1932

Abstract

Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-050720-122916
2020-11-23
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/genet/54/1/annurev-genet-050720-122916.html?itemId=/content/journals/10.1146/annurev-genet-050720-122916&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alonge M, Wang X, Benoit M, Soyk S, Pereira L et al. 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182:1145–61.e23
    [Google Scholar]
  2. 2. 
    Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:7785149–57
    [Google Scholar]
  3. 3. 
    Bateson W, Saunders ER, Punnett RC 1906. Further experiments on inheritance in sweet peas and stocks: preliminary account. Proc. R. Soc. B 77:517236–38
    [Google Scholar]
  4. 4. 
    Bernard RL. 1972. Two genes affecting stem termination in soybeans. Crop Sci 12:2235–39
    [Google Scholar]
  5. 5. 
    Birchler JA, Veitia RA. 2012. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. PNAS 109:3714746–53
    [Google Scholar]
  6. 6. 
    Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA 2010. Heterosis. Plant Cell 22:72105–12
    [Google Scholar]
  7. 7. 
    Blackman BK, Strasburg JL, Raduski AR, Michaels SD, Rieseberg LH 2010. The role of recently derived FT paralogs in sunflower domestication. Curr. Biol. 20:7629–35
    [Google Scholar]
  8. 8. 
    Boden SA, Cavanagh C, Cullis BR, Ramm K, Greenwood J et al. 2015. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat. Plants 1:214016
    [Google Scholar]
  9. 9. 
    Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C et al. 2007. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLOS Biol 5:9e236
    [Google Scholar]
  10. 10. 
    Bomblies K, Weigel D. 2007. Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat. Rev. Genet. 8:5382–93
    [Google Scholar]
  11. 11. 
    Campbell BW, Hoyle JW, Bucciarelli B, Stec AO, Samac DA et al. 2019. Functional analysis and development of a CRISPR/Cas9 allelic series for a CPR5 ortholog necessary for proper growth of soybean trichomes. Sci. Rep. 9:114757
    [Google Scholar]
  12. 12. 
    Cao Y, Lim E, Xu M, Weng J-K, Marelli B 2020. Precision delivery of multiscale payloads to tissue‐specific targets in plants. Adv. Sci. 7:131903551
    [Google Scholar]
  13. 13. 
    Chae E, Bomblies K, Kim S-T, Karelina D, Zaidem M et al. 2014. Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 159:61341–51
    [Google Scholar]
  14. 14. 
    Chen C, Chen H, Lin Y-S, Shen J-B, Shan J-X et al. 2014. A two-locus interaction causes interspecific hybrid weakness in rice. Nat. Commun. 5:13357
    [Google Scholar]
  15. 15. 
    Chen K, Wang Y, Zhang R, Zhang H, Gao C 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70:667–97
    [Google Scholar]
  16. 16. 
    Chu Y-H, Jang J-C, Huang Z, van der Knaap E 2019. Tomato locule number and fruit size controlled by natural alleles of lc and fas. . Plant Direct 3:7e00142
    [Google Scholar]
  17. 17. 
    Comadran J, Kilian B, Russell J, Ramsay L, Stein N et al. 2012. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat. Genet. 44:121388–92
    [Google Scholar]
  18. 18. 
    Costanzo M, Kuzmin E, van Leeuwen J, Mair B, Moffat J et al. 2019. Global genetic networks and the genotype-to-phenotype relationship. Cell 177:185–100
    [Google Scholar]
  19. 19. 
    Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP 2018. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol 36:9882–97
    [Google Scholar]
  20. 20. 
    Diss G, Ascencio D, DeLuna A, Landry CR 2014. Molecular mechanisms of paralogous compensation and the robustness of cellular networks. J. Exp. Zool. Part B Mol. Dev. Evol. 322:7488–99
    [Google Scholar]
  21. 21. 
    Dixit A, Parnas O, Li B, Chen J, Fulco CP et al. 2016. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:71853–66.e17
    [Google Scholar]
  22. 22. 
    Doebley JF, Gaut BS, Smith BD 2006. The molecular genetics of crop domestication. Cell 127:71309–21
    [Google Scholar]
  23. 23. 
    Doebley JF, Stec A, Hubbard L 1997. The evolution of apical dominance in maize. Nature 386:6624485–88
    [Google Scholar]
  24. 24. 
