1932

Abstract

In animals, small noncoding RNAs that are expressed in the germline and transmitted to progeny control gene expression to promote fertility. Germline-expressed small RNAs, including endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), drive the repression of deleterious transcripts such as transposons, repetitive elements, and pseudogenes. Recent studies have highlighted an important role for small RNAs in transgenerational epigenetic inheritance via regulation of heritable chromatin marks; therefore, small RNAs are thought to convey an epigenetic memory of genomic self and nonself elements. Small RNA pathways are highly conserved in metazoans and have been best described for the model organism . In this review, we describe the biogenesis, regulation, and function of endo-siRNAs and piRNAs, along with recent insights into how these distinct pathways are integrated to collectively regulate germline gene expression, transgenerational epigenetic inheritance, and ultimately, animal fertility.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112618-043505
2019-12-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/genet/53/1/annurev-genet-112618-043505.html?itemId=/content/journals/10.1146/annurev-genet-112618-043505&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahmed S, Hodgkin J. 2000. MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature 403:159–64
    [Google Scholar]
  2. 2. 
    Akay A, Di Domenico T, Suen KM, Nabih A, Parada GE et al. 2017. The helicase Aquarius/EMB-4 is required to overcome intronic barriers to allow nuclear RNAi pathways to heritably silence transcription. Dev. Cell 42:241–46
    [Google Scholar]
  3. 3. 
    Alcazar RM, Lin R, Fire AZ 2008. Transmission dynamics of heritable silencing induced by double-stranded RNA in Caenorhabditis elegans. Genetics 180:1275–88
    [Google Scholar]
  4. 4. 
    Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D 2003. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol 13:807–18
    [Google Scholar]
  5. 5. 
    Andersen PR, Tirian L, Vunjak M, Brennecke J 2017. A heterochromatin-dependent transcription machinery drives piRNA expression. Nature 549:54–59
    [Google Scholar]
  6. 6. 
    Aoki K, Moriguchi H, Yoshioka T, Okawa K, Tabara H 2007. In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. EMBO J 26:5007–19
    [Google Scholar]
  7. 7. 
    Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P et al. 2006. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–7
    [Google Scholar]
  8. 8. 
    Arico JK, Katz DJ, van der Vlag J, Kelly WG 2011. Epigenetic patterns maintained in early Caenorhabditis elegans embryos can be established by gene activity in the parental germ cells. PLOS Genet 7:e1001391
    [Google Scholar]
  9. 9. 
    Ashe A, Sapetschnig A, Weick E-M, Mitchell J, Bagijn MP et al. 2012. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150:88–99
    [Google Scholar]
  10. 10. 
    Avgousti DC, Palani S, Sherman Y, Grishok A 2012. CSR-1 RNAi pathway positively regulates histone expression in C. elegans. EMBO J 31:3821–32
    [Google Scholar]
  11. 11. 
    Bagijn MP, Goldstein LD, Sapetschnig A, Weick E-M, Bouasker S et al. 2012. Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 337:574–78
    [Google Scholar]
  12. 12. 
    Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N et al. 2008. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31:67–78
    [Google Scholar]
  13. 13. 
    Billi AC, Alessi AF, Khivansara V, Han T, Freeberg M et al. 2012. The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates and stabilizes select subclasses of germline small RNAs. PLOS Genet 8:e1002617
    [Google Scholar]
  14. 14. 
    Billi AC, Fischer SEJ, Kim JK 2014. Endogenous RNAi pathways in C. elegans. WormBook1–49 http://www.wormbook.org/chapters/www_endoRNAipathwys/endoRNAipathwys.html
    [Google Scholar]
  15. 15. 
    Billi AC, Freeberg MA, Day AM, Chun SY, Khivansara V, Kim JK 2013. A conserved upstream motif orchestrates autonomous, germline-enriched expression of Caenorhabditis elegans piRNAs. PLOS Genet 9:e1003392
    [Google Scholar]
  16. 16. 
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C et al. 2009. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–32
    [Google Scholar]
  17. 17. 
    Brennecke J, Aravin AA, Stark A, Dus M, Kellis M et al. 2007. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–103
    [Google Scholar]
  18. 18. 
    Buckley BA, Burkhart KB, Gu SG, Spracklin G, Kershner A et al. 2012. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489:447–51
    [Google Scholar]
  19. 19. 
