1932

Abstract

The gastrointestinal (GI) microbiota is a complex community of microorganisms residing within the mammalian gastrointestinal tract. The GI microbiota is vital to the development of the host immune system and plays a crucial role in human health and disease. The composition of the GI microbiota differs immensely among individuals yet specific shifts in composition and diversity have been linked to inflammatory bowel disease, obesity, atopy, and susceptibility to infection. In this review, we describe the GI microbiota and its role in enteric diseases caused by pathogenic , and We discuss the central role of the GI microbiota in protective immunity, resistance to enteric pathogens, and resolution of enteric colitis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092421
2014-11-23
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genet/48/1/annurev-genet-120213-092421.html?itemId=/content/journals/10.1146/annurev-genet-120213-092421&mimeType=html&fmt=ahah

Literature Cited

  1. Abrams GD, Bauer H, Sprinz H. 1.  1963. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab. Invest. 12:355–64 [Google Scholar]
  2. Arrieta Mendez M-C. 1a.  2011. The role of small intestinal permeability in the pathogenesis of colitis in the interleukin-10 gene deficient mouse. PhD Diss. Univ. Alberta, Edmonton AB, Can.
  3. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M. 2.  et al. 2008. ATP drives lamina propria T(H)17 cell differentiation. Nature 455:808–12 [Google Scholar]
  4. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T. 3.  et al. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–41 [Google Scholar]
  5. Ather JL, Ckless K, Martin R, Foley KL, Suratt BT. 4.  et al. 2011. Serum amyloid A activates the NLRP3 inflammasome and promotes Th17 allergic asthma in mice. J. Immunol. 187:64–73 [Google Scholar]
  6. Barthel M, Hapfelmeier S, Quintanilla-Martinez L, Kremer M, Rohde M. 5.  et al. 2003. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71:2839–58 [Google Scholar]
  7. Beaugerie L, Flahault A, Barbut F, Atlan P, Lalande V. 6.  et al. 2003. Antibiotic-associated diarrhoea and Clostridium difficile in the community. Aliment. Pharmacol. Thera. 17:905–12 [Google Scholar]
  8. Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M. 7.  et al. 2010. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLOS Pathog. 6:e1000902 [Google Scholar]
  9. Best EL, Freeman J, Wilcox MH. 8.  2012. Models for the study of Clostridium difficile infection. Gut Microbes 3:145–67 [Google Scholar]
  10. Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T. 9.  et al. 2011. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J. Allergy Clinic. Immunol. 128:646–52e1–5 [Google Scholar]
  11. Bouskra D, Brezillon C, Berard M, Werts C, Varona R. 10.  et al. 2008. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456:507–10 [Google Scholar]
  12. Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A. 11.  et al. 2012. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile–induced colitis. Infect. Immun. 80:62–73 [Google Scholar]
  13. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR. 12.  et al. 2010. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464:1371–75 [Google Scholar]
  14. Carey CM, Kostrzynska M, Ojha S, Thompson S. 13.  2008. The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli O157:H7. J. Microbiol. Methods 73:125–32 [Google Scholar]
  15. Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT. 14.  et al. 2008. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile–associated diarrhea. J. Infect. Dis. 197:435–38 [Google Scholar]
  16. Chen Z, Cobbold SP, Waldmann H, Metcalfe SM. 15.  1994. Tolerance induction in concordant heart-xenografted mice by CD4 and CD8 monoclonal antibodies. Transplant. Proc. 26:1199–200 [Google Scholar]
  17. Cherrington CA, Hinton M, Pearson GR, Chopra I. 16.  1991. Short-chain organic acids at ph 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. J. Appl. Bacteriol. 70:161–65 [Google Scholar]
  18. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 17.  2009. Bacterial community variation in human body habitats across space and time. Science 326:1694–97 [Google Scholar]
  19. Croswell A, Amir E, Teggatz P, Barman M, Salzman NH. 18.  2009. Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect. Immun. 77:2741–53 [Google Scholar]
  20. Croxen MA, Finlay BB. 19.  2010. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 8:26–38 [Google Scholar]
  21. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. 20.  2013. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 26:822–80 [Google Scholar]
  22. de Jong HK, Parry CM, van der Poll T, Wiersinga WJ. 21.  2012. Host-pathogen interaction in invasive salmonellosis. PLOS Pathog. 8:e1002933 [Google Scholar]