    Fisher RA. 1919. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinburgh 52:2399–433
    [Google Scholar]
  25. 25. 
    Fray RG, Grierson D. 1993. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol. Biol. 22:4589–602
    [Google Scholar]
  26. 26. 
    Galli M, Gallavotti A. 2016. Expanding the regulatory network for meristem size in plants. Trends Genet 32:6372–83
    [Google Scholar]
  27. 27. 
    Gao L, Gonda I, Sun H, Ma Q, Bao K et al. 2019. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51:61044–51
    [Google Scholar]
  28. 28. 
    Garcia AAF, Wang S, Melchinger AE, Zeng Z-B 2008. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 180:31707–24
    [Google Scholar]
  29. 29. 
    Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH et al. 2017. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551:7681464–71
    [Google Scholar]
  30. 30. 
    Hermsen JGT. 1963. The genetic basis of hybrid necrosis in wheat. Genetica 33:245–87
    [Google Scholar]
  31. 31. 
    Huang X, Qian Q, Liu Z, Sun H, He S et al. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41:4494–97
    [Google Scholar]
  32. 32. 
    Huang X, Yang S, Gong J, Zhao Q, Feng Q et al. 2016. Genomic architecture of heterosis for yield traits in rice. Nature 537:7622629–33
    [Google Scholar]
  33. 33. 
    Hufford MB, Berny Mier y Teran JC, Gepts P 2019. Crop biodiversity: an unfinished magnum opus of nature. Annu. Rev. Plant Biol. 70:727–51
    [Google Scholar]
  34. 34. 
    Isaacson T, Ronen G, Zamir D, Hirschberg J 2002. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:2333–42
    [Google Scholar]
  35. 35. 
    Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J et al. 2012. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69:1116–25
    [Google Scholar]
  36. 36. 
    Jacobs TB, Zhang N, Patel D, Martin GB 2017. Generation of a collection of mutant tomato lines using pooled CRISPR libraries. Plant Physiol 174:42023–37
    [Google Scholar]
  37. 37. 
    Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA 2013. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. . Plant Cell 25:3820–33
    [Google Scholar]
  38. 38. 
    Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED et al. 2016. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat. Genet. 48:7785–91
    [Google Scholar]
  39. 39. 
    Jenkins JA, Mackinney G. 1953. Inheritance of carotenoid differences in the tomato hybrid yellow x tangerine. Genetics 38:2107–16
    [Google Scholar]
  40. 40. 
    Jenkins JA, Mackinney G. 1955. Carotenoids of the apricot tomato and its hybrids with yellow and tangerine. Genetics 40:5715–20
    [Google Scholar]
  41. 41. 
    Jeuken MJW, Zhang NW, McHale LK, Pelgrom K, den Boer E et al. 2009. Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. Plant Cell 21:103368–78
    [Google Scholar]
  42. 42. 
    Jiang K, Liberatore KL, Park SJ, Alvarez JP, Lippman ZB 2013. Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLOS Genet 9:12e1004043
    [Google Scholar]
  43. 43. 
    Jiang Y, Schmidt RH, Zhao Y, Reif JC 2017. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat. Genet. 49:121741–46
    [Google Scholar]
  44. 44. 
    Kachanovsky DE, Filler S, Isaacson T, Hirschberg J 2012. Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. PNAS 109:4619021–26
    [Google Scholar]
  45. 45. 
    Kempin S, Savidge B, Yanofsky M 1995. Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:5197522–25
    [Google Scholar]
  46. 46. 
    Klee HJ, Giovannoni JJ. 2011. Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 45:41–59
    [Google Scholar]
  47. 47. 
    Krieger U, Lippman ZB, Zamir D 2010. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 42:5459–63
    [Google Scholar]
  48. 48. 
    Krüger J, Thomas CM, Golstein C, Dixon MS, Smoker M et al. 2002. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296:5568744–47
    [Google Scholar]
  49. 49. 
    Kuzmin E, VanderSluis B, Wang W, Tan G, Deshpande R et al. 2018. Systematic analysis of complex genetic interactions. Science 360:6386eaao1729
    [Google Scholar]
  50. 50. 