    Burkhart KB, Guang S, Buckley BA, Wong L, Bochner AF, Kennedy S 2011. A pre-mRNA-associating factor links endogenous siRNAs to chromatin regulation. PLOS Genet 7:e1002249
    [Google Scholar]
  20. 20. 
    Burton NO, Burkhart KB, Kennedy S 2011. Nuclear RNAi maintains heritable gene silencing in Caenorhabditis elegans. PNAS 108:19683–88
    [Google Scholar]
  21. 21. 
    Campbell AC, Updike DL. 2015. CSR-1 and P granules suppress sperm-specific transcription in the C. elegans germline. Development 142:1745–55
    [Google Scholar]
  22. 22. 
    Cecere G, Hoersch S, O'Keeffe S, Sachidanandam R, Grishok A 2014. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape. Nat. Struct. Mol. Biol. 21:358–65
    [Google Scholar]
  23. 23. 
    Cecere G, Zheng GXY, Mansisidor AR, Klymko KE, Grishok A 2012. Promoters recognized by forkhead proteins exist for individual 21U-RNAs. Mol. Cell 47:734–45
    [Google Scholar]
  24. 24. 
    Chu DS, Liu H, Nix P, Wu TF, Ralston EJ et al. 2006. Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature 443:101–5
    [Google Scholar]
  25. 25. 
    Claycomb JM, Batista PJ, Pang KM, Gu W, Vasale JJ et al. 2009. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139:123–34
    [Google Scholar]
  26. 26. 
    Collins J, Saari B, Anderson P 1987. Activation of a transposable element in the germ line but not the soma of Caenorhabditis elegans. Nature 328:726–28
    [Google Scholar]
  27. 27. 
    Conine CC, Batista PJ, Gu W, Claycomb JM, Chaves DA et al. 2010. Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans. PNAS 107:3588–93
    [Google Scholar]
  28. 28. 
    Conine CC, Moresco JJ, Gu W, Shirayama M, Conte D Jr et al. 2013. Argonautes promote male fertility and provide a paternal memory of germline gene expression in C. elegans. Cell 155:1532–44
    [Google Scholar]
  29. 29. 
    Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ et al. 2008. Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol. Cell 31:79–90
    [Google Scholar]
  30. 30. 
    de Albuquerque BFM, Luteijn MJ, Cordeiro Rodrigues RJ, van Bergeijk P, Waaijers S et al. 2014. PID-1 is a novel factor that operates during 21U-RNA biogenesis in Caenorhabditis elegans. Genes Dev 28:683–88
    [Google Scholar]
  31. 31. 
    de Albuquerque BFM, Placentino M, Ketting RF 2015. Maternal piRNAs are essential for germline development following de novo establishment of endo-siRNAs in Caenorhabditis elegans. Dev. Cell 34:448–56
    [Google Scholar]
  32. 32. 
    de Wit E, Linsen SEV, Cuppen E, Berezikov E 2009. Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Res 19:2064–74
    [Google Scholar]
  33. 33. 
    Dumesic PA, Natarajan P, Chen C, Drinnenberg IA, Schiller BJ et al. 2013. Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell 152:957–68
    [Google Scholar]
  34. 34. 
    Fassnacht C, Tocchini C, Kumari P, Gaidatzis D, Stadler MB, Ciosk R 2018. The CSR-1 endogenous RNAi pathway ensures accurate transcriptional reprogramming during the oocyte-to-embryo transition in Caenorhabditis elegans. PLOS Genet 14:e1007252
    [Google Scholar]
  35. 35. 
    Fire A, Alcazar R, Tan F 2006. Unusual DNA structures associated with germline genetic activity in Caenorhabditis elegans. Genetics 173:1259–73
    [Google Scholar]
  36. 36. 
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–11
    [Google Scholar]
  37. 37. 
    Frøkjaer-Jensen C, Jain N, Hansen L, Davis MW, Li Y et al. 2016. An abundant class of non-coding DNA can prevent stochastic gene silencing in the C. elegans germline. Cell 166:343–57
    [Google Scholar]
  38. 38. 
    Gartner A, Milstein S, Ahmed S, Hodgkin J, Hengartner MO 2000. A conserved checkpoint pathway mediates DNA damage–induced apoptosis and cell cycle arrest in C. elegans. Mol. Cell 5:435–43
    [Google Scholar]
  39. 39. 
