1932

Abstract

The visual system has become a premier model for probing how neural diversity is generated during development. Recent work has provided deeper insight into the elaborate mechanisms that control the range of types and numbers of neurons produced, which neurons survive, and how they interact. These processes drive visual function and influence behavioral preferences. Other studies are beginning to provide insight into how neuronal diversity evolved in insects by adding new cell types and modifying neural circuits. Some of the most powerful comparisons have been those made to the visual system, where a deeper understanding of molecular mechanisms allows for the generation of hypotheses about the evolution of neural anatomy and function. The evolution of new neural types contributes additional complexity to the brain and poses intriguing questions about how new neurons interact with existing circuitry. We explore how such individual changes in a variety of species might play a role over evolutionary timescales. Lessons learned from the fly visual system apply to other neural systems, including the fly central brain, where decisions are made and memories are stored.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120215-035312
2017-11-27
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/genet/51/1/annurev-genet-120215-035312.html?itemId=/content/journals/10.1146/annurev-genet-120215-035312&mimeType=html&fmt=ahah

Literature Cited

  1. Adolphs R. 1.  2015. The unsolved problems of neuroscience. Trends Cogn. Sci. 19:4173–75 [Google Scholar]
  2. Ammer G, Leonhardt A, Bahl A, Dickson BJ, Borst A. 2.  2015. Functional specialization of neural input elements to the Drosophila ON motion detector. Curr. Biol. 25:172247–53 [Google Scholar]
  3. Apitz H, Salecker I. 3.  2015. A region-specific neurogenesis mode requires migratory progenitors in the Drosophila visual system. Nat. Neurosci. 18:146–55 [Google Scholar]
  4. Arendt D. 4.  2008. The evolution of cell types in animals: emerging principles from molecular studies. Nat. Rev. Genet. 9:11868–82 [Google Scholar]
  5. Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C. 5.  et al. 2016. The origin and evolution of cell types. Nat. Rev. Genet. 17:12744–57 [Google Scholar]
  6. Arikawa K. 6.  2003. Spectral organization of the eye of a butterfly. Papilio. J. Comp. Physiol. A 189:11791–800 [Google Scholar]
  7. Arman AC, Sampath AP. 7.  2012. Dark-adapted response threshold of OFF ganglion cells is not set by OFF bipolar cells in the mouse retina. J. Neurophysiol. 107:102649–59 [Google Scholar]
  8. Basler K, Christen B, Hafen E. 8.  1991. Ligand-independent activation of the sevenless receptor tyrosine kinase changes the fate of cells in the developing Drosophila eye. Cell 64:61069–81 [Google Scholar]
  9. Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C. 9.  2014. Processing properties of ON and OFF pathways for Drosophila motion detection. Nature 512:7515427–30 [Google Scholar]
  10. Behnia R, Desplan C. 10.  2015. Visual circuits in flies: beginning to see the whole picture. Curr. Opin. Neurobiol. 34:125–32 [Google Scholar]
  11. Bertet C, Li X, Erclik T, Cavey M, Wells B, Desplan C. 11.  2014. Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of Hid or Reaper. Cell 158:51173–86 [Google Scholar]
  12. Blackiston D, Briscoe AD, Weiss MR. 12.  2011. Color vision and learning in the monarch butterfly, Danaus plexippus (Nymphalidae). J. Exp. Biol. 214:3509–20 [Google Scholar]
  13. Borst A. 13.  2014. In search of the holy grail of fly motion vision. Eur. J. Neurosci. 40:93285–93 [Google Scholar]
  14. Borst A, Haag J. 14.  2002. Neural networks in the cockpit of the fly. J. Comp. Physiol. A 188:6419–37 [Google Scholar]
  15. Brody T, Odenwald WF. 15.  2000. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev. Biol. 226:134–44 [Google Scholar]
  16. Brody T, Odenwald WF. 16.  2002. Cellular diversity in the developing nervous system: a temporal view from Drosophila. Development 129:163763–70 [Google Scholar]
  17. Buschbeck EK. 17.  2000. Neurobiological constraints and fly systematics: how different types of neural characters can contribute to a higher level dipteran phylogeny. Evolution 54:3888–98 [Google Scholar]
  18. Buschbeck EK, Hoy RR. 18.  1998. Visual system of the stalk-eyed fly, Cyrtodiopsisquinqueguttata (Diopsidae, Diptera): an anatomical investigation of unusual eyes. J. Neurobiol. 37:3449–68 [Google Scholar]
