1932

Abstract

Plants exhibit remarkable lineage plasticity, allowing them to regenerate organs that differ from their respective origins. Such developmental plasticity is dependent on the activity of pluripotent founder cells or stem cells residing in meristems. At the shoot apical meristem (SAM), the constant flow of cells requires continuing cell specification governed by a complex genetic network, with the WUSCHEL transcription factor and phytohormone cytokinin at its core. In this review, I discuss some intriguing recent discoveries that expose new principles and mechanisms of patterning and cell specification acting both at the SAM and prior to meristem organogenesis during shoot regeneration. I also highlight unanswered questions and future challenges in the study of SAM and meristem regeneration. Finally, I put forward a model describing stochastic events mediated by epigenetic factors to explain how the gene regulatory network might be initiated at the onset of shoot regeneration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071719-020439
2021-11-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-071719-020439.html?itemId=/content/journals/10.1146/annurev-genet-071719-020439&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adibi M, Yoshida S, Weijers D, Fleck C 2016. Centering the organizing center in the Arabidopsis thaliana shoot apical meristem by a combination of cytokinin signaling and self-organization. PLOS ONE 11:e0147830
    [Google Scholar]
  2. 2. 
    Adonsou KE, DesRochers A, Tremblay F, Thomas BR, Isabel N 2016. The clonal root system of balsam poplar in upland sites of Quebec and Alberta. Ecol. Evol. 6:6846–54
    [Google Scholar]
  3. 3. 
    Aggarwal P, Yadav RK, Reddy GV 2010. Identification of novel markers for stem-cell niche of Arabidopsis shoot apex. Gene Expr. Patterns 10:259–64
    [Google Scholar]
  4. 4. 
    Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador Á, de Folter S et al. 2010. Flower development. Arabidopsis Book 2010 8e0127
    [Google Scholar]
  5. 5. 
    Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N et al. 2011. Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. PNAS 108:16128–32
    [Google Scholar]
  6. 6. 
    Ashe HL, Briscoe J. 2006. The interpretation of morphogen gradients. Development 133:385–94
    [Google Scholar]
  7. 7. 
    Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc'h A, Carnero E et al. 2009. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 57:626–44
    [Google Scholar]
  8. 8. 
    Barton MK, Poethig RS. 1993. Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119:823–31
    [Google Scholar]
  9. 9. 
    Beeckman T, Burssens S, Inzé D. 2001. The peri-cell-cycle in Arabidopsis. J. Exp. Bot. 52:403–11
    [Google Scholar]
  10. 10. 
    Ben Khadra Y, Ferrario C, Di Benedetto C, Said K, Bonasoro F et al. 2015. Re-growth, morphogenesis, and differentiation during starfish arm regeneration. Wound Repair Regen 23:623–34
    [Google Scholar]
  11. 11. 
    Bernula D, Benkő P, Kaszler N, Domonkos I, Valkai I et al. 2020. Timely removal of exogenous cytokinin and the prevention of auxin transport from the shoot to the root affect the regeneration potential of Arabidopsis roots. Plant Cell Tissue Organ Cult 140:327–39
    [Google Scholar]
  12. 12. 
    Bideau L, Kerner P, Hui J, Vervoort M, Gazave E. 2021. Animal regeneration in the era of transcriptomics. Cell. Mol. Life Sci. 78:3941–56
    [Google Scholar]
  13. 13. 
    Birnbaum KD, Roudier F. 2017. Epigenetic memory and cell fate reprogramming in plants. Regeneration 4:15–20
    [Google Scholar]
  14. 14. 
    Birnbaum KD, Sanchez Alvarado A. 2008. Slicing across kingdoms: regeneration in plants and animals. Cell 132:697–710
    [Google Scholar]
  15. 15. 
    Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I et al. 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44
    [Google Scholar]
  16. 16. 
    Brand U, Grünewald M, Hobe M, Simon R 2002. Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol 129:565–75
    [Google Scholar]
  17. 17. 
    Busch W, Miotk A, Ariel FD, Zhao Z, Forner J et al. 2010. Transcriptional control of a plant stem cell niche. Dev. Cell 18:849–61
    [Google Scholar]
  18. 18. 
