, Wessler SR 2002. Miniature inverted-repeat transposable elements and their relationship to established DNA transposons. Mobile DNA II N Craig, R Craigie, M Gellert, A Lambowitz, P Rice, S Sandmeyer 1147–58 Washington, DC: Am. Soc. Microbiol.
    [Google Scholar]
  51. 51. 
    Finnegan DJ. 1989. Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–7
    [Google Scholar]
  52. 52. 
    Fischer MG, Hackl T. 2016. Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature 540:7632288–91
    [Google Scholar]
  53. 53. 
    Fischer MG, Suttle CA. 2011. A virophage at the origin of large DNA transposons. Science 332:6026231–34
    [Google Scholar]
  54. 54. 
    Flasch DA, Macia Á, Sánchez L, Ljungman M, Heras SR et al. 2019. Genome-wide de novo L1 retrotransposition connects endonuclease activity with replication. Cell 177:4837–851.e28
    [Google Scholar]
  55. 55. 
    Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG et al. 2020. RepeatModeler2 for automated genomic discovery of transposable element families. PNAS 117:179451–57
    [Google Scholar]
  56. 56. 
    Frahry MB, Sun C, Chong RA, Mueller RL 2015. Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders. J. Mol. Evol. 80:2120–29
    [Google Scholar]
  57. 57. 
    Frank JA, Feschotte C. 2017. Co-option of endogenous viral sequences for host cell function. Curr. Opin. Virol. 25:81–89
    [Google Scholar]
  58. 58. 
    Fricker AD, Peters JE. 2014. Vulnerabilities on the lagging-strand template: opportunities for mobile elements. Annu. Rev. Genet. 48:167–86
    [Google Scholar]
  59. 59. 
    Gao B, Shen D, Xue S, Chen C, Cui H, Song C 2016. The contribution of transposable elements to size variations between four teleost genomes. Mob. DNA 7:14
    [Google Scholar]
  60. 60. 
    Gilbert C, Feschotte C. 2018. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Curr. Opin. Genet. Dev. 49:15–24
    [Google Scholar]
  61. 61. 
    Goodwin TJD, Poulter RTM. 2004. A new group of tyrosine recombinase-encoding retrotransposons. Mol. Biol. Evol. 21:4746–59
    [Google Scholar]
  62. 62. 
    Grabundzija I, Hickman AB, Dyda F 2018. Helraiser intermediates provide insight into the mechanism of eukaryotic replicative transposition. Nat. Commun. 9:11278
    [Google Scholar]
  63. 63. 
    Grabundzija I, Messing SA, Thomas J, Cosby RL, Bilic I et al. 2016. A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat. Commun. 7:110716
    [Google Scholar]
  64. 64. 
    Guo X, Silva JC. 2008. Properties of non-coding DNA and identification of putative cis-regulatory elements in Theileria parva. . BMC Genom 9:1582
    [Google Scholar]
  65. 65. 
    Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH 2011. Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum. Mol. Genet. 20:173386–400
    [Google Scholar]
  66. 66. 
    Hancks DC, Kazazian HH Jr 2016. Roles for retrotransposon insertions in human disease. Mob. DNA 7:19
    [Google Scholar]
  67. 67. 
    Heringer P, Kuhn GCS. 2018. Exploring the remote ties between Helitron transposases and other rolling-circle replication proteins. Int. J. Mol. Sci. 19:103079
    [Google Scholar]
  68. 68. 
    Hickman AB, Dyda F. 2016. DNA transposition at work. Chem. Rev. 116:2012758–84
    [Google Scholar]
  69. 69. 
    Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C et al. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:7446498–503
    [Google Scholar]
  70. 70. 
    Hsia AP, Schnable PS. 1996. DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR. Genetics 142:2603–18
    [Google Scholar]
  71. 71. 
    Huang CRL, Burns KH, Boeke JD 2012. Active transposition in genomes. Annu. Rev. Genet. 46:651–75
    [Google Scholar]
  72. 72. 
