1932

Abstract

The genetic control of the characteristic cell sizes of different species and tissues is a long-standing enigma. Plants are convenient for studying this question in a multicellular context, as their cells do not move and are easily tracked and measured from organ initiation in the meristems to subsequent morphogenesis and differentiation. In this article, we discuss cell size control in plants compared with other organisms. As seen from yeast cells to mammalian cells, size homeostasis is maintained cell autonomously in the shoot meristem. In developing organs, vacuolization contributes to cell size heterogeneity and may resolve conflicts between growth control at the cellular and organ levels. Molecular mechanisms for cell size control have implications for how cell size responds to changes in ploidy, which are particularly important in plant development and evolution. We also discuss comparatively the functional consequences of cell size and their potential repercussions at higher scales, including genome evolution.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Cell Size Control in Plants
Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112618-043602
2019-12-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/genet/53/1/annurev-genet-112618-043602.html?itemId=/content/journals/10.1146/annurev-genet-112618-043602&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alim K, Hamant O, Boudaoud A 2012. Regulatory role of cell division rules on tissue growth heterogeneity. Front. Plant Sci. 3:174
    [Google Scholar]
  2. 2. 
    Amodeo AA, Jukam D, Straight AF, Skotheim JM 2015. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition. PNAS 112:E1086–95
    [Google Scholar]
  3. 3. 
    Amodeo AA, Skotheim JM. 2016. Cell-size control. Cold Spring Harb. Perspect. Biol. 8:a019083
    [Google Scholar]
  4. 4. 
    Bassel GW, Stamm P, Mosca G, de Reuille PB, Gibbs DJ et al. 2014. Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo. PNAS 111:8685–90
    [Google Scholar]
  5. 5. 
    Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–86
    [Google Scholar]
  6. 6. 
    Besson S, Dumais J. 2011. Universal rule for the symmetric division of plant cells. PNAS 108:6294–99
    [Google Scholar]
  7. 7. 
    Bhosale R, Boudolf V, Cuevas F, Lu R, Eekhout T et al. 2018. A spatiotemporal DNA endoploidy map of the Arabidopsis root reveals roles for the endocycle in root development and stress adaptation. Plant Cell 30:2330–51
    [Google Scholar]
  8. 8. 
    Bourdon M, Pirrello J, Cheniclet C, Coriton O, Bourge M et al. 2012. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development 139:3817–26
    [Google Scholar]
  9. 9. 
    Boveri T. 1905. Über die Abhängigkeit der Kerngröße und Zellenzahl der Seeigel-Larven von der Chromosomenzahl der Ausgangszellen (Zellenstudien V). Jena Z. Naturwiss. 39:1–80
    [Google Scholar]
  10. 10. 
    Bramsiepe J, Wester K, Weinl C, Roodbarkelari F, Kasili R et al. 2010. Endoreplication controls cell fate maintenance. PLOS Genet 6:e1000996
    [Google Scholar]
  11. 11. 
    Braybrook SA, Jönsson H. 2016. Shifting foundations: the mechanical cell wall and development. Curr. Opin. Plant Biol. 29:115–20
    [Google Scholar]
  12. 12. 
    Breuer C, Braidwood L, Sugimoto K 2014. Endocycling in the path of plant development. Curr. Opin. Plant Biol. 17:78–85
    [Google Scholar]
  13. 13. 
    Brillada C, Rojas-Pierce M. 2017. Vacuolar trafficking and biogenesis: a maturation in the field. Curr. Opin. Plant Biol. 40:77–81
    [Google Scholar]
  14. 14. 
    Cadart C, Monnier S, Grilli J, Sáez PJ, Srivastava N et al. 2018. Size control in mammalian cells involves modulation of both growth rate and cell cycle duration. Nat. Commun. 9:3275
    [Google Scholar]
  15. 15. 