    Buzgariu W, Wenger Y, Tcaciuc N, Catunda-Lemos AP, Galliot B. 2018. Impact of cycling cells and cell cycle regulation on Hydra regeneration. Dev. Biol. 433:240–53
    [Google Scholar]
  19. 19. 
    Cao X, He Z, Guo L, Liu X 2015. Epigenetic mechanisms are critical for the regulation of WUSCHEL expression in floral meristems. Plant Physiol 168:1189–96
    [Google Scholar]
  20. 20. 
    Čapek D, Müller P. 2019. Positional information and tissue scaling during development and regeneration. Development 146:dev177709
    [Google Scholar]
  21. 21. 
    Carles CC, Fletcher JC. 2003. Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci 8:394–401
    [Google Scholar]
  22. 22. 
    Chandler JW, Werr W. 2015. Cytokinin–auxin crosstalk in cell type specification. Trends Plant Sci 20:291–300
    [Google Scholar]
  23. 23. 
    Chatfield SP, Capron R, Severino A, Penttila P-A, Alfred S et al. 2013. Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. Plant J. 73:798–813
    [Google Scholar]
  24. 24. 
    Che P, Gingerich DJ, Lall S, Howell SH 2002. Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14:2771–85
    [Google Scholar]
  25. 25. 
    Che P, Lall S, Howell SH 2007. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226:1183–94
    [Google Scholar]
  26. 26. 
    Chen CH, Poss KD. 2017. Regeneration genetics. Annu. Rev. Genet. 51:63–82
    [Google Scholar]
  27. 27. 
    Cheng Y, Liu H, Cao L, Wang S, Li Y et al. 2015. Down-regulation of multiple CDK inhibitor ICK/KRP genes promotes cell proliferation, callus induction and plant regeneration in Arabidopsis. Front. Plant Sci. 6:825
    [Google Scholar]
  28. 28. 
    Chickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM. 2012. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. PNAS 109:4002–7
    [Google Scholar]
  29. 29. 
    Clark SE, Williams RW, Meyerowitz EM 1997. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–85
    [Google Scholar]
  30. 30. 
    Dao TQ, Fletcher JC. 2017. CLE peptide-mediated signaling in shoot and vascular meristem development. Front. Biol. 12:406–20
    [Google Scholar]
  31. 31. 
    Daum G, Medzihradszky A, Suzaki T, Lohmann JU. 2014. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. PNAS 111:14619–24
    [Google Scholar]
  32. 32. 
    Davis EL, Rennie P, Steeves TA 1979. Further analytical and experimental studies on the shoot apex of Helianthus annuus: variable activity in the central zone. Can. J. Bot. 57:971–80
    [Google Scholar]
  33. 33. 
    DeYoung BJ, Clark SE. 2008. BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics 180:895–904
    [Google Scholar]
  34. 34. 
    Díaz-García S, Baonza A 2013. Pattern reorganization occurs independently of cell division during Drosophila wing disc regeneration in situ. PNAS 110:13032–37
    [Google Scholar]
  35. 35. 
    Dinsmore CE. 1992. The foundations of contemporary regeneration research: historical perspectives. Monogr. Dev. Biol. 23:1–27
    [Google Scholar]
  36. 36. 
    Dory M, Doleschall Z, Nagy SK, Ambrus H, Mészáros T et al. 2016. Kinase-Associated Phosphoisoform Assay: a novel candidate-based method to detect specific kinase-substrate phosphorylation interactions in vivo. BMC Plant Biol 16:204
    [Google Scholar]
  37. 37. 
    Duncan EM, Sánchez Alvarado A. 2019. Regulation of genomic output and (pluri)potency in regeneration. Annu. Rev. Genet. 53:327–46
    [Google Scholar]
  38. 38. 
    Efroni I. 2018. A conceptual framework for cell identity transitions in plants. Plant Cell Physiol 59:691–701
    [Google Scholar]
  39. 39. 
    El-Showk S, Ruonala R, Helariutta Y 2013. Crossing paths: cytokinin signalling and crosstalk. Development 140:1373–83
    [Google Scholar]
  40. 40. 
    Faulkner C. 2013. Receptor-mediated signaling at plasmodesmata. Front. . Plant Sci 4:521
    [Google Scholar]
  41. 41. 