    Ianc B, Ochis C, Persch R, Popescu O, Damert A 2014. Hominoid composite non-LTR retrotransposons—variety, assembly, evolution, and structural determinants of mobilization. Mol. Biol. Evol. 31:112847–64
    [Google Scholar]
  73. 73. 
    Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD et al. 2014. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516:7530242–45
    [Google Scholar]
  74. 74. 
    Jacques P-É, Jeyakani J, Bourque G 2013. The majority of primate-specific regulatory sequences are derived from transposable elements. PLOS Genet 9:5e1003504
    [Google Scholar]
  75. 75. 
    Jiang N, Wessler SR. 2001. Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell 13:112553–64
    [Google Scholar]
  76. 76. 
    Jurka J, Milosavljevic A. 1991. Reconstruction and analysis of human alu genes. J. Mol. Evol. 32:2105–21
    [Google Scholar]
  77. 77. 
    Kapitonov VV, Jurka J. 2001. Rolling-circle transposons in eukaryotes. PNAS 98:158714–19
    [Google Scholar]
  78. 78. 
    Kapitonov VV, Jurka J. 2006. Self-synthesizing DNA transposons in eukaryotes. PNAS 103:124540–45
    [Google Scholar]
  79. 79. 
    Kapusta A, Suh A, Feschotte C 2017. Dynamics of genome size evolution in birds and mammals. PNAS 114:8E1460–69
    [Google Scholar]
  80. 80. 
    Kazlauskas D, Varsani A, Koonin EV, Krupovic M 2019. Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat. Commun. 10:13425
    [Google Scholar]
  81. 81. 
    Kent TV, Uzunović J, Wright SI 2017. Coevolution between transposable elements and recombination. Philos. Trans. R. Soc. B 372:173620160458
    [Google Scholar]
  82. 82. 
    Khan H, Smit A, Boissinot S 2006. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res 16:178–87
    [Google Scholar]
  83. 83. 
    Khazina E, Truffault V, Büttner R, Schmidt S, Coles M, Weichenrieder O 2011. Trimeric structure and flexibility of the L1ORF1 protein in human L1 retrotransposition. Nat. Struct. Mol. Biol. 18:91006–14
    [Google Scholar]
  84. 84. 
    Khazina E, Weichenrieder O. 2009. Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. PNAS 106:3731–36
    [Google Scholar]
  85. 85. 
    Kim A, Terzian C, Santamaria P, Pélisson A, Purd'homme N, Bucheton A 1994. Retroviruses in invertebrates: The gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. . PNAS 91:41285–89
    [Google Scholar]
  86. 86. 
    Kirchner J, Connolly CM, Sandmeyer SB 1995. Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science 267:52031488–91
    [Google Scholar]
  87. 87. 
    Kissinger JC, DeBarry J. 2011. Genome cartography: charting the apicomplexan genome. Trends Parasitol 27:8345–54
    [Google Scholar]
  88. 88. 
    Kojima KK. 2019. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet. Syst. 94:6233–52
    [Google Scholar]
  89. 89. 
    Kojima KK, Jurka J. 2011. Crypton transposons: identification of new diverse families and ancient domestication events. Mob. DNA 2:112
    [Google Scholar]
  90. 90. 
    Kojima KK, Seto Y, Fujiwara H 2016. The wide distribution and change of target specificity of R2 non-LTR retrotransposons in animals. PLOS ONE 11:9e0163496
    [Google Scholar]
  91. 91. 
    Koonin EV, Krupovic M. 2017. Polintons, virophages and transpovirons: a tangled web linking viruses, transposons and immunity. Curr. Opin. Virol. 25:7–15
    [Google Scholar]
  92. 92. 
    Kramerov DA, Vassetzky NS. 2011. Origin and evolution of SINEs in eukaryotic genomes. Heredity 107:6487–95
    [Google Scholar]
  93. 93. 
    Kriegs JO, Churakov G, Jurka J, Brosius J, Schmitz J 2007. Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends Genet 23:4158–61
    [Google Scholar]
  94. 94. 
    Krupovic M, Bamford DH, Koonin EV 2014. Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses. Biol. Direct 9:16
    [Google Scholar]
  95. 95. 