    Campos M, Surovtsev IV, Kato S, Paintdakhi A, Beltran B et al. 2014. A constant size extension drives bacterial cell size homeostasis. Cell 159:1433–46
    [Google Scholar]
  16. 16. 
    Chandler-Brown D, Schmoller KM, Winetraub Y, Skotheim JM 2017. The adder phenomenon emerges from independent control of pre- and post-start phases of the budding yeast cell cycle. Curr. Biol. 27:2774–83
    [Google Scholar]
  17. 17. 
    Chevalier C, Bourdon M, Pirrello J, Cheniclet C, Gévaudant F, Frangne N 2013. Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory. J. Exp. Bot. 65:2731–46
    [Google Scholar]
  18. 18. 
    Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P 2013. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341:893–96
    [Google Scholar]
  19. 19. 
    Collart C, Smith JC, Zegerman P 2017. Chk1 inhibition of the replication factor Drf1 guarantees cell-cycle elongation at the Xenopus laevis mid-blastula transition. Dev. Cell 42:82–96
    [Google Scholar]
  20. 20. 
    Conlon I, Raff M. 2003. Differences in the way a mammalian cell and yeast cells coordinate cell growth and cell-cycle progression. J. Biol. 2:7
    [Google Scholar]
  21. 21. 
    Cook M, Tyers M. 2007. Size control goes global. Curr. Opin. Biotechnol. 18:341–50
    [Google Scholar]
  22. 22. 
    Cosgrove DJ. 2018. Diffuse growth of plant cell walls. Plant Physiol 176:16–27
    [Google Scholar]
  23. 23. 
    del Pozo JC, Ramirez‐Parra E 2014. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. Plant Cell Environ 37:2722–37
    [Google Scholar]
  24. 24. 
    del Pozo JC, Ramirez-Parra E 2015. Whole genome duplications in plants: an overview from Arabidopsis. J. Exp. Bot 66:6991–7003
    [Google Scholar]
  25. 25. 
    Di Talia S, Skotheim JM, Bean JM, Siggia ED, Cross FR 2007. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448:947–51
    [Google Scholar]
  26. 26. 
    Dolznig H, Grebien F, Sauer T, Beug H, Müllner EW 2004. Evidence for a size-sensing mechanism in animal cells. Nat. Cell Biol. 6:899–905
    [Google Scholar]
  27. 27. 
    Dupuy L, Mackenzie J, Haseloff J 2010. Coordination of plant cell division and expansion in a simple morphogenetic system. PNAS 107:2711–16
    [Google Scholar]
  28. 28. 
    Elliott S, McLaughlin C. 1978. Rate of macromolecular synthesis through the cell cycle of the yeast Saccharomyces cerevisiae. PNAS 75:4384–88
    [Google Scholar]
  29. 29. 
    Facchetti G, Chang F, Howard M 2017. Controlling cell size through sizer mechanisms. Curr. Opin. Syst. Biol. 5:86–92
    [Google Scholar]
  30. 30. 
    Facchetti G, Knapp B, Flor-Parra I, Chang F, Howard M 2019. Reprogramming Cdr2-dependent geometry-based cell size control in fission yeast. Curr. Biol. 29:350–58
    [Google Scholar]
  31. 31. 
    Facette MR, Rasmussen CG, Van Norman JM 2019. A plane choice: coordinating timing and orientation of cell division during plant development. Curr. Opin. Plant Biol. 47:47–55
    [Google Scholar]
  32. 32. 
    Fankhauser G. 1945. Maintenance of normal structure in heteroploid salamander larvae, through compensation of changes in cell size by adjustment of cell number and cell shape. J. Exp. Zool. 100:445–55
    [Google Scholar]
  33. 33. 
    Fantes PA. 1977. Control of cell size and cycle time in Schizosaccharomyces pombe. J. Cell Sci. 24:51–67
    [Google Scholar]
  34. 34. 