  23. de Sablet T, Chassard C, Bernalier-Donadille A, Vareille M, Gobert AP, Martin C. 22.  2009. Human microbiota-secreted factors inhibit Shiga toxin synthesis by enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 77:783–90 [Google Scholar]
  24. Delves PJ, Roitt IM. 23.  2000. The immune system. First of two parts. New Engl. J. Med. 343:37–49 [Google Scholar]
  25. Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ. 24.  et al. 2013. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14:26–37 [Google Scholar]
  26. Dobber R, Hertogh-Huijbregts A, Rozing J, Bottomly K, Nagelkerken L. 25.  1992. The involvement of the intestinal microflora in the expansion of CD4+ T cells with a naive phenotype in the periphery. Dev. Immunol. 2:141–50 [Google Scholar]
  27. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L. 26.  et al. 2005. Diversity of the human intestinal microbial flora. Science 308:1635–38 [Google Scholar]
  28. Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N. 27.  et al. 2010. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLOS Pathog. 6:e1001097 [Google Scholar]
  29. Ferreira RB, Gill N, Willing BP, Antunes LC, Russell SL. 28.  et al. 2011. The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLOS ONE 6:e20338 [Google Scholar]
  30. Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. 29.  2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104:13780–85 [Google Scholar]
  31. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A. 30.  et al. 2009. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:677–89 [Google Scholar]
  32. Garner CD, Antonopoulos DA, Wagner B, Duhamel GE, Keresztes I. 31.  et al. 2009. Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a Salmonella enterica serovar typhimurium murine model of infection. Infect. Immun. 77:2691–702 [Google Scholar]
  33. Ghosh S, Dai C, Brown K, Rajendiran E, Makarenko S. 32.  et al. 2011. Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am. J. Physiol. Gastrointest. Liver Physiol. 301:G39–49 [Google Scholar]
  34. Gill N, Ferreira RB, Antunes LC, Willing BP, Sekirov I. 33.  et al. 2012. Neutrophil elastase alters the murine gut microbiota resulting in enhanced Salmonella colonization. PLOS ONE 7:e49646 [Google Scholar]
  35. Gu S, Chen D, Zhang JN, Lv X, Wang K. 34.  et al. 2013. Bacterial community mapping of the mouse gastrointestinal tract. PLOS ONE 8:e74957 [Google Scholar]
  36. Gustafsson JK, Navabi N, Rodriguez-Piñeiro AM, Alomran AHA, Premaratne P. 35.  et al. 2013. Dynamic changes in mucus thickness and ion secretion during Citrobacter rodentium infection and clearance. PLOS ONE 8:e84430 [Google Scholar]
  37. Herold S, Paton JC, Srimanote P, Paton AW. 36.  2009. Differential effects of short-chain fatty acids and iron on expression of iha in Shiga-toxigenic Escherichia coli. Microbiology 155:3554–63 [Google Scholar]
  38. 37. Hum. Microbiome Proj. C 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14 [Google Scholar]
  39. Hung CC, Garner CD, Slauch JM, Dwyer ZW, Lawhon SD. 38.  et al. 2013. The intestinal fatty acid propionate inhibits Salmonella invasion through the post-translational control of HilD. Mol. Microbiol. 87:1045–60 [Google Scholar]
  40. Hurley BP, McCormick BA. 39.  2004. Intestinal epithelial defense systems protect against bacterial threats. Curr. Gastroenterol. Rep. 6:355–61 [Google Scholar]
  41. Iizuka M, Konno S, Itou H, Chihara J, Toyoshima I. 40.  et al. 2004. Novel evidence suggesting Clostridium difficile is present in human gut microbiota more frequently than previously suspected. Microbiol. Immunol. 48:889–92 [Google Scholar]
  42. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T. 41.  et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–98 [Google Scholar]
  43. Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB. 42.  et al. 2008. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–49 [Google Scholar]
  44. Jank T, Aktories K. 43.  2008. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol. 16:222–29 [Google Scholar]
  45. Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. 44.  2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA 105:15064–69 [Google Scholar]
  46. Jones BD, Ghori N, Falkow S. 45.  1994. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J. Exp. Med. 180:15–23 [Google Scholar]
  47. Jones SA, Jorgensen M, Chowdhury FZ, Rodgers R, Hartline J. 46.  et al. 2008. Glycogen and maltose utilization by Escherichia coli O157:H7 in the mouse intestine. Infect. Immun. 76:2531–40 [Google Scholar]
  48. Just I, Richter HP, Prepens U, von Eichel-Streiber C, Aktories K. 47.  1994. Probing the action of Clostridium difficile toxin B in Xenopus laevis oocytes. J. Cell Sci. 107:Pt. 61653–59 [Google Scholar]