    Krupovic M, Dolja VV, Koonin EV 2019. Origin of viruses: primordial replicators recruiting capsids from hosts. Nat. Rev. Microbiol. 17:7449–58
    [Google Scholar]
  96. 96. 
    Krupovic M, Koonin EV. 2015. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat. Rev. Microbiol. 13:2105–15
    [Google Scholar]
  97. 97. 
    Leem Y-E, Ripmaster TL, Kelly FD, Ebina H, Heincelman ME et al. 2008. Retrotransposon Tf1 is targeted to Pol II promoters by transcription activators. Mol. Cell 30:198–107
    [Google Scholar]
  98. 98. 
    Lerat E, Brunet F, Bazin C, Capy P 1999. Is the evolution of transposable elements modular. ? Genetica 107:1–315–25
    [Google Scholar]
  99. 99. 
    Levy A, Schwartz S, Ast G 2009. Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements. Nucleic Acids Res 38:51515–30
    [Google Scholar]
  100. 100. 
    Li Y, Dooner HK. 2009. Excision of Helitron transposons in maize. Genetics 182:1399–402
    [Google Scholar]
  101. 101. 
    Liu S, Yeh C-T, Ji T, Ying K, Wu H et al. 2009. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLOS Genet 5:11e1000733
    [Google Scholar]
  102. 102. 
    Löber U, Hobbs M, Dayaram A, Tsangaras K, Jones K et al. 2018. Degradation and remobilization of endogenous retroviruses by recombination during the earliest stages of a germ-line invasion. PNAS 115:348609–14
    [Google Scholar]
  103. 103. 
    Lorenzi H, Thiagarajan M, Haas B, Wortman J, Hall N, Caler E 2008. Genome wide survey, discovery and evolution of repetitive elements in three Entamoeba species. BMC Genom 9:1595
    [Google Scholar]
  104. 104. 
    Luan DD, Korman MH, Jakubczak JL, Eickbush TH 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:4595–605
    [Google Scholar]
  105. 105. 
    Lynch M. 2011. Statistical inference on the mechanisms of genome evolution. PLOS Genet 7:6e1001389
    [Google Scholar]
  106. 106. 
    Lynch M, Conery JS. 2003. The origins of genome complexity. Science 302:56491401–4
    [Google Scholar]
  107. 107. 
    Ma J, Devos KM, Bennetzen JL 2004. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:5860–69
    [Google Scholar]
  108. 108. 
    Magiorkinis G, Gifford RJ, Katzourakis A, De Ranter J, Belshaw R 2012. Env-less endogenous retroviruses are genomic superspreaders. PNAS 109:197385–90
    [Google Scholar]
  109. 109. 
    Malik HS. 2001. Phylogenetic analysis of Ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res 11:71187–97
    [Google Scholar]
  110. 110. 
    Malik HS. 2005. Ribonuclease H evolution in retrotransposable elements. Cytogenet. Genome Res. 110:1–4392–401
    [Google Scholar]
  111. 111. 
    McClintock B. 1948. Mutable loci in maize. Carnegie Inst. Wash. Yearb. 47:155–69
    [Google Scholar]
  112. 112. 
    Medstrand P, van de Lagemaat LN, Mager DL 2002. Retroelement distributions in the human genome: variations associated with age and proximity to genes. Genome Res 12:101483–95
    [Google Scholar]
  113. 113. 
    Meyer TJ, Held U, Nevonen KA, Klawitter S, Pirzer T et al. 2016. The flow of the gibbon LAVA element is facilitated by the LINE-1 retrotransposition machinery. Genome Biol. Evol. 8:103209–25
    [Google Scholar]
  114. 114. 
    Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87:5917–27
    [Google Scholar]
  115. 115. 
    Naito K, Cho E, Yang G, Campbell MA, Yano K et al. 2006. Dramatic amplification of a rice transposable element during recent domestication. PNAS 103:4717620–25
    [Google Scholar]
  116. 116. 
    Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN et al. 2009. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461:72671130–34
    [Google Scholar]
  117. 117. 