    Gaydos LJ, Wang W, Strome S 2014. Gene repression. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science 345:1515–18
    [Google Scholar]
  40. 40. 
    Gent JI, Lamm AT, Pavelec DM, Maniar JM, Parameswaran P et al. 2010. Distinct phases of siRNA synthesis in an endogenous RNAi pathway in C. elegans soma. Mol. Cell 37:679–89
    [Google Scholar]
  41. 41. 
    Gerson-Gurwitz A, Wang S, Sathe S, Green R, Yeo GW et al. 2016. A small RNA-catalytic Argonaute pathway tunes germline transcript levels to ensure embryonic divisions. Cell 165:396–409
    [Google Scholar]
  42. 42. 
    Girard A, Sachidanandam R, Hannon GJ, Carmell MA 2006. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202
    [Google Scholar]
  43. 43. 
    Goh W-SS, Seah JWE, Harrison EJ, Chen C, Hammell CM, Hannon GJ 2014. A genome-wide RNAi screen identifies factors required for distinct stages of C. elegans piRNA biogenesis. Genes Dev 28:797–807
    [Google Scholar]
  44. 44. 
    Grishok A, Tabara H, Mello CC 2000. Genetic requirements for inheritance of RNAi in C. elegans. Science 287:2494–97
    [Google Scholar]
  45. 45. 
    Grivna ST, Beyret E, Wang Z, Lin H 2006. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20:1709–14
    [Google Scholar]
  46. 46. 
    Grivna ST, Pyhtila B, Lin H 2006. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. PNAS 103:13415–20
    [Google Scholar]
  47. 47. 
    Gu SG, Pak J, Guang S, Maniar JM, Kennedy S, Fire A 2012. Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat. Genet. 44:157–64
    [Google Scholar]
  48. 48. 
    Gu W, Lee H-C, Chaves D, Youngman EM, Pazour GJ et al. 2012. CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 151:1488–500
    [Google Scholar]
  49. 49. 
    Gu W, Shirayama M, Conte D Jr, Vasale J, Batista PJ et al. 2009. Distinct Argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol. Cell 36:231–44
    [Google Scholar]
  50. 50. 
    Guang S, Bochner AF, Burkhart KB, Burton N, Pavelec DM, Kennedy S 2010. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 465:1097–101
    [Google Scholar]
  51. 51. 
    Guang S, Bochner AF, Pavelec DM, Burkhart KB, Harding S et al. 2008. An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science 321:537–41
    [Google Scholar]
  52. 52. 
    Hall IM, Shankaranarayana GD, Noma K-I, Ayoub N, Cohen A, Grewal SIS 2002. Establishment and maintenance of a heterochromatin domain. Science 297:2232–37
    [Google Scholar]
  53. 53. 
    Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C et al. 2009. 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. PNAS 106:18674–79
    [Google Scholar]
  54. 54. 
    Houri-Zeevi L, Korem Y, Sheftel H, Faigenbloom L, Toker IA et al. 2016. A tunable mechanism determines the duration of the transgenerational small RNA inheritance in C. elegans. Cell 165:88–99
    [Google Scholar]
  55. 55. 
    Jih G, Iglesias N, Currie MA, Bhanu NV, Paulo JA et al. 2017. Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription. Nature 547:463–67
    [Google Scholar]
  56. 56. 
    Kalinava N, Ni JZ, Gajic Z, Kim M, Ushakov H, Gu SG 2018. C. elegans heterochromatin factor SET-32 plays an essential role in transgenerational establishment of nuclear RNAi-mediated epigenetic silencing. Cell Rep 25:2273–84.e3
    [Google Scholar]
  57. 57. 
    Kalinava N, Ni JZ, Peterman K, Chen E, Gu SG 2017. Decoupling the downstream effects of germline nuclear RNAi reveals that H3K9me3 is dispensable for heritable RNAi and the maintenance of endogenous siRNA-mediated transcriptional silencing in Caenorhabditis elegans.Epigenet. Chromatin 10:6
    [Google Scholar]
  58. 58. 
    Kamminga LM, van Wolfswinkel JC, Luteijn MJ, Kaaij LJT, Bagijn MP et al. 2012. Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans. PLOS Genet 8:e1002702
    [Google Scholar]
  59. 59. 