    Kwak M, Velasco D, Gepts P 2008. Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris). J. Hered. 99:3283–91
    [Google Scholar]
  51. 51. 
    Kwon C-T, Heo J, Lemmon ZH, Capua Y, Hutton SF et al. 2020. Rapid customization of Solanaceae fruit crops for urban agriculture. Nat. Biotechnol. 38:2182–88
    [Google Scholar]
  52. 52. 
    Kyozuka J, Tokunaga H, Yoshida A 2014. Control of grass inflorescence form by the fine-tuning of meristem phase change. Curr. Opin. Plant Biol. 17:1110–15
    [Google Scholar]
  53. 53. 
    Lan T-H, Paterson AH. 2000. Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea. . Genetics 155:41927–54
    [Google Scholar]
  54. 54. 
    Lauter N, Doebley J. 2002. Genetic variation for phenotypically invariant traits detected in teosinte: implications for the evolution of novel forms. Genetics 160:1333–42
    [Google Scholar]
  55. 55. 
    Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway integrator. J. Exp. Bot. 61:92247–54
    [Google Scholar]
  56. 56. 
    Lemmon ZH, Park SJ, Jiang K, Van Eck J, Schatz MC, Lippman ZB 2016. The evolution of inflorescence diversity in the nightshades and heterochrony during meristem maturation. Genome Res 26:121676–86
    [Google Scholar]
  57. 57. 
    Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE et al. 2018. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4:10766–70
    [Google Scholar]
  58. 58. 
    Li C, Zhang R, Meng X, Chen S, Zong Y et al. 2020. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. 38:787582
    [Google Scholar]
  59. 59. 
    Li T, Yang X, Yu Y, Si X, Zhai X et al. 2018. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36:121160–63
    [Google Scholar]
  60. 60. 
    Li Y, Zhou G, Ma J, Jiang W, Jin L et al. 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32:101045–52
    [Google Scholar]
  61. 61. 
    Lifschitz E, Ayre BG, Eshed Y 2014. Florigen and anti-florigen—a systemic mechanism for coordinating growth and termination in flowering plants. Front. Plant Sci. 5:465
    [Google Scholar]
  62. 62. 
    Lifschitz E, Eshed Y. 2006. Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato. J. Exp. Bot. 57:133405–14
    [Google Scholar]
  63. 63. 
    Lin Q, Zong Y, Xue C, Wang S, Jin S et al. 2020. Prime genome editing in rice and wheat. Nat. Biotechnol. 38:582–85
    [Google Scholar]
  64. 64. 
    Lin T, Zhu G, Zhang J, Xu X, Yu Q et al. 2014. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46:111220–26
    [Google Scholar]
  65. 65. 
    Lippman ZB, Cohen O, Alvarez JP, Abu-Abied M, Pekker I et al. 2008. The making of a compound inflorescence in tomato and related nightshades. PLOS Biol 6:11e288
    [Google Scholar]
  66. 66. 
    Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A et al. 2010. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. . Plant Physiol 153:1198–210
    [Google Scholar]
  67. 67. 
    Liu H-J, Jian L, Xu J, Zhang Q, Zhang M et al. 2020. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32:51397–413
    [Google Scholar]
  68. 68. 
    MacArthur JW, Chiasson LP. 1947. Cytogenetic notes on tomato species and hybrids. Genetics 32:2165–77
    [Google Scholar]
  69. 69. 
    Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF 2020. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38:184–89
    [Google Scholar]
  70. 70. 
    Melchinger AE, Piepho H-P, Utz HF, Muminović J, Wegenast T et al. 2007. Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics 177:31827–37
    [Google Scholar]
  71. 71. 
    Moyers BT, Morrell PL, McKay JK 2018. Genetic costs of domestication and improvement. J. Hered. 109:2103–16
    [Google Scholar]
  72. 72. 
    Müller NA, Zhang L, Koornneef M, Jiménez-Gómez JM 2018. Mutations in EID1 and LNK2 caused light-conditional clock deceleration during tomato domestication. PNAS 115:277135–40
    [Google Scholar]
  73. 73. 
    Mullins MG, Bouquet A, Williams LE 1992. Biology of the Grapevine Cambridge, UK: Cambridge Univ. Press
  74. 74. 