  49. Just I, Selzer J, Wilm M, von Eichel-Streiber C, Mann M, Aktories K. 48.  1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375:500–3 [Google Scholar]
  50. Kagnoff MF. 49.  1993. Immunology of the intestinal tract. Gastroenterology 105:1275–80 [Google Scholar]
  51. Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. 50.  2001. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 107:129–34 [Google Scholar]
  52. Kamada N, Kim Y-G, Sham HP, Vallance BA, Puente JL. 51.  et al. 2012. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336:1325–29 [Google Scholar]
  53. Kaper JB, Nataro JP, Mobley HL. 52.  2004. Pathogenic Escherichia coli. Nat. Rev. Microbiol 2:123–40 [Google Scholar]
  54. Kassinen A, Krogius-Kurikka L, Makivuokko H, Rinttila T, Paulin L. 53.  et al. 2007. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133:24–33 [Google Scholar]
  55. Kelly CP, Pothoulakis C, LaMont JT. 54.  1994. Clostridium difficile colitis. New Engl. J. Med. 330:257–62 [Google Scholar]
  56. Kinnebrew MA, Ubeda C, Zenewicz LA, Smith N, Flavell RA, Pamer EG. 55.  2010. Bacterial flagellin stimulates toll-like receptor 5-dependent defense against vancomycin-resistant enterococcus infection. J. Infect. Dis. 201:534–43 [Google Scholar]
  57. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H. 56.  et al. 2007. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. 14:169–81 [Google Scholar]
  58. Langkamp-Henken B, Glezer JA, Kudsk KA. 57.  1992. Immunologic structure and function of the gastrointestinal tract. Nutr. Clin. Pract. 7:100–8 [Google Scholar]
  59. Larson HE, Barclay FE, Honour P, Hill ID. 58.  1982. Epidemiology of Clostridium difficile in infants. J. Infect. Dis. 146:727–33 [Google Scholar]
  60. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW. 59.  et al. 2011. Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250–54 [Google Scholar]
  61. Lawhon SD, Maurer R, Suyemoto M, Altier C. 60.  2002. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol. Microbiol. 46:1451–64 [Google Scholar]
  62. Lawley TD, Bouley DM, Hoy YE, Gerke C, Relman DA, Monack DM. 61.  2008. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect. Immun. 76:403–16 [Google Scholar]
  63. Leatham MP, Banerjee S, Autieri SM, Mercado-Lubo R, Conway T, Cohen PS. 62.  2009. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect. Immun. 77:2876–86 [Google Scholar]
  64. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. 63.  2010. Microbes and Health Sackler Colloquium: proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 108:Suppl. 14615–22 [Google Scholar]
  65. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 64.  2006. Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–23 [Google Scholar]
  66. Louie TJ, Cannon K, Byrne B, Emery J, Ward L. 65.  et al. 2012. Fidaxomicin preserves the intestinal microbiome during and after treatment of Clostridium difficile infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clin. Infect. Dis. 55:Suppl. 2S132–42 [Google Scholar]
  67. Luckey TD. 66.  1972. Introduction to intestinal microecology. Am. J. Clin. Nutr. 25:1292–94 [Google Scholar]
  68. Macdonald JC, Torriani FJ, Morse LS, Karavellas MP, Reed JB, Freeman WR. 67.  1998. Lack of reactivation of cytomegalovirus (CMV) retinitis after stopping CMV maintenance therapy in AIDS patients with sustained elevations in CD4 T cells in response to highly active antiretroviral therapy. J. Infect. Dis. 177:1182–87 [Google Scholar]
  69. Maier L, Vyas R, Cordova CD, Lindsay H, Schmidt TS. 68.  et al. 2013. Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem. Cell Host Microbe 14:641–51 [Google Scholar]
  70. Malinen E, Rinttila T, Kajander K, Matto J, Kassinen A. 69.  et al. 2005. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am. J. Gastroenterol. 100:373–82 [Google Scholar]
  71. Mattila E, Uusitalo-Seppala R, Wuorela M, Lehtola L, Nurmi H. 70.  et al. 2012. Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology 142:490–96 [Google Scholar]
  72. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. 71.  2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–18 [Google Scholar]
  73. Mazmanian SK, Round JL, Kasper DL. 72.  2008. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–25 [Google Scholar]
  74. McFarland LV, Mulligan ME, Kwok RY, Stamm WE. 73.  1989. Nosocomial acquisition of Clostridium difficile infection. New Engl. J. Med. 320:204–10 [Google Scholar]
  75. Miranda RL, Conway T, Leatham MP, Chang DE, Norris WE. 74.  et al. 2004. Glycolytic and gluconeogenic growth of Escherichia coli O157:H7 (EDL933) and E. coli K-12 (MG1655) in the mouse intestine. Infect. Immun. 72:1666–76 [Google Scholar]