    Fehér A. 2019. Callus, dedifferentiation, totipotency, somatic embryogenesis: what these terms mean in the era of molecular plant biology?. Front. Plant Sci. 10:536
    [Google Scholar]
  42. 42. 
    Feldmann KA, Marks MD. 1986. Rapid and efficient regeneration of plants from explants of Arabidopsis thaliana. Plant Sci 47:63–69
    [Google Scholar]
  43. 43. 
    Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–14
    [Google Scholar]
  44. 44. 
    Fuchs M, Lohmann JU. 2020. Aiming for the top: non-cell autonomous control of shoot stem cells in Arabidopsis. J. Plant Res. 133:297–309
    [Google Scholar]
  45. 45. 
    Gallois J-L, Nora FR, Mizukami Y, Sablowski R. 2004. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18:375–80
    [Google Scholar]
  46. 46. 
    Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM. 2009. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. PNAS 106:16529–34
    [Google Scholar]
  47. 47. 
    Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM. 2007. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–48
    [Google Scholar]
  48. 48. 
    Goss RJ. 1969. Principles of Regeneration New York: Academic
  49. 49. 
    Grandjean O, Vernoux T, Laufs P, Belcram K, Mizukami Y, Traas J. 2004. In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis. Plant Cell 16:74–87
    [Google Scholar]
  50. 50. 
    Gruel J, Landrein B, Tarr P, Schuster C, Refahi Y et al. 2016. An epidermis-driven mechanism positions and scales stem cell niches in plants. Sci. Adv. 2:e1500989
    [Google Scholar]
  51. 51. 
    Ha CM, Jun JH, Fletcher JC. 2010. Shoot apical meristem form and function. Curr. Top. Dev. Biol. 91:103–40
    [Google Scholar]
  52. 52. 
    Han H, Yan A, Li L, Zhu Y, Feng B et al. 2020. A signal cascade originated from epidermis defines apical-basal patterning of Arabidopsis shoot apical meristems. Nat. Commun. 11:1214
    [Google Scholar]
  53. 53. 
    Hoermayer L, Friml J. 2019. Targeted cell ablation-based insights into wound healing and restorative patterning. Curr. Opin. Plant Biol. 52:124–30
    [Google Scholar]
  54. 54. 
    Ikeda M, Mitsuda N, Ohme-Takagi M. 2009. Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell 21:3493–505
    [Google Scholar]
  55. 55. 
    Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M et al. 2017. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol 175:1158–74
    [Google Scholar]
  56. 56. 
    Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K 2016. Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–51
    [Google Scholar]
  57. 57. 
    Ikeuchi M, Rymen B, Sugimoto K 2020. How do plants transduce wound signals to induce tissue repair and organ regeneration?. Curr. Opin. Plant Biol. 57:72–77
    [Google Scholar]
  58. 58. 
    Ikeuchi M, Sugimoto K, Iwase A. 2013. Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–73
    [Google Scholar]
  59. 59. 
    Ishihara H, Sugimoto K, Tarr PT, Temman H, Kadokura S et al. 2019. Primed histone demethylation regulates shoot regenerative competency. Nat. Commun. 10:1786
    [Google Scholar]
  60. 60. 
    Iwase A, Mita K, Nonaka S, Ikeuchi M, Koizuka C et al. 2015. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. J. Plant Res. 128:389–97
    [Google Scholar]
  61. 61. 
    Kareem A, Durgaprasad K, Sugimoto K, Du Y, Pulianmackal AJ et al. 2015. PLETHORA genes control regeneration by a two-step mechanism. Curr. Biol. 25:1017–30
    [Google Scholar]
  62. 62. 
    Kieber JJ, Schaller GE 2018. Cytokinin signaling in plant development. Development 145:dev1149344
    [Google Scholar]
  63. 63. 
    Kim J-Y, Yuan Z, Jackson D 2003. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 130:4351–62
    [Google Scholar]
  64. 64. 
    Kim SY, Lee J, Eshed-Williams L, Zilberman D, Sung ZR 2012. EMF1 and PRC2 cooperate to repress key regulators of Arabidopsis development. PLOS Genet 8:e1002512
    [Google Scholar]
  65. 64a. 