    Fantes PA, Grant W, Pritchard R, Sudbery P, Wheals A 1975. The regulation of cell size and the control of mitosis. J. Theor. Biol. 50:213–44
    [Google Scholar]
  35. 35. 
    Fantes PA, Nurse P. 1978. Control of the timing of cell division in fission yeast: Cell size mutants reveal a second control pathway. Exp. Cell Res. 115:317–29
    [Google Scholar]
  36. 36. 
    Ferjani A, Horiguchi G, Yano S, Tsukaya H 2007. Analysis of leaf development in fugu mutants of Arabidopsis reveals three compensation modes that modulate cell expansion in determinate organs. Plant Physiol 144:988–99
    [Google Scholar]
  37. 37. 
    Francis D, Davies MS, Barlow PW 2008. A strong nucleotypic effect on the cell cycle regardless of ploidy level. Ann. Bot. 101:747–57
    [Google Scholar]
  38. 38. 
    Franks PJ, Beerling DJ. 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. PNAS 106:10343–47
    [Google Scholar]
  39. 39. 
    Gao X-Q, Wang X-L, Ren F, Chen J, Wang X-C 2009. Dynamics of vacuoles and actin filaments in guard cells and their roles in stomatal movement. Plant Cell Environ 32:1108–16
    [Google Scholar]
  40. 40. 
    Garmendia-Torres C, Tassy O, Matifas A, Molina N, Charvin G 2018. Multiple inputs ensure yeast cell size homeostasis during cell cycle progression. eLife 7:e34025
    [Google Scholar]
  41. 41. 
    Ginzberg MB, Chang N, D'Souza H, Patel N, Kafri R, Kirschner MW 2018. Cell size sensing in animal cells coordinates anabolic growth rates and cell cycle progression to maintain cell size uniformity. eLife 7:e26957
    [Google Scholar]
  42. 42. 
    Godin M, Delgado FF, Son S, Grover WH, Bryan AK et al. 2010. Using buoyant mass to measure the growth of single cells. Nat. Methods 7:387–90
    [Google Scholar]
  43. 43. 
    Goranov AI, Amon A. 2010. Growth and division—not a one-way road. Curr. Opin. Cell Biol. 22:795–800
    [Google Scholar]
  44. 44. 
    Greb T, Lohmann JU. 2016. Plant stem cells. Curr. Biol. 26:R816–21
    [Google Scholar]
  45. 45. 
    Gregory TR. 2000. Nucleotypic effects without nuclei: genome size and erythrocyte size in mammals. Genome 43:895–901
    [Google Scholar]
  46. 46. 
    Gregory TR. 2005. The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann. Bot. 95:133–46
    [Google Scholar]
  47. 47. 
    Hartmann M. 1924. Der Ersatz der Fortpflanzung von Amöben durch fortgesetzte Regenerationen. Archiv. Protistenkd. 49:447–64
    [Google Scholar]
  48. 48. 
    Hemerly A, de Almeida Engler J, Bergounioux C, Van Montagu M, Engler G et al. 1995. Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. EMBO J 14:3925–36
    [Google Scholar]
  49. 49. 
    Henry IM, Dilkes BP, Miller ES, Burkart-Waco D, Comai L 2010. Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics 186:1231–45
    [Google Scholar]
  50. 50. 
    Hervieux N, Tsugawa S, Fruleux A, Dumond M, Routier-Kierzkowska A-L et al. 2017. Mechanical shielding of rapidly growing cells buffers growth heterogeneity and contributes to organ shape reproducibility. Curr. Biol. 27:3468–79
    [Google Scholar]
  51. 51. 
    Hisanaga T, Kawade K, Tsukaya H 2015. Compensation: a key to clarifying the organ-level regulation of lateral organ size in plants. J. Exp. Bot. 66:1055–63
    [Google Scholar]
  52. 52. 