    Kasper DM, Wang G, Gardner KE, Johnstone TG, Reinke V 2014. The C. elegans SNAPc component SNPC-4 coats piRNA domains and is globally required for piRNA abundance. Dev. Cell 31:145–58
    [Google Scholar]
  60. 60. 
    Kawasaki I, Shim YH, Kirchner J, Kaminker J, Wood WB, Strome S 1998. PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94:635–45
    [Google Scholar]
  61. 61. 
    Kelly WG, Xu S, Montgomery MK, Fire A 1997. Distinct requirements for somatic and germline expression of a generally expressed Caenorhabditis elegans gene. Genetics 146:227–38
    [Google Scholar]
  62. 62. 
    Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH 1999. mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99:133–41
    [Google Scholar]
  63. 63. 
    Lee H-C, Gu W, Shirayama M, Youngman E, Conte D Jr, Mello CC 2012. C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 150:78–87
    [Google Scholar]
  64. 64. 
    Lev I, Seroussi U, Gingold H, Bril R, Anava S, Rechavi O 2017. MET-2-dependent H3K9 methylation suppresses transgenerational small RNA inheritance. Curr. Biol. 27:1138–47
    [Google Scholar]
  65. 65. 
    Luteijn MJ, van Bergeijk P, Kaaij LJT, Almeida MV, Roovers EF et al. 2012. Extremely stable Piwi-induced gene silencing in Caenorhabditis elegans. EMBO J 31:3422–30
    [Google Scholar]
  66. 66. 
    Mao H, Zhu C, Zong D, Weng C, Yang X et al. 2015. The Nrde pathway mediates small-RNA-directed histone H3 lysine 27 trimethylation in Caenorhabditis elegans.Curr. Biol 25:2398–403
    [Google Scholar]
  67. 67. 
    Meier B, Barber LJ, Liu Y, Shtessel L, Boulton SJ et al. 2009. The MRT-1 nuclease is required for DNA crosslink repair and telomerase activity in vivo in Caenorhabditis elegans. EMBO J 28:3549–63
    [Google Scholar]
  68. 68. 
    Minkina O, Hunter CP. 2017. Stable heritable germline silencing directs somatic silencing at an endogenous locus. Mol. Cell 65:659–70.e5
    [Google Scholar]
  69. 69. 
    Mittag T, Parker R. 2018. Multiple modes of protein-protein interactions promote RNP granule assembly. J. Mol. Biol. 430:4636–49
    [Google Scholar]
  70. 70. 
    Montgomery TA, Rim Y-S, Zhang C, Dowen RH, Phillips CM et al. 2012. PIWI associated siRNAs and piRNAs specifically require the Caenorhabditis elegans HEN1 ortholog henn-1. PLOS Genet 8:e1002616
    [Google Scholar]
  71. 71. 
    Newman MA, Ji F, Fischer SEJ, Anselmo A, Sadreyev RI, Ruvkun G 2018. The surveillance of pre-mRNA splicing is an early step in C. elegans RNAi of endogenous genes. Genes Dev 32:670–81
    [Google Scholar]
  72. 72. 
    Ni JZ, Chen E, Gu SG 2014. Complex coding of endogenous siRNA, transcriptional silencing and H3K9 methylation on native targets of germline nuclear RNAi in C. elegans. BMC Genom 15:1157
    [Google Scholar]
  73. 73. 
    Ni JZ, Kalinava N, Chen E, Huang A, Trinh T, Gu SG 2016. A transgenerational role of the germline nuclear RNAi pathway in repressing heat stress-induced transcriptional activation in C. elegans. Epigenet. Chromatin 9:3
    [Google Scholar]
  74. 74. 
    Ni JZ, Kalinava N, Mendoza SG, Gu SG 2018. The spatial and temporal dynamics of nuclear RNAi-targeted retrotransposon transcripts in Caenorhabditis elegans. Development 145:dev167346
    [Google Scholar]
  75. 75. 
    Noma K-I, Sugiyama T, Cam H, Verdel A, Zofall M et al. 2004. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat. Genet. 36:1174–80
    [Google Scholar]
  76. 76. 
    Pak J, Fire A. 2007. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315:241–44
    [Google Scholar]
  77. 77. 