    Kimura Y, Tasaka M, Torii KU, Uchida N 2018. ERECTA-family genes coordinate stem cell functions between the epidermal and internal layers of the shoot apical meristem. Development 145:dev156380
    [Google Scholar]
  66. 65. 
    Kitagawa M, Jackson D 2017. Plasmodesmata-mediated cell-to-cell communication in the shoot apical meristem: how stem cells talk. Plants 6:12
    [Google Scholar]
  67. 66. 
    Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A et al. 2013. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev. Cell 24:125–32
    [Google Scholar]
  68. 67. 
    Kupfer E. 1907. Studies in plant regeneration. Mem. Torrey Bot. Club 12:195–241
    [Google Scholar]
  69. 68. 
    Kwon CS, Chen C, Wagner D 2005. WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis. Genes Dev 19:992–1003
    [Google Scholar]
  70. 69. 
    Landau U, Asis L, Eshed Williams L. 2015. The ERECTA, CLAVATA and class III HD-ZIP pathways display synergistic interactions in regulating floral meristem activities. PLOS ONE 10:e0125408
    [Google Scholar]
  71. 70. 
    Landrein B, Formosa-Jordan P, Malivert A, Schuster C, Melnyk CW et al. 2018. Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins. PNAS 115:1382–87
    [Google Scholar]
  72. 71. 
    Lardon R, Wijnker E, Keurentjes J, Geelen D 2020. The genetic framework of shoot regeneration in Arabidopsis comprises master regulators and conditional fine-tuning factors. Commun. Biol. 3:549
    [Google Scholar]
  73. 72. 
    Laux T. 2003. The stem cell concept in plants: a matter of debate. Cell 113:281–83
    [Google Scholar]
  74. 73. 
    Laux T, Mayer KFX, Berger J, Jürgens G. 1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96
    [Google Scholar]
  75. 74. 
    Lee ZH, Hirakawa T, Yamaguchi N, Ito T 2019. The roles of plant hormones and their interactions with regulatory genes in determining meristem activity. Int. J. Mol. Sci. 20:4065
    [Google Scholar]
  76. 75. 
    Leibfried A, To JPC, Busch W, Stehling S, Kehle A et al. 2005. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–75
    [Google Scholar]
  77. 76. 
    Li S-M, Zheng H-X, Zhang X-S, Sui N. 2020. Cytokinins as central regulators during plant growth and stress response. Plant Cell Rep 40:271–82
    [Google Scholar]
  78. 77. 
    Li T, Yan A, Bhatia N, Altinok A, Afik E et al. 2019. Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche. Nat. Commun. 10:726
    [Google Scholar]
  79. 78. 
    Li W, Liu H, Cheng ZJ, Su YH, Han HN et al. 2011. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLOS Genet 7:e1002243
    [Google Scholar]
  80. 79. 
    Liu X, Kim YJ, Müller R, Yumul RE, Liu C et al. 2011. AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. Plant Cell 23:3654–70
    [Google Scholar]
  81. 80. 
    Liu Z, Dai X, Li J, Liu N, Liu X et al. 2020. The type-B cytokinin response regulator ARR1 inhibits shoot regeneration in an ARR12-dependent manner in Arabidopsis. Plant Cell 32:2271–91
    [Google Scholar]
  82. 81. 
    Mandel T, Candela H, Landau U, Asis L, Zelinger E et al. 2016. Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. Development 143:1612–22
    [Google Scholar]
  83. 82. 
    Mandel T, Moreau F, Kutsher Y, Fletcher JC, Carles CC, Eshed Williams L. 2014. The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity. Development 141:830–41
    [Google Scholar]
  84. 83. 
    Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ et al. 2005. Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17:3007–18
    [Google Scholar]
  85. 84. 
    Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–15
    [Google Scholar]
  86. 85. 
    Morgan TH. 1901. Regeneration in the egg, embryo, and adult. Am. Nat. 35:949–73
    [Google Scholar]
  87. 86. 
    Morrison SJ, Spradling AC. 2008. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611
    [Google Scholar]
  88. 87. 
    Motte H, Vereecke D, Geelen D, Werbrouck S 2014. The molecular path to in vitro shoot regeneration. Biotechnol. Adv. 32:107–21
    [Google Scholar]
  89. 88. 