  76. Momose Y, Hirayama K, Itoh K. 75.  2008. Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie van Leeuwenhoek 94:165–71 [Google Scholar]
  77. Moreau MC, Ducluzeau R, Guy-Grand D, Muller MC. 76.  1978. Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect. Immun. 21:532–39 [Google Scholar]
  78. Mundy R, Girard F, FitzGerald AJ, Frankel G. 77.  2006. Comparison of colonization dynamics and pathology of mice infected with enteropathogenic Escherichia coli, enterohaemorrhagic E. coli and Citrobacter rodentium. FEMS Microbiol. Lett 265:126–32 [Google Scholar]
  79. Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S. 78.  2005. Citrobacter rodentium of mice and man. Cell. Microbiol. 7:1697–706 [Google Scholar]
  80. Nakanishi N, Tashiro K, Kuhara S, Hayashi T, Sugimoto N, Tobe T. 79.  2009. Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology 155:521–30 [Google Scholar]
  81. Nardi RM, Silva ME, Vieira EC, Bambirra EA, Nicoli JR. 80.  1989. Intragastric infection of germfree and conventional mice with Salmonella typhimurium. Braz. J. Med. Biol. Res 22:1389–92 [Google Scholar]
  82. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC. 81.  et al. 2013. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502:96–99 [Google Scholar]
  83. Niess JH, Leithauser F, Adler G, Reimann J. 82.  2008. Commensal gut flora drives the expansion of proinflammatory CD4 T cells in the colonic lamina propria under normal and inflammatory conditions. J. Immunol. 180:559–68 [Google Scholar]
  84. Nusrat A, von Eichel-Streiber C, Turner JR, Verkade P, Madara JL, Parkos CA. 83.  2001. Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect. Immun. 69:1329–36 [Google Scholar]
  85. Ochoa-Reparaz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S. 84.  et al. 2010. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 3:487–95 [Google Scholar]
  86. Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK. 85.  et al. 2012. Fucose sensing regulates bacterial intestinal colonization. Nature 492:113–17 [Google Scholar]
  87. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. 86.  2007. Development of the human infant intestinal microbiota. PLOS Biol. 5e177
  88. Pothoulakis C, LaMont JT. 87.  1993. Clostridium difficile colitis and diarrhea. Gastroenterol. Clin. N. Am. 22:623–37 [Google Scholar]
  89. Rea MC, Sit CS, Clayton E, O'Connor PM, Whittal RM. 88.  et al. 2010. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl. Acad. Sci. USA 107:9352–57 [Google Scholar]
  90. Rescigno M. 89.  2011. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol. 32:256–64 [Google Scholar]
  91. Rimoldi M, Chieppa M, Larghi P, Vulcano M, Allavena P, Rescigno M. 90.  2005. Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood 106:2818–26 [Google Scholar]
  92. Round JL, Mazmanian SK. 91.  2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9:313–23 [Google Scholar]
  93. Russell SL, Finlay BB. 92.  2012. The impact of gut microbes in allergic diseases. Curr. Opin. Gastroenterol. 28:563–69 [Google Scholar]
  94. Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L. 93.  et al. 2012. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13:440–47 [Google Scholar]
  95. Schmidt MA. 94.  2010. LEEways: tales of EPEC, ATEC and EHEC. Cell. Microbiol. 12:1544–52 [Google Scholar]
  96. Sears P, Ichikawa Y, Ruiz N, Gorbach S. 95.  2013. Advances in the treatment of Clostridium difficile with fidaxomicin: a narrow spectrum antibiotic. Ann. N. Y. Acad. Sci. 1291:33–41 [Google Scholar]
  97. Sekirov I, Finlay BB. 96.  2009. The role of the intestinal microbiota in enteric infection. J. Physiol. 587:4159–67 [Google Scholar]
  98. Sekirov I, Gill N, Jogova M, Tam N, Robertson M. 97.  et al. 2010. Salmonella SPI-1-mediated neutrophil recruitment during enteric colitis is associated with reduction and alteration in intestinal microbiota. Gut Microbes 1:30–41 [Google Scholar]
  99. Sekirov I, Tam NM, Jogova M, Robertson ML, Li Y. 98.  et al. 2008. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect. Immun. 76:4726–36 [Google Scholar]
  100. Smith K, McCoy KD, Macpherson AJ. 100.  2007. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19:59–69 [Google Scholar]
  101. Sorg JA, Sonenshein AL. 101.  2008. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190:2505–12 [Google Scholar]
  102. Sorg JA, Sonenshein AL. 102.  2009. Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J. Bacteriol. 191:1115–17 [Google Scholar]
  103. Sprinz H, Kundel DW, Dammin GJ, Horowitz RE, Schneider H, Formal SB. 103.  1961. The response of the germfree guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri. Am. J. Pathol. 39:681–95 [Google Scholar]