    Muños S, Ranc N, Botton E, Bérard A, Rolland S et al. 2011. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. . Plant Physiol 156:42244–54
    [Google Scholar]
  75. 75. 
    Norman TM, Horlbeck MA, Replogle JM, Ge AY, Xu A et al. 2019. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365:6455786–93
    [Google Scholar]
  76. 76. 
    Park SJ, Eshed Y, Lippman ZB 2014. Meristem maturation and inflorescence architecture—lessons from the Solanaceae. Curr. Opin. Plant Biol. 17:170–77
    [Google Scholar]
  77. 77. 
    Park SJ, Jiang K, Tal L, Yichie Y, Gar O et al. 2014. Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat. Genet. 46:121337–42
    [Google Scholar]
  78. 78. 
    Peralta IE, Spooner DM. 2005. Morphological characterization and relationships of wild tomatoes (Solanum L. Sect. Lycopersicon). A Festschrift for William G. D'Arcy R Keating, V Hollowell, T Croat 227–57 Chicago: Univ. Chicago Press
    [Google Scholar]
  79. 79. 
    Phillips PC. 2008. Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9:11855–67
    [Google Scholar]
  80. 80. 
    Ping J, Liu Y, Sun L, Zhao M, Li Y et al. 2014. Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean. Plant Cell 26:72831–42
    [Google Scholar]
  81. 81. 
    Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J et al. 1998. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:111979–89
    [Google Scholar]
  82. 82. 
    Purugganan MD, Boyles AL, Suddith JI 2000. Variation and selection at the CAULIFLOWER floral homeotic gene accompanying the evolution of domesticated Brassica oleracea. . Genetics 155:2855–62
    [Google Scholar]
  83. 83. 
    Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB et al. 2011. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. . Nat. Genet 43:2169–72
    [Google Scholar]
  84. 84. 
    Reynard GB. 1961. New source of the j2 gene governing jointless pedicel in tomato. Science 134:3496 2102. Erratum. 1962 Science 135:35091118
    [Google Scholar]
  85. 85. 
    Rick CM. 1956. A new jointless gene from the Galapagos L pimpinellifolium TGC Rep. 6, Tomato Genet. Coop., Univ. Fla Gainesville, FL: https://tgc.ifas.ufl.edu/vol4/vol4.pdf
    [Google Scholar]
  86. 86. 
    Rodríguez GR, Kim HJ, Van Der Knaap E 2013. Mapping of two suppressors of OVATE (sov) loci in tomato. Heredity 111:3256–64
    [Google Scholar]
  87. 87. 
    Rodríguez GR, Muños S, Anderson C, Sim S-C, Michel A et al. 2011. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:1275–85
    [Google Scholar]
  88. 88. 
    Rodríguez-Leal D, Xu C, Kwon CT, Soyars C, Demesa-Arevalo E et al. 2019. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat. Genet. 51:5786–92
    [Google Scholar]
  89. 89. 
    Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB 2017. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:2470–80.e8
    [Google Scholar]
  90. 90. 
    Sax K. 1923. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. . Genetics 8:6552–60
    [Google Scholar]
  91. 91. 
    Schmidt C, Pacher M, Puchta H 2019. Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system. Plant J 98:4577–89
    [Google Scholar]
  92. 92. 
    Schnable PS, Springer NM. 2013. Progress toward understanding heterosis in crop plants. Annu. Rev. Plant Biol. 64:71–88
    [Google Scholar]
  93. 93. 
    Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:6635–44
    [Google Scholar]
  94. 94. 
    Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M et al. 2018. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15:6461–68
    [Google Scholar]
  95. 95. 
    Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T et al. 2017. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35:5441–43
    [Google Scholar]
  96. 96. 
    Shull GH. 1908. The composition of a field of maize. J. Hered. os-4:1296–301
    [Google Scholar]
  97. 97. 
    Shull GH. 1910. Hybridization methods in corn breeding. J. Hered. 1:298–107
    [Google Scholar]
  98. 98. 
    Somssich M, Je BI, Simon R, Jackson D 2016. CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143:183238–48
    [Google Scholar]
  99. 99. 
    Soyars CL, James SR, Nimchuk ZL 2016. Ready, aim, shoot: stem cell regulation of the shoot apical meristem. Curr. Opin. Plant Biol. 29:163–68
    [Google Scholar]
  100. 100. 