    Müller B, Sheen J. 2007. Advances in cytokinin signaling. Science 318:68–69
    [Google Scholar]
  90. 89. 
    Müller R, Bleckmann A, Simon R. 2008. The receptor kinase CORYNE of Arabidopsis transmits the stem cell–limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20:934–46
    [Google Scholar]
  91. 90. 
    Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15:473–97
    [Google Scholar]
  92. 91. 
    Negin B, Shemer O, Sorek Y, Eshed Williams L. 2017. Shoot stem cell specification in roots by the WUSCHEL transcription factor. PLOS ONE 12:e0176093
    [Google Scholar]
  93. 92. 
    Nic-Can GI, Galaz-Ávalos RM, De-la-Peña C, Alcazar-Magaña A, Wrobel K, Loyola-Vargas VM 2015. Somatic embryogenesis: identified factors that lead to embryogenic repression. A case of species of the same genus. PLOS ONE 10:e0126414
    [Google Scholar]
  94. 93. 
    Pennings S, Liu KJ, Qian H. 2018. The stem cell niche: interactions between stem cells and their environment. Stem Cells Int 2018 4879379
    [Google Scholar]
  95. 94. 
    Perales M, Rodriguez K, Snipes S, Yadav RK, Diaz-Mendoza M, Reddy GV. 2016. Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. PNAS 113:E6298–306
    [Google Scholar]
  96. 95. 
    Perianez-Rodriguez J, Manzano C, Moreno-Risueno MA. 2014. Post-embryonic organogenesis and plant regeneration from tissues: two sides of the same coin?. Front. Plant Sci. 5:219
    [Google Scholar]
  97. 96. 
    Ramon-Mateu J, Ellison ST, Angelini TE, Martindale MQ. 2019. Regeneration in the ctenophore Mnemiopsis leidyi occurs in the absence of a blastema, requires cell division, and is temporally separable from wound healing. BMC Biol 17:80
    [Google Scholar]
  98. 97. 
    Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM. 2004. Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131:4225–37
    [Google Scholar]
  99. 98. 
    Reinhardt D, Frenz M, Mandel T, Kuhlemeier C. 2003. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130:4073–83
    [Google Scholar]
  100. 99. 
    Rodriguez K, Perales M, Snipes S, Yadav RK, Diaz-Mendoza M, Reddy GV. 2016. DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning. PNAS 113:E6307–15
    [Google Scholar]
  101. 100. 
    Rojo E, Sharma VK, Kovaleva V, Raikhel NV, Fletcher JC. 2002. CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14:969–77
    [Google Scholar]
  102. 101. 
    Rosspopoff O, Chelysheva L, Saffar J, Lecorgne L, Gey D et al. 2017. Direct conversion of root primordium into shoot meristem relies on timing of stem cell niche development. Development 144:1187–200
    [Google Scholar]
  103. 102. 
    Sablowski R. 2011. Plant stem cell niches: from signalling to execution. Curr. Opin. Plant Biol. 14:4–9
    [Google Scholar]
  104. 103. 
    Scheres B. 2001. Plant cell identity. The role of position and lineage. Plant Physiol 125:112–14
    [Google Scholar]
  105. 104. 
    Scheres B. 2005. Stem cells: a plant biology perspective. Cell 122:499–504
    [Google Scholar]
  106. 105. 
    Schnablová R, Herben T, Klimešová J. 2017. Shoot apical meristem and plant body organization: a cross-species comparative study. Ann. Bot. 120:833–43
    [Google Scholar]
  107. 106. 
    Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–44
    [Google Scholar]
  108. 107. 
    Schulze S, Schäfer BN, Parizotto EA, Voinnet O, Theres K. 2010. LOST MERISTEMS genes regulate cell differentiation of central zone descendants in Arabidopsis shoot meristems. Plant J. 64:668–78
    [Google Scholar]
  109. 108. 
    Sena G. 2014. Stem cells and regeneration in plants. Nephron. Exp. Nephrol. 126:35–39
    [Google Scholar]
  110. 109. 
    Shemer O, Landau U, Candela H, Zemach A, Eshed Williams L. 2015. Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation. Plant Sci. 238:251–61
    [Google Scholar]
  111. 110. 