    Neumann P, Novák P, Hoštáková N, Macas J 2019. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA 10:11
    [Google Scholar]
  118. 118. 
    Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC et al. 2018. The axolotl genome and the evolution of key tissue formation regulators. Nature 554:769050–55
    [Google Scholar]
  119. 119. 
    Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497:7451579–84
    [Google Scholar]
  120. 120. 
    Ohshima K, Okada N. 2005. SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet. Genome Res. 110:1–4475–90
    [Google Scholar]
  121. 121. 
    Ou S, Su W, Liao Y, Chougule K, Agda JRA et al. 2019. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol 20:1275
    [Google Scholar]
  122. 122. 
    Palazzo A, Lorusso P, Miskey C, Walisko O, Gerbino A et al. 2019. Transcriptionally promiscuous “blurry” promoters in Tc1/mariner transposons allow transcription in distantly related genomes. Mob. DNA 10:113
    [Google Scholar]
  123. 123. 
    Parisot N, Pelin A, Gasc C, Polonais V, Belkorchia A et al. 2014. Microsporidian genomes harbor a diverse array of transposable elements that demonstrate an ancestry of horizontal exchange with metazoans. Genome Biol. Evol. 6:92289–300
    [Google Scholar]
  124. 124. 
    Pasquesi GIM, Adams RH, Card DC, Schield DR, Corbin AB et al. 2018. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat. Commun. 9:12774
    [Google Scholar]
  125. 125. 
    Pastuzyn ED, Day CE, Kearns RB, Kyrke-Smith M, Taibi AV et al. 2018. The neuronal gene arc encodes a repurposed retrotransposon gag protein that mediates intercellular RNA transfer. Cell 172:1–2275–288.e18
    [Google Scholar]
  126. 126. 
    Peccoud J, Loiseau V, Cordaux R, Gilbert C 2017. Massive horizontal transfer of transposable elements in insects. PNAS 114:184721–26
    [Google Scholar]
  127. 127. 
    Poulter RTM, Butler MI. 2015. Tyrosine recombinase retrotransposons and transposons. Mobile DNA III N Craig, M Chandler, M Gellert, A Lambowitz, P Rice, S Sandmeyer 1271–91 Washington, DC: Am. Soc. Microbiol.
    [Google Scholar]
  128. 128. 
    Pritham EJ, Feschotte C. 2007. Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. . PNAS 104:61895–900
    [Google Scholar]
  129. 129. 
    Pritham EJ, Feschotte C, Wessler SR 2005. Unexpected diversity and differential success of DNA transposons in four species of Entamoeba protozoans. Mol. Biol. Evol. 22:91751–63
    [Google Scholar]
  130. 130. 
    Pritham EJ, Putliwala T, Feschotte C 2007. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390:1–23–17
    [Google Scholar]
  131. 131. 
    Quadrana L, Etcheverry M, Gilly A, Caillieux E, Madoui M-A et al. 2019. Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nat. Commun. 10:13421
    [Google Scholar]
  132. 132. 
    Raiz J, Damert A, Chira S, Held U, Klawitter S et al. 2012. The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 40:41666–83
    [Google Scholar]
  133. 133. 
    Rashkova S, Athanasiadis A, Pardue M-L 2003. Intracellular targeting of gag proteins of the Drosophila telomeric retrotransposons. J. Virol. 77:116376–84
    [Google Scholar]
  134. 134. 
    Reiss D, Mialdea G, Miele V, de Vienne DM, Peccoud J et al. 2019. Global survey of mobile DNA horizontal transfer in arthropods reveals Lepidoptera as a prime hotspot. PLOS Genet 15:2e1007965
    [Google Scholar]
  135. 135. 
    Ribeiro YC, Robe LJ, Veluza DS, dos Santos CMB, Lopes ALK et al. 2019. Study of VIPER and TATE in kinetoplastids and the evolution of tyrosine recombinase retrotransposons. Mob. DNA 10:134
    [Google Scholar]
  136. 136. 
    Ribet D, Harper F, Dupressoir A, Dewannieux M, Pierron G, Heidmann T 2008. An infectious progenitor for the murine IAP retrotransposon: emergence of an intracellular genetic parasite from an ancient retrovirus. Genome Res 18:4597–609
    [Google Scholar]
  137. 137. 
    Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL, Moran JV 2015. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Mobile DNA III N Craig, M Chandler, M Gellert, A Lambowitz, P Rice, S Sandmeyer 1165–208 Washington, DC: American Society for Microbiology. , 1st. ed.
    [Google Scholar]
  138. 138. 
    Ros F, Kunze R. 2001. Regulation of activator/dissociation transposition by replication and DNA methylation. Genetics 157:41723–33
    [Google Scholar]
  139. 139. 
    Rubin E, Levy AA. 1997. Abortive gap repair: underlying mechanism for Ds element formation. Mol. Cell. Biol. 17:116294–302
    [Google Scholar]
  140. 140. 
    Shao F, Han M, Peng Z 2019. Evolution and diversity of transposable elements in fish genomes. Sci. Rep. 9:115399
    [Google Scholar]
  141. 141. 
    Shen JJ, Dushoff J, Bewick AJ, Chain FJJ, Evans BJ 2013. Genomic dynamics of transposable elements in the western clawed frog (Silurana tropicalis). Genome Biol. Evol. 5:5998–1009
    [Google Scholar]
  142. 142. 
    Siguier P, Gourbeyre E, Varani A, Ton-Hoang B, Chandler M 2015. Everyman's guide to bacterial insertion sequences. Microbiol. Spectr. 3:2MDNA3–0030-2014
    [Google Scholar]
  143. 143. 
    Smit AFA, Tóth G, Riggs AD, Jurka J, Toth G et al. 1995. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J. Mol. Biol. 246:3401–17
    [Google Scholar]
  144. 144. 
    Sookdeo A, Hepp CM, Boissinot S 2018. Contrasted patterns of evolution of the LINE-1 retrotransposon in perissodactyls: the history of a LINE-1 extinction. Mob. DNA 9:112
    [Google Scholar]
  145. 145. 
    Spradling AC, Bellen HJ, Hoskins RA 2011. Drosophila P elements preferentially transpose to replication origins. PNAS 108:3815948–53
    [Google Scholar]
  146. 146. 
    Stitzer MC, Anderson SN, Springer NM, Ross-Ibarra J 2019. The genomic ecosystem of transposable elements in maize. bioRxiv 559922. https://doi.org/10.1101/559922
    [Crossref]
  147. 147. 
    Sultana T, van Essen D, Siol O, Bailly-Bechet M, Philippe C et al. 2019. The landscape of L1 retrotransposons in the human genome is shaped by pre-insertion sequence biases and post-insertion selection. Mol. Cell. 74:3555–570.e7
    [Google Scholar]
  148. 148. 
    Sultana T, Zamborlini A, Cristofari G, Lesage P 2017. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. 18:5292–308
    [Google Scholar]
  149. 149. 
    Sun C, López Arriaza JR, Mueller RL 2012. Slow DNA loss in the gigantic genomes of salamanders. Genome Biol. Evol. 4:121340–48
    [Google Scholar]
  150. 150. 
    Sun C, Mueller RL. 2014. Hellbender genome sequences shed light on genomic expansion at the base of crown salamanders. Genome Biol. Evol. 6:71818–29
    [Google Scholar]
  151. 151. 
    Tenaillon MI, Hollister JD, Gaut BS 2010. A triptych of the evolution of plant transposable elements. Trends Plant Sci 15:8471–78
    [Google Scholar]
  152. 152. 
    Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH et al. 2017. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 21:3319–31.e8
    [Google Scholar]
  153. 153. 
    Thomas J, Pritham EJ. 2015. Helitrons, the eukaryotic rolling-circle transposable elements. Microbiol. Spectr. 3:4MDNA3–0049-2014
    [Google Scholar]
  154. 154. 
    Trizzino M, Park Y, Holsbach-Beltrame M, Aracena K, Mika K et al. 2017. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res 27:101623–33
    [Google Scholar]
  155. 155. 