    Pak J, Maniar JM, Mello CC, Fire A 2012. Protection from feed-forward amplification in an amplified RNAi mechanism. Cell 151:885–99
    [Google Scholar]
  78. 78. 
    Perales R, Pagano D, Wan G, Fields BD, Saltzman AL, Kennedy SG 2018. Transgenerational epigenetic inheritance is negatively regulated by the HERI-1 chromodomain protein. Genetics 210:1287–99
    [Google Scholar]
  79. 79. 
    Phillips CM, Brown KC, Montgomery BE, Ruvkun G, Montgomery TA 2015. piRNAs and piRNA-dependent siRNAs protect conserved and essential C. elegans genes from misrouting into the RNAi pathway. Dev. Cell 34:457–65
    [Google Scholar]
  80. 80. 
    Phillips CM, Montgomery BE, Breen PC, Roovers EF, Rim Y-S et al. 2014. MUT-14 and SMUT-1 DEAD box RNA helicases have overlapping roles in germline RNAi and endogenous siRNA formation. Curr. Biol. 24:839–44
    [Google Scholar]
  81. 81. 
    Phillips CM, Montgomery TA, Breen PC, Ruvkun G 2012. MUT-16 promotes formation of perinuclear Mutator foci required for RNA silencing in the C. elegans germline. Genes Dev 26:1433–44
    [Google Scholar]
  82. 82. 
    Ruby JG, Jan C, Player C, Axtell MJ, Lee W et al. 2006. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–207
    [Google Scholar]
  83. 83. 
    Sakaguchi A, Sarkies P, Simon M, Doebley A-L, Goldstein LD et al. 2014. Caenorhabditis elegans RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA populations. PNAS 111:E4323–31
    [Google Scholar]
  84. 84. 
    Samson M, Jow MM, Wong CCL, Fitzpatrick C, Aslanian A et al. 2014. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans. PLOS Genet 10:e1004588
    [Google Scholar]
  85. 85. 
    Sapetschnig A, Sarkies P, Lehrbach NJ, Miska EA 2015. Tertiary siRNAs mediate paramutation in C. elegans. PLOS Genet 11:e1005078
    [Google Scholar]
  86. 86. 
    Seth M, Shirayama M, Gu W, Ishidate T, Conte D Jr, Mello CC 2013. The C. elegans CSR-1 Argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev. Cell 27:656–63
    [Google Scholar]
  87. 87. 
    Seth M, Shirayama M, Tang W, Shen E-Z, Tu S et al. 2018. The coding regions of germline mRNAs confer sensitivity to Argonaute regulation in C. elegans. Cell Rep 22:2254–64
    [Google Scholar]
  88. 88. 
    She X, Xu X, Fedotov A, Kelly WG, Maine EM 2009. Regulation of heterochromatin assembly on unpaired chromosomes during Caenorhabditis elegans meiosis by components of a small RNA-mediated pathway. PLOS Genet 5:e1000624
    [Google Scholar]
  89. 89. 
    Shen E-Z, Chen H, Ozturk AR, Tu S, Shirayama M et al. 2018. Identification of piRNA binding sites reveals the Argonaute regulatory landscape of the C. elegans germline. Cell 172:937–51.e18
    [Google Scholar]
  90. 90. 
    Shirayama M, Seth M, Lee H-C, Gu W, Ishidate T et al. 2012. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150:65–77
    [Google Scholar]
  91. 91. 
    Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S et al. 2001. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–76
    [Google Scholar]
  92. 92. 
    Sijen T, Plasterk RHA. 2003. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426:310–14
    [Google Scholar]
  93. 93. 
    Sijen T, Steiner FA, Thijssen KL, Plasterk RHA 2007. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315:244–47
    [Google Scholar]
  94. 94. 
    Simon M, Sarkies P, Ikegami K, Doebley A-L, Goldstein LD et al. 2014. Reduced insulin/IGF-1 signaling restores germ cell immortality to Caenorhabditis elegans Piwi mutants. Cell Rep 7:762–73
    [Google Scholar]
  95. 95. 
    Spracklin G, Fields B, Wan G, Becker D, Wallig A et al. 2017. The RNAi inheritance machinery of Caenorhabditis elegans. Genetics 206:1403–16
    [Google Scholar]
  96. 96. 