    Shi Q, Liu P, Wang J, Xu J, Ning Q, Liu M. 2015. A novel in vivo shoot regeneration system via callus in woody fruit tree Chinese jujube (Ziziphus jujuba Mill.). Sci. Horticult 188:30–35
    [Google Scholar]
  112. 111. 
    Shin J, Bae S, Seo PJ. 2020. De novo shoot organogenesis during plant regeneration. J. Exp. Bot. 71:63–72
    [Google Scholar]
  113. 112. 
    Šimášková M, O'Brien JA, Khan M, Van Noorden G, Ötvös K et al. 2015. Cytokinin response factors regulate PIN-FORMED auxin transporters. Nat. Commun. 6:8717
    [Google Scholar]
  114. 113. 
    Skoog F, Miller CO. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11:118–30
    [Google Scholar]
  115. 114. 
    Skopelitis DS, Benkovics AH, Husbands AY, Timmermans MCP. 2017. Boundary formation through a direct threshold-based readout of mobile small RNA gradients. Dev. Cell 43:265–73.e6
    [Google Scholar]
  116. 115. 
    Skopelitis DS, Hill K, Klesen S, Marco CF, von Born P et al. 2018. Gating of miRNA movement at defined cell-cell interfaces governs their impact as positional signals. Nat. Commun. 9:3107
    [Google Scholar]
  117. 116. 
    Somssich M, Je BI, Simon R, Jackson D 2016. CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143:3238–48
    [Google Scholar]
  118. 117. 
    Steeves TA, Sussex IM. 1989. Patterns in Plant Development New York: Cambridge Univ. Press
  119. 118. 
    Su Y-H, Liu Y-B, Zhang X-S. 2011. Auxin–cytokinin interaction regulates meristem development. Mol. Plant 4:616–25
    [Google Scholar]
  120. 119. 
    Su YH, Zhou C, Li YJ, Yu Y, Tang LP et al. 2020. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem. PNAS 117:22561–71
    [Google Scholar]
  121. 120. 
    Sun B, Zhou Y, Cai J, Shang E, Yamaguchi N et al. 2019. Integration of transcriptional repression and polycomb-mediated silencing of WUSCHEL in floral meristems. Plant Cell 31:1488–505
    [Google Scholar]
  122. 121. 
    Takanashi H, Sumiyoshi H, Mogi M, Hayashi Y, Ohnishi T, Tsutsumi N 2018. miRNAs control HAM1 functions at the single-cell-layer level and are essential for normal embryogenesis in Arabidopsis. Plant Mol. Biol. 96:627–40
    [Google Scholar]
  123. 122. 
    Tanaka EM. 2003. Regeneration: If they can do it, why can't we?. Cell 113:559–62
    [Google Scholar]
  124. 123. 
    Tian X, Zhang C, Xu J. 2018. Control of cell fate reprogramming towards de novo shoot organogenesis. Plant Cell Physiol 59:713–19
    [Google Scholar]
  125. 124. 
    To JPC, Haberer G, Ferreira FJ, Deruère J, Mason MG et al. 2004. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16:658–71
    [Google Scholar]
  126. 125. 
    To JPC, Kieber JJ. 2008. Cytokinin signaling: two-components and more. Trends Plant Sci 13:85–92
    [Google Scholar]
  127. 126. 
    Truskina J, Vernoux T. 2018. The growth of a stable stationary structure: coordinating cell behavior and patterning at the shoot apical meristem. Curr. Opin. Plant Biol. 41:83–88
    [Google Scholar]
  128. 127. 
    Turing AM. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237 37–72
    [Google Scholar]
  129. 128. 
    Uchida N, Shimada M, Tasaka M. 2013. ERECTA-family receptor kinases regulate stem cell homeostasis via buffering its cytokinin responsiveness in the shoot apical meristem. Plant Cell Physiol 54:343–51
    [Google Scholar]
  130. 129. 
    Uchida N, Torii KU. 2019. Stem cells within the shoot apical meristem: identity, arrangement and communication. Cell. Mol. Life Sci. 76:1067–80
    [Google Scholar]
  131. 130. 