    Hong L, Dumond M, Tsugawa S, Sapala A, Routier-Kierzkowska A-L et al. 2016. Variable cell growth yields reproducible organ development through spatiotemporal averaging. Dev. Cell 38:15–32
    [Google Scholar]
  53. 53. 
    Hülskamp M. 2004. Plant trichomes: a model for cell differentiation. Nat. Rev. Mol. Cell Biol. 5:471–80
    [Google Scholar]
  54. 54. 
    Johnston G, Pringle J, Hartwell L 1977. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res 105:79–98
    [Google Scholar]
  55. 55. 
    Jones AR, Forero-Vargas M, Withers SP, Smith RS, Traas J et al. 2017. Cell-size dependent progression of the cell cycle creates homeostasis and flexibility of plant cell size. Nat. Commun. 8:15060
    [Google Scholar]
  56. 56. 
    Jonsson H, Krupinski P. 2010. Modeling plant growth and pattern formation. Curr. Opin. Plant Biol. 13:5–11
    [Google Scholar]
  57. 57. 
    Jorgensen P, Edgington NP, Schneider BL, Rupeš I, Tyers M, Futcher B 2007. The size of the nucleus increases as yeast cells grow. Mol. Biol. Cell 18:3523–32
    [Google Scholar]
  58. 58. 
    Jukam D, Shariati SAM, Skotheim JM 2017. Zygotic genome activation in vertebrates. Dev. Cell 42:316–32
    [Google Scholar]
  59. 59. 
    Kafri R, Levy J, Ginzberg MB, Oh S, Lahav G, Kirschner MW 2013. Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle. Nature 494:480–83
    [Google Scholar]
  60. 60. 
    Kalinowska K, Isono E. 2017. All roads lead to the vacuole—autophagic transport as part of the endomembrane trafficking network in plants. J. Exp. Bot. 69:1313–24
    [Google Scholar]
  61. 61. 
    Katagiri Y, Hasegawa J, Fujikura U, Hoshino R, Matsunaga S, Tsukaya H 2016. The coordination of ploidy and cell size differs between cell layers in leaves. Development 143:1120–25
    [Google Scholar]
  62. 62. 
    Keifenheim D, Sun X-M, D'Souza E, Ohira MJ, Magner M et al. 2017. Size-dependent expression of the mitotic activator Cdc25 suggests a mechanism of size control in fission yeast. Curr. Biol. 27:1491–97
    [Google Scholar]
  63. 63. 
    Kirk MM, Ransick A, McRae SE, Kirk DL 1993. The relationship between cell size and cell fate in Volvox carteri. J. Cell Biol 123:191–208
    [Google Scholar]
  64. 64. 
    Knight CA, Molinari NA, Petrov DA 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Ann. Bot. 95:177–90
    [Google Scholar]
  65. 65. 
    Krüger F, Schumacher K. 2018. Pumping up the volume—vacuole biogenesis in Arabidopsis thaliana. Proc. Semin. Cell Dev. Biol. 80:106–12
    [Google Scholar]
  66. 66. 
    Landrein B, Hamant O. 2013. How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories. Plant J 75:324–38
    [Google Scholar]
  67. 67. 
    Levy DL, Heald R. 2012. Mechanisms of intracellular scaling. Annu. Rev. Cell Dev. Biol. 28:113–35
    [Google Scholar]
  68. 68. 
    Levy DL, Heald R. 2016. Biological scaling problems and solutions in amphibians. Cold Spring Harb. Perspect. Biol. 8:a019166
    [Google Scholar]
  69. 69. 
    Li Y, Liu D, López-Paz C, Olson BJSC, Umen JG 2016. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division. eLife 5:e10767
    [Google Scholar]
  70. 70. 
    Lin J, Amir A. 2018. Homeostasis of protein and mRNA concentrations in growing cells. Nat. Commun. 9:4496
    [Google Scholar]
  71. 71. 