    Soyk S, Lemmon ZH, Oved M, Fisher J, Liberatore KL et al. 2017. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169:61142–55.e12
    [Google Scholar]
  101. 101. 
    Soyk S, Lemmon ZH, Sedlazeck FJ, Jiménez-Gómez JM, Alonge M et al. 2019. Duplication of a domestication locus neutralized a cryptic variant that caused a breeding barrier in tomato. Nat. Plants 5:5471–79
    [Google Scholar]
  102. 102. 
    Soyk S, Müller NA, Park SJ, Schmalenbach I, Jiang K et al. 2017. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat. Genet. 49:1162–68
    [Google Scholar]
  103. 103. 
    Stephenson AG. 1981. Flower and fruit abortion: proximate causes and ultimate functions. Annu. Rev. Ecol. Syst. 12:253–79
    [Google Scholar]
  104. 104. 
    Stetter MG, Gates DJ, Mei W, Ross-Ibarra J 2017. How to make a domesticate. Curr. Biol. 27:17R896–900
    [Google Scholar]
  105. 105. 
    Stitzer MC, Ross-Ibarra J. 2018. Maize domestication and gene interaction. New Phytol 220:2395–408
    [Google Scholar]
  106. 106. 
    Swinnen G, Goossens A, Pauwels L 2016. Lessons from domestication: targeting cis-regulatory elements for crop improvement. Trends Plant Sci 21:6506–15
    [Google Scholar]
  107. 107. 
    Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K et al. 2011. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:7360332–35
    [Google Scholar]
  108. 108. 
    Tomes ML, Quackenbush FW, Nelson OE, North B 1953. The inheritance of carotenoid pigment systems in the tomato. Genetics 38:2117–27
    [Google Scholar]
  109. 109. 
    Torres Cleuren YN, Ewe CK, Chipman KC, Mears ER, Wood CG et al. 2019. Extensive intraspecies cryptic variation in an ancient embryonic gene regulatory network. eLife 8:e48220
    [Google Scholar]
  110. 110. 
    van der Knaap E, Chakrabarti M, Chu YH, Clevenger JP, Illa-Berenguer E et al. 2014. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front. Plant Sci. 5:227
    [Google Scholar]
  111. 111. 
    Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S et al. 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557:770343–49
    [Google Scholar]
  112. 112. 
    Weller JL, Ortega R. 2015. Genetic control of flowering time in legumes. Front. Plant Sci. 6:207
    [Google Scholar]
  113. 113. 
    Wittkopp PJ, Kalay G. 2012. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13:159–69
    [Google Scholar]
  114. 114. 
    Wu S, Zhang B, Keyhaninejad N, Rodríguez GR, Kim HJ et al. 2018. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat. Commun. 9:14734
    [Google Scholar]
  115. 115. 
    Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E 2008. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:58691527–30
    [Google Scholar]
  116. 116. 
    Xu C, Liberatore KL, MacAlister CA, Huang Z, Chu Y-H et al. 2015. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet. 47:7784–92
    [Google Scholar]
  117. 117. 
    Yamamoto E, Takashi T, Morinaka Y, Lin S, Wu J et al. 2010. Gain of deleterious function causes an autoimmune response and Bateson-Dobzhansky-Muller incompatibility in rice. Mol. Genet. Genom. 283:4305–15
    [Google Scholar]
  118. 118. 
    Zhang C, Wang P, Tang D, Yang Z, Lu F et al. 2019. The genetic basis of inbreeding depression in potato. Nat. Genet. 51:3374–78
    [Google Scholar]
  119. 119. 
    Zhang S, Jiao Z, Liu L, Wang K, Zhong D et al. 2018. Enhancer-promoter interaction of SELF PRUNING 5G shapes photoperiod adaptation. Plant Physiol 178:41631–42
    [Google Scholar]
  120. 120. 
    Zong Y, Song Q, Li C, Jin S, Zhang D et al. 2018. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36:10950–53
    [Google Scholar]
  121. 121. 
    Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH et al. 2018. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36:121211–16
    [Google Scholar]
/content/journals/10.1146/annurev-genet-050720-122916
Loading
/content/journals/10.1146/annurev-genet-050720-122916
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error