    Valvekens D, Van Montagu M, Van Lijsebettens M. 1988. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. PNAS 85:5536–40
    [Google Scholar]
  132. 131. 
    van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B 1997. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390:287–89
    [Google Scholar]
  133. 132. 
    Wahl V, Brand LH, Guo Y-L, Schmid M. 2010. The FANTASTIC FOUR proteins influence shoot meristem size in Arabidopsis thaliana. BMC Plant Biol 10:285
    [Google Scholar]
  134. 133. 
    Wang J, Su Y, Kong X, Ding Z, Zhang XS 2020. Initiation and maintenance of plant stem cells in root and shoot apical meristems. aBIOTECH 1:194–204
    [Google Scholar]
  135. 134. 
    Wolpert L. 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25:1–47
    [Google Scholar]
  136. 135. 
    Wybouw B, De Rybel B. 2019. Cytokinin—a developing story. Trends Plant Sci 24:177–85
    [Google Scholar]
  137. 136. 
    Xie M, Chen H, Huang L, O'Neil RC, Shokhirev MN, Ecker JR 2018. A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. Nat. Commun. 9:1604
    [Google Scholar]
  138. 137. 
    Xu L, Huang H. 2014. Genetic and epigenetic controls of plant regeneration. Curr. Top. Dev. Biol. 108:1–33
    [Google Scholar]
  139. 138. 
    Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PG et al. 2011. Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333:1141–44
    [Google Scholar]
  140. 139. 
    Xue X-Y, Zhao B, Chao L-M, Chen D-Y, Cui W-R et al. 2014. Interaction between two timing microRNAs controls trichome distribution in Arabidopsis. PLOS Genet 10:e1004266
    [Google Scholar]
  141. 140. 
    Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, Reddy GV 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25:2025–30
    [Google Scholar]
  142. 141. 
    Yadav RK, Tavakkoli M, Reddy GV 2010. WUSCHEL mediates stem cell homeostasis by regulating stem cell number and patterns of cell division and differentiation of stem cell progenitors. Development 137:3581–89
    [Google Scholar]
  143. 142. 
    Yu LP, Simon EJ, Trotochaud AE, Clark SE. 2000. POLTERGEIST functions to regulate meristem development downstream of the CLAVATA loci. Development 127:1661–70
    [Google Scholar]
  144. 143. 
    Zhang C, Wang J, Wenkel S, Chandler JW, Werr W, Jiao Y 2018. Spatiotemporal control of axillary meristem formation by interacting transcriptional regulators. Development 145:dev158352
    [Google Scholar]
  145. 144. 
    Zhang TQ, Lian H, Tang H, Dolezal K, Zhou CM et al. 2015. An intrinsic microRNA timer regulates progressive decline in shoot regenerative capacity in plants. Plant Cell 27:349–60
    [Google Scholar]
  146. 145. 
    Zhang TQ, Lian H, Zhou CM, Xu L, Jiao Y, Wang JW 2017. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 29:1073–87
    [Google Scholar]
  147. 146. 
    Zhang Z, Tucker E, Hermann M, Laux T 2017. A molecular framework for the embryonic initiation of shoot meristem stem cells. Dev. Cell 40:264–77.e4
    [Google Scholar]
  148. 147. 
    Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A et al. 2010. Hormonal control of the shoot stem-cell niche. Nature 465:1089–92
    [Google Scholar]
  149. 148. 
    Zhou Y, Liu X, Engstrom EM, Nimchuk ZL, Pruneda-Paz JL et al. 2015. Control of plant stem cell function by conserved interacting transcriptional regulators. Nature 517:377–80
    [Google Scholar]
  150. 149. 
    Zhou Y, Yan A, Han H, Li T, Geng Y et al. 2018. HAIRY MERISTEM with WUSCHEL confines CLAVATA3 expression to the outer apical meristem layers. Science 361:502–6
    [Google Scholar]
  151. 150. 
    Zuo J, Niu Q-W, Frugis G, Chua N-H. 2002. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J.: Cell Mol. Biol. 30:349–59
    [Google Scholar]
  152. 151. 
    Zürcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, Müller B. 2013. A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol 161:1066–75
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071719-020439
Loading
/content/journals/10.1146/annurev-genet-071719-020439
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error