  104. Stecher B, Chaffron S, Kappeli R, Hapfelmeier S, Freedrich S. 104.  et al. 2010. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLOS Pathog. 6e1000711
  105. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M. 105.  et al. 2007. Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLOS Biol. 5:2177–89 [Google Scholar]
  106. Stelter C, Kappeli R, Konig C, Krah A, Hardt WD. 106.  et al. 2011. Salmonella-induced mucosal lectin RegIIIβ kills competing gut microbiota. PLOS ONE 6e20749
  107. Strauch UG, Obermeier F, Grunwald N, Gurster S, Dunger N. 107.  et al. 2005. Influence of intestinal bacteria on induction of regulatory T cells: lessons from a transfer model of colitis. Gut 54:1546–52 [Google Scholar]
  108. Theriot CM, Koenigsknecht MJ, Carlson PE Jr, Hatton GE, Nelson AM. 108.  et al. 2014. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5:3114 [Google Scholar]
  109. Thiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V. 109.  et al. 2011. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl. Acad. Sci. USA 108:17480–85 [Google Scholar]
  110. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A. 110.  et al. 2009. A core gut microbiome in obese and lean twins. Nature 457:480–84 [Google Scholar]
  111. Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ. 111.  et al. 2008. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 9:769–76 [Google Scholar]
  112. Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H. 112.  1995. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce Mhc class II molecules and fucosyl asialo Gm1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol. Immunol. 39:555–62 [Google Scholar]
  113. Vallance BA, Deng W, Jacobson K, Finlay BB. 113.  2003. Host susceptibility to the attaching and effacing bacterial pathogen Citrobacter rodentium. Infect. Immun. 71:3443–53 [Google Scholar]
  114. van der Waaij D, Berghuis-de Vries JM, Lekkerkerk-van der Wees JEC. 114.  1971. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hyg. 69:405–11 [Google Scholar]
  115. Vazquez-Torres A, Jones-Carson J, Baumler AJ, Falkow S, Valdivia R. 115.  et al. 1999. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401:804–8 [Google Scholar]
  116. Vincent C, Stephens DA, Loo VG, Edens TJ, Behr MA. 116.  et al. 2013. Reductions in intestinal Clostridiales precede the development of nosocomial Clostridium difficile infection. Microbiome 1:18 [Google Scholar]
  117. Voth DE, Ballard JD. 117.  2005. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18:247–63 [Google Scholar]
  118. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L. 118.  et al. 2008. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455:U1109–10 [Google Scholar]
  119. Whitman WB, Coleman DC, Wiebe WJ. 119.  1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95:6578–83 [Google Scholar]
  120. Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M. 120.  et al. 2010. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139:1844–54; e1 [Google Scholar]
  121. Willing BP, Vacharaksa A, Croxen M, Thanachayanont T, Finlay BB. 121.  2011. Altering host resistance to infections through microbial transplantation. PLOS ONE 6e26988
  122. Willing BP, Van Kessel AG. 122.  2007. Enterocyte proliferation and apoptosis in the caudal small intestine is influenced by the composition of colonizing commensal bacteria in the neonatal gnotobiotic pig. J. Anim. Sci. 85:3256–66 [Google Scholar]
  123. Wilson KH. 123.  1993. The microecology of Clostridium difficile. Clin. Infect. Dis. 16:Suppl. 4S214–18 [Google Scholar]
  124. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL. 124.  et al. 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426–29 [Google Scholar]
  125. Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS. 125.  et al. 2011. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium–induced colitis. Infect. Immun. 79:1536–45 [Google Scholar]
  126. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T. 127.  et al. 2010. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–27 [Google Scholar]
  127. Zachar Z, Savage DC. 128.  1979. Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes. Infect. Immun. 23:168–74 [Google Scholar]
  128. Zaph C, Du Y, Saenz SA, Nair MG, Perrigoue JG. 129.  et al. 2008. Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J. Exp. Med. 205:2191–98 [Google Scholar]
  129. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M. 130.  et al. 2009. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA 106:2365–70 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092421
Loading
/content/journals/10.1146/annurev-genet-120213-092421
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error