    Van De Bor V, Hartswood E, Jones C, Finnegan D, Davis I 2005. gurken and the I factor retrotransposon RNAs share common localization signals and machinery. Dev. Cell. 9:151–62
    [Google Scholar]
  156. 156. 
    Venner S, Miele V, Terzian C, Biémont C, Daubin V et al. 2017. Ecological networks to unravel the routes to horizontal transposon transfers. PLOS Biol 15:2e2001536
    [Google Scholar]
  157. 157. 
    Wallau GL, Capy P, Loreto E, Le Rouzic A, Hua-Van A 2016. VHICA, a new method to discriminate between vertical and horizontal transposon transfer: application to the mariner family within Drosophila. Mol. Biol. Evol 33:41094–109
    [Google Scholar]
  158. 158. 
    Wang H, Xing J, Grover D, Hedges DJ, Han K et al. 2005. SVA elements: a hominid-specific retroposon family. J. Mol. Biol. 354:4994–1007
    [Google Scholar]
  159. 159. 
    Wang L, Dou K, Moon S, Tan FJ, Zhang ZZ 2018. Hijacking oogenesis enables massive propagation of LINE and retroviral transposons. Cell 174:51082–1094.e12
    [Google Scholar]
  160. 160. 
    Wegrzyn JL, Lin BY, Zieve JJ, Dougherty WM, Martínez-García PJ et al. 2013. Insights into the loblolly pine genome: characterization of BAC and fosmid sequences. PLOS ONE 8:9e72439
    [Google Scholar]
  161. 161. 
    Whitney KD, Garland T. 2010. Did genetic drift drive increases in genome complexity. ? PLOS Genet 6:8e1001080
    [Google Scholar]
  162. 162. 
    Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P et al. 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8:12973–82
    [Google Scholar]
  163. 163. 
    Wilhelm M, Wilhelm F-X. 2001. Reverse transcription of retroviruses and LTR retrotransposons. Cell. Mol. Life Sci. 58:91246–62
    [Google Scholar]
  164. 164. 
    Wong WY, Simakov O, Bridge DM, Cartwright P, Bellantuono AJ et al. 2019. Expansion of a single transposable element family is associated with genome-size increase and radiation in the genus Hydra. . PNAS 116:4622915–17
    [Google Scholar]
  165. 165. 
    Wright SI, Agrawal N, Bureau TE 2003. Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. . Genome Res 13:81897–903
    [Google Scholar]
  166. 166. 
    Xie W, Gai X, Zhu Y, Zappulla DC, Sternglanz R, Voytas DF 2001. Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p. Mol. Cell. Biol. 21:196606–14
    [Google Scholar]
  167. 167. 
    Xiong Y, Eickbush TH. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:103353–62
    [Google Scholar]
  168. 168. 
    Yang G, Nagel DH, Feschotte C, Hancock CN, Wessler SR 2009. Tuned for transposition: molecular determinants underlying the hyperactivity of a Stowaway MITE. Science 325:59461391–94
    [Google Scholar]
  169. 169. 
    Yuan Y-W, Wessler SR. 2011. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. PNAS 108:197884–89
    [Google Scholar]
  170. 170. 
    Yutin N, Shevchenko S, Kapitonov V, Krupovic M, Koonin EV 2015. A novel group of diverse Polinton-like viruses discovered by metagenome analysis. BMC Biol 13:195
    [Google Scholar]
  171. 171. 
    Zhang H-H, Peccoud J, Xu M-R-X, Zhang X-G, Gilbert C 2020. Horizontal transfer and evolution of transposable elements in vertebrates. Nat. Commun. 11:11362
    [Google Scholar]
  172. 172. 
    Zhang Y, Romanish MT, Mager DL 2011. Distributions of transposable elements reveal hazardous zones in mammalian introns. PLOS Comput. Biol. 7:5e1002046
    [Google Scholar]
  173. 173. 
    Zimmerly S, Semper C. 2015. Evolution of group II introns. Mob. DNA 6:17
    [Google Scholar]
/content/journals/10.1146/annurev-genet-040620-022145
Loading
/content/journals/10.1146/annurev-genet-040620-022145
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error