    Strome S, Wood WB. 1982. Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. PNAS 79:1558–62
    [Google Scholar]
  97. 97. 
    Strome S, Wood WB. 1983. Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell 35:15–25
    [Google Scholar]
  98. 98. 
    Tabach Y, Billi AC, Hayes GD, Newman MA, Zuk O et al. 2013. Identification of small RNA pathway genes using patterns of phylogenetic conservation and divergence. Nature 493:694–98
    [Google Scholar]
  99. 99. 
    Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A et al. 1999. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99:123–32
    [Google Scholar]
  100. 100. 
    Tabuchi TM, Rechtsteiner A, Jeffers TE, Egelhofer TA, Murphy CT, Strome S 2018. Caenorhabditis elegans sperm carry a histone-based epigenetic memory of both spermatogenesis and oogenesis. Nat. Commun. 9:4310
    [Google Scholar]
  101. 101. 
    Talsky KB, Collins K. 2010. Initiation by a eukaryotic RNA-dependent RNA polymerase requires looping of the template end and is influenced by the template-tailing activity of an associated uridyltransferase. J. Biol. Chem. 285:27614–23
    [Google Scholar]
  102. 102. 
    Tang W, Tu S, Lee H-C, Weng Z, Mello CC 2016. The RNase PARN-1 trims piRNA 3′ ends to promote transcriptome surveillance in C. elegans. Cell 164:974–84
    [Google Scholar]
  103. 103. 
    Tijsterman M, May RC, Simmer F, Okihara KL, Plasterk RHA 2004. Genes required for systemic RNA interference in Caenorhabditis elegans. Curr. Biol 14:111–16
    [Google Scholar]
  104. 104. 
    Tijsterman M, Pothof J, Plasterk RHA 2002. Frequent germline mutations and somatic repeat instability in DNA mismatch-repair-deficient Caenorhabditis elegans. Genetics 161:651–60
    [Google Scholar]
  105. 105. 
    Tsai H-Y, Chen C-CG, Conte D Jr, Moresco JJ, Chaves DA et al. 2015. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi. Cell 160:407–19
    [Google Scholar]
  106. 106. 
    Tu S, Wu MZ, Wang J, Cutter AD, Weng Z, Claycomb JM 2015. Comparative functional characterization of the CSR-1 22G-RNA pathway in Caenorhabditis nematodes. Nucleic Acids Res 43:208–24
    [Google Scholar]
  107. 107. 
    Tyc KM, Nabih A, Wu MZ, Wedeles CJ, Sobotka JA, Claycomb JM 2017. The conserved intron binding protein EMB-4 plays differential roles in germline small RNA pathways of C. elegans. Dev. Cell 42:256–70.e6
    [Google Scholar]
  108. 108. 
    Uebel CJ, Anderson DC, Mandarino LM, Manage KI, Aynaszyan S, Phillips CM 2018. Distinct regions of the intrinsically disordered protein MUT-16 mediate assembly of a small RNA amplification complex and promote phase separation of Mutator foci. PLOS Genet 14:e1007542
    [Google Scholar]
  109. 109. 
    Updike DL, Strome S. 2009. A genomewide RNAi screen for genes that affect the stability, distribution and function of P granules in Caenorhabditis elegans. Genetics 183:1397–419
    [Google Scholar]
  110. 110. 
    van Wolfswinkel JC, Claycomb JM, Batista PJ, Mello CC, Berezikov E, Ketting RF 2009. CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs. Cell 139:135–48
    [Google Scholar]
  111. 111. 
    Vasale JJ, Gu W, Thivierge C, Batista PJ, Claycomb JM et al. 2010. Sequential rounds of RNA-dependent RNA transcription drive endogenous small-RNA biogenesis in the ERGO-1/Argonaute pathway. PNAS 107:3582–87
    [Google Scholar]
  112. 112. 
    Vastenhouw NL, Brunschwig K, Okihara KL, Müller F, Tijsterman M, Plasterk RHA 2006. Gene expression: long-term gene silencing by RNAi. Nature 442:882
    [Google Scholar]
  113. 113. 
    Vastenhouw NL, Fischer SEJ, Robert VJP, Thijssen KL, Fraser AG et al. 2003. A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr. Biol 13:1311–16
    [Google Scholar]
  114. 114. 
    Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–37
    [Google Scholar]
  115. 115. 