    Liu S, Ginzberg MB, Patel N, Hild M, Leung B et al. 2018. Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length. eLife 7:e26947
    [Google Scholar]
  72. 72. 
    Lloyd AC. 2013. The regulation of cell size. Cell 154:1194–205
    [Google Scholar]
  73. 73. 
    Lloyd CW. 1991. How does the cytoskeleton read the laws of geometry in aligning the division plane of plant cells?. Development 113:55–65
    [Google Scholar]
  74. 74. 
    Marshall WF. 2016. Cell geometry: how cells count and measure size. Annu. Rev. Biophys. 45:49–64
    [Google Scholar]
  75. 75. 
    Melaragno JE, Mehrotra B, Coleman AW 1993. Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5:1661–68
    [Google Scholar]
  76. 76. 
    Meyer HM, Teles J, Formosa-Jordan P, Refahi Y, San-Bento R et al. 2017. Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal. eLife 6:e19131
    [Google Scholar]
  77. 77. 
    Miettinen TP, Björklund M. 2016. Cellular allometry of mitochondrial functionality establishes the optimal cell size. Dev. Cell 39:370–82
    [Google Scholar]
  78. 78. 
    Miettinen TP, Caldez MJ, Kaldis P, Björklund M 2017. Cell size control—a mechanism for maintaining fitness and function. Bioessays 39:1700058
    [Google Scholar]
  79. 79. 
    Mir M, Wang Z, Shen Z, Bednarz M, Bashir R et al. 2011. Optical measurement of cycle-dependent cell growth. PNAS 108:13124–29
    [Google Scholar]
  80. 80. 
    Mitchison JM. 2003. Growth during the cell cycle. Int. Rev. Cytol. 226:165–258
    [Google Scholar]
  81. 81. 
    Mitchison JM, Creanor J. 1971. Induction synchrony in the fission yeast Schizosaccharomyces pombe. Exp. Cell Res 67:368–74
    [Google Scholar]
  82. 82. 
    Neufeld TP, de la Cruz AFA, Johnston LA, Edgar BA 1998. Coordination of growth and cell division in the Drosophila wing. Cell 93:1183–93
    [Google Scholar]
  83. 83. 
    Nurse P. 1975. Genetic control of cell size at cell division in yeast. Nature 256:547–51
    [Google Scholar]
  84. 84. 
    Nurse P, Thuriaux P, Nasmyth K 1976. Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet 146:167–78
    [Google Scholar]
  85. 85. 
    Organ CL, Shedlock AM, Meade A, Pagel M, Edwards SV 2007. Origin of avian genome size and structure in non-avian dinosaurs. Nature 446:180–84
    [Google Scholar]
  86. 86. 
    Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S et al. 2015. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol. Cell 58:339–52
    [Google Scholar]
  87. 87. 
    Pan KZ, Saunders TE, Flor-Parra I, Howard M, Chang F 2014. Cortical regulation of cell size by a sizer cdr2p. eLife 3:e02040
    [Google Scholar]
  88. 88. 
    Park K, Millet LJ, Kim N, Li H, Jin X et al. 2010. Measurement of adherent cell mass and growth. PNAS 107:20691–96
    [Google Scholar]
  89. 89. 
    Pavelescu I, Vilarrasa‐Blasi J, Planas‐Riverola A, González‐García MP, Caño‐Delgado AI, Ibañes M 2018. A sizer model for cell differentiation in Arabidopsis thaliana root growth. Mol. Syst. Biol. 14:e7687
    [Google Scholar]
  90. 90. 
    Polymenis M, Schmidt EV. 1997. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev 11:2522–31
    [Google Scholar]
  91. 91. 
    Priestley J. 1929. Cell growth and cell division in the shoot of the flowering plant. New Phytol 28:54–81
    [Google Scholar]
  92. 92. 
    Robinson DO, Coate JE, Singh A, Hong L, Bush MS et al. 2018. Ploidy and size at multiple scales in the Arabidopsis sepal. Plant Cell 30:2308–29
    [Google Scholar]
  93. 93. 