    Vought VE, Ohmachi M, Lee M-H, Maine EM 2005. EGO-1, a putative RNA-directed RNA polymerase, promotes germline proliferation in parallel with GLP-1/Notch signaling and regulates the spatial organization of nuclear pore complexes and germline P granules in Caenorhabditis elegans. Genetics 170:1121–32
    [Google Scholar]
  116. 116. 
    Wan G, Fields BD, Spracklin G, Shukla A, Phillips CM, Kennedy S 2018. Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance. Nature 557:679–83
    [Google Scholar]
  117. 117. 
    Wang G, Reinke V. 2008. A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr. Biol. 18:861–67
    [Google Scholar]
  118. 118. 
    Wedeles CJ, Wu MZ, Claycomb JM 2013. Protection of germline gene expression by the C. elegans Argonaute CSR-1. Dev. Cell 27:664–71
    [Google Scholar]
  119. 119. 
    Weick E-M, Sarkies P, Silva N, Chen RA, Moss SMM et al. 2014. PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in C. elegans. Genes Dev 28:783–96
    [Google Scholar]
  120. 120. 
    Weiser NE, Yang DX, Feng S, Kalinava N, Brown KC et al. 2017. MORC-1 integrates nuclear RNAi and transgenerational chromatin architecture to promote germline immortality. Dev. Cell 41:408–23.e7
    [Google Scholar]
  121. 121. 
    Weng C, Kosalka J, Berkyurek AC, Stempor P, Feng X et al. 2019. The USTC co-opts an ancient machinery to drive piRNA transcription in C. elegans. Genes Dev 33:90–102
    [Google Scholar]
  122. 122. 
    Woodhouse RM, Buchmann G, Hoe M, Harney DJ, Low JKK et al. 2018. Chromatin modifiers SET-25 and SET-32 are required for establishment but not long-term maintenance of transgenerational epigenetic inheritance. Cell Rep 25:2259–72.e5
    [Google Scholar]
  123. 123. 
    Xu F, Feng X, Chen X, Weng C, Yan Q et al. 2018. A cytoplasmic Argonaute protein promotes the inheritance of RNAi. Cell Rep 23:2482–94
    [Google Scholar]
  124. 124. 
    Yang H, Vallandingham J, Shiu P, Li H, Hunter CP, Mak HY 2014. The DEAD box helicase RDE-12 promotes amplification of RNAi in cytoplasmic foci in C. elegans.Curr. Biol 24:832–38
    [Google Scholar]
  125. 125. 
    Yang H, Zhang Y, Vallandingham J, Li H, Florens L, Mak HY 2012. The RDE-10/RDE-11 complex triggers RNAi-induced mRNA degradation by association with target mRNA in C. elegans. Genes Dev 26:846–56
    [Google Scholar]
  126. 126. 
    Yigit E, Batista PJ, Bei Y, Pang KM, Chen C-CG et al. 2006. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127:747–57
    [Google Scholar]
  127. 127. 
    Zeller P, Padeken J, van Schendel R, Kalck V, Tijsterman M, Gasser SM 2016. Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nat. Genet. 48:1385–95
    [Google Scholar]
  128. 128. 
    Zhang C, Montgomery TA, Fischer SEJ, Garcia SMDA, Riedel CG et al. 2012. The Caenorhabditis elegans RDE-10/RDE-11 complex regulates RNAi by promoting secondary siRNA amplification. Curr. Biol. 22:881–90
    [Google Scholar]
  129. 129. 
    Zhang C, Montgomery TA, Gabel HW, Fischer SEJ, Phillips CM et al. 2011. mut-16 and other mutator class genes modulate 22G and 26G siRNA pathways in Caenorhabditis elegans. PNAS 108:1201–8
    [Google Scholar]
  130. 130. 
    Zhang D, Tu S, Stubna M, Wu W-S, Huang W-C et al. 2018. The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes. Science 359:587–92
    [Google Scholar]
  131. 131. 
    Zhuang JJ, Banse SA, Hunter CP 2013. The nuclear Argonaute NRDE-3 contributes to transitive RNAi in Caenorhabditis elegans. Genetics 194:117–31
    [Google Scholar]
/content/journals/10.1146/annurev-genet-112618-043505
Loading
/content/journals/10.1146/annurev-genet-112618-043505
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error