    Roeder AHK, Chickarmane V, Cunha A, Obara B, Manjunath BS, Meyerowitz EM 2010. Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLOS Biol 8:e1000367
    [Google Scholar]
  94. 94. 
    Roeder AHK, Cunha A, Ohno CK, Meyerowitz EM 2012. Cell cycle regulates cell type in the Arabidopsis sepal. Development 139:4416–27
    [Google Scholar]
  95. 95. 
    Rojo E, Gillmor CS, Kovaleva V, Somerville CR, Raikhel NV 2001. VACUOLELESS1 is an essential gene required for vacuole formation and morphogenesis in Arabidopsis. Dev. Cell 1:303–10
    [Google Scholar]
  96. 96. 
    Roth G, Walkowiak W. 2015. The influence of genome and cell size on brain morphology in amphibians. Cold Spring Harb. Perspect. Biol. 7:a019075
    [Google Scholar]
  97. 97. 
    Ruprecht C, Lohaus R, Vanneste K, Mutwil M, Nikoloski Z et al. 2017. Revisiting ancestral polyploidy in plants. Sci. Adv. 3:e1603195
    [Google Scholar]
  98. 98. 
    Sakamoto Y, Takagi S. 2013. LITTLE NUCLEI 1 and 4 regulate nuclear morphology in Arabidopsis thaliana. Plant Cell Physiol 54:622–33
    [Google Scholar]
  99. 99. 
    Salman-Minkov A, Sabath N, Mayrose I 2016. Whole-genome duplication as a key factor in crop domestication. Nat. Plants 2:16115
    [Google Scholar]
  100. 100. 
    Sampathkumar A, Yan A, Krupinski P, Meyerowitz EM 2014. Physical forces regulate plant development and morphogenesis. Curr. Biol. 24:R475–83
    [Google Scholar]
  101. 101. 
    Sapala A, Runions A, Routier-Kierzkowska A-L, Gupta MD, Hong L et al. 2018. Why plants make puzzle cells, and how their shape emerges. eLife 7:e32794
    [Google Scholar]
  102. 102. 
    Scheuring D, Löfke C, Krüger F, Kittelmann M, Eisa A et al. 2016. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. PNAS 113:452–57
    [Google Scholar]
  103. 103. 
    Schiessl K, Kausika S, Southam P, Bush M, Sablowski R 2012. JAGGED controls growth anisotropy and coordination between cell size and cell cycle during plant organogenesis. Curr. Biol. 22:1739–46
    [Google Scholar]
  104. 104. 
    Schmoller KM. 2017. The phenomenology of cell size control. Curr. Opin. Cell Biol. 49:53–58
    [Google Scholar]
  105. 105. 
    Schmoller KM, Skotheim JM. 2015. The biosynthetic basis of cell size control. Trends Cell Biol 25:793–802
    [Google Scholar]
  106. 106. 
    Schmoller KM, Turner J, Kõivomägi M, Skotheim JM 2015. Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size. Nature 526:268–72
    [Google Scholar]
  107. 107. 
    Serrano-Mislata A, Schiessl K, Sablowski R 2015. Active control of cell size generates spatial detail during plant organogenesis. Curr. Biol. 25:2991–96
    [Google Scholar]
  108. 108. 
    Shapiro BE, Tobin C, Mjolsness E, Meyerowitz EM 2015. Analysis of cell division patterns in the Arabidopsis shoot apical meristem. PNAS 112:4815–20
    [Google Scholar]
  109. 109. 
    Smith RS, Guyomarc'h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P 2006. A plausible model of phyllotaxis. PNAS 103:1301–6
    [Google Scholar]
  110. 110. 
    Soifer I, Robert L, Amir A 2016. Single-cell analysis of growth in budding yeast and bacteria reveals a common size regulation strategy. Curr. Biol. 26:356–61
    [Google Scholar]
  111. 111. 
    Son S, Tzur A, Weng Y, Jorgensen P, Kim J et al. 2012. Direct observation of mammalian cell growth and size regulation. Nat. Methods 9:910–12
    [Google Scholar]
  112. 112. 
    Sugimoto-Shirasu K, Roberts K. 2003. “Big it up”: endoreduplication and cell-size control in plants. Curr. Opin. Plant Biol. 6:544–53
    [Google Scholar]
  113. 113. 
    Sung Y, Tzur A, Oh S, Choi W, Li V et al. 2013. Size homeostasis in adherent cells studied by synthetic phase microscopy. PNAS 110:16687–92
    [Google Scholar]
  114. 114. 
    Tanaka Y, Kutsuna N, Kanazawa Y, Kondo N, Hasezawa S, Sano T 2007. Intra-vacuolar reserves of membranes during stomatal closure: the possible role of guard cell vacuoles estimated by 3-D reconstruction. Plant Cell Physiol 48:1159–69
    [Google Scholar]
  115. 115. 
    Turner JJ, Ewald JC, Skotheim JM 2012. Cell size control in yeast. Curr. Biol. 22:R350–59
    [Google Scholar]
  116. 116. 
    Tzur A, Kafri R, LeBleu VS, Lahav G, Kirschner MW 2009. Cell growth and size homeostasis in proliferating animal cells. Science 325:167–71
    [Google Scholar]
  117. 117. 
    Umen JG. 2005. The elusive sizer. Curr. Opin. Cell Biol. 17:435–41
    [Google Scholar]
  118. 118. 
    Umen JG, Goodenough UW. 2001. Control of cell division by a retinoblastoma protein homolog in Chlamydomonas. Genes Dev 15:1652–61
    [Google Scholar]
  119. 119. 
    Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykret D et al. 2012. Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149:439–51
    [Google Scholar]
  120. 120. 
    Varsano G, Wang Y, Wu M 2017. Probing mammalian cell size homeostasis by channel-assisted cell reshaping. Cell Rep 20:397–410
    [Google Scholar]
  121. 121. 
    Wang H, Carey LB, Cai Y, Wijnen H, Futcher B 2009. Recruitment of Cln3 cyclin to promoters controls cell cycle entry via histone deacetylase and other targets. PLOS Biol 7:e1000189
    [Google Scholar]
  122. 122. 
    Wang H, Dittmer TA, Richards EJ 2013. Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biol 13:200
    [Google Scholar]
  123. 123. 
    Willis L, Refahi Y, Wightman R, Landrein B, Teles J et al. 2016. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche. PNAS 113:E8238–46
    [Google Scholar]
  124. 124. 
    Wood E, Nurse P. 2013. Pom1 and cell size homeostasis in fission yeast. Cell Cycle 12:3228–36
    [Google Scholar]
  125. 125. 
    Wood E, Nurse P. 2015. Sizing up to divide: mitotic cell-size control in fission yeast. Annu. Rev. Cell Dev. Biol. 31:11–29
    [Google Scholar]
  126. 126. 
    Wu C-Y, Rolfe PA, Gifford DK, Fink GR 2010. Control of transcription by cell size. PLOS Biol 8:e1000523
    [Google Scholar]
  127. 127. 
    Zatulovskiy E, Berenson DF, Topacio BR, Skotheim JM 2018. Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. bioRxiv 470013. https://doi.org/10.1101/470013
    [Crossref]
  128. 128. 
    Zhurinsky J, Leonhard K, Watt S, Marguerat S, Bähler J, Nurse P 2010. A coordinated global control over cellular transcription. Curr. Biol. 20:2010–15
    [Google Scholar]
/content/journals/10.1146/annurev-genet-112618-043602
Loading
/content/journals/10.1146/annurev-genet-112618-043602
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error