  19. Buschbeck EK, Strausfeld NJ. 19.  1996. Visual motion-detection circuits in flies: Small-field retinotopic elements responding to motion are evolutionarily conserved across taxa. J. Neurosci. 16:154563–78 [Google Scholar]
  20. Buschbeck EK, Strausfeld NJ. 20.  1997. The relevance of neural architecture to visual performance: phylogenetic conservation and variation in dipteran visual systems. J. Comp. Neurol. 383:3282–304 [Google Scholar]
  21. Carroll SB. 21.  2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:125–36 [Google Scholar]
  22. Chen P-J, Awata H, Matsushita A, Yang E-C, Arikawa K. 22.  2016. Extreme spectral richness in the eye of the common bluebottle butterfly. Graphium sarpedon. Front. Ecol. Evol. 4:18 [Google Scholar]
  23. Chen Z, Del Valle Rodriguez A, Li X, Erclik T, Fernandes VM, Desplan C. 23.  2016. A unique class of neural progenitors in the Drosophila optic lobe generates both migrating neurons and glia. Cell Rep 15:4774–86 [Google Scholar]
  24. Chou WH, Huber A, Bentrop J, Schulz S, Schwab K. 24.  et al. 1999. Patterning of the R7 and R8 photoreceptor cells of Drosophila: evidence for induced and default cell-fate specification. Development 126:4607–16 [Google Scholar]
  25. Clandinin TR, Zipursky SL, Haendelt M, Hubert R, Chen X. 25.  et al. 2002. Making connections in the fly visual system. Neuron 35:5827–41 [Google Scholar]
  26. Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR. 26.  2011. Defining the computational structure of the motion detector in Drosophila. Neuron 70:61165–77 [Google Scholar]
  27. Cronin TW, Johnsen S, Marshall NJ, Warrant EJ. 27.  2014. Visual Ecology Princeton, NJ: Princeton Univ. Press
  28. Dev SB. 28.  2015. Unsolved problems in biology–the state of current thinking. Prog. Biophys. Mol. Biol. 117:2232–39 [Google Scholar]
  29. Egger B, Gold KS, Brand AH. 29.  2010. Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development 137:182981–87 [Google Scholar]
  30. Eichner H, Joesch M, Schnell B, Reiff DF, Borst A. 30.  2011. Internal structure of the fly elementary motion detector. Neuron 70:61155–64 [Google Scholar]
  31. Erclik T, Li X, Courgeon M, Bertet C, Chen Z. 31.  et al. 2017. Integration of temporal and spatial patterning generates neural diversity. Nature 541:7637365–70 [Google Scholar]
  32. Fernandes VM, Chen Z, Rossi AM, Zipfel J, Desplan C. 31a.  2017. Glia relay differentiation cues to coordinate neuronal development in. Drosophila. Science 357:886–91 [Google Scholar]
  33. Fischbach KF. 32.  1983. Neural cell types surviving congenital sensory deprivation in the optic lobes of Drosophila melanogaster. Dev. Biol. 95:11–18 [Google Scholar]
  34. Fischbach KF, Dittrich APM. 33.  1989. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:3441–75 [Google Scholar]
  35. Fisher YE, Silies M, Clandinin TR. 34.  2015. Orientation selectivity sharpens motion detection in Drosophila. Neuron 88:2390–402 [Google Scholar]
  36. Franceschini N, Hardie R, Ribi W, Kirschfeld K. 35.  1981. Sexual dimorphism in a photoreceptor. Nature 291:5812241–44 [Google Scholar]
  37. Franceschini N, Kirschfeld K, Minke B. 36.  1981. Fluorescence of photoreceptor cells observed in vivo. Science 213:45131264–67 [Google Scholar]
  38. Freeman M. 37.  1996. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87:4651–60 [Google Scholar]
  39. Friedrich M, Wood EJ, Wu M. 38.  2011. Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors. J. Exp. Zool. B. Mol. Dev. Evol. 316:7484–99 [Google Scholar]
  40. Galant R, Skeath JB, Paddock S, Lewis DL, Carroll SB. 39.  et al. 1998. Expression pattern of a butterfly achaete-scute homolog reveals the homology of butterfly wing scales and insect sensory bristles. Curr. Biol. 8:14807–13 [Google Scholar]
  41. Galizia CG, Rössler W. 40.  2010. Parallel olfactory systems in insects: anatomy and function. Annu. Rev. Entomol. 55:399–420 [Google Scholar]
  42. Gao S, Takemura S-Y, Ting C-Y, Huang S, Lu Z. 41.  et al. 2008. The neural substrate of spectral preference in Drosophila. Neuron 60:2328–42 [Google Scholar]
  43. Garrett EC, Steiper ME. 42.  2014. Strong links between genomic and anatomical diversity in both mammalian olfactory chemosensory systems. Proc. R. Soc. B 281:20132828 [Google Scholar]
  44. Gilbert C, Strausfeld NJ. 43.  1991. The functional organization of male-specific visual neurons in flies. J. Comp. Physiol. A 169:4395–411 [Google Scholar]
  45. Gonzalez-Bellido PT, Wardill TJ, Juusola M. 44.  2011. Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands. PNAS 108:104224–29 [Google Scholar]
  46. Graham TGW, Tabei SMA, Dinner AR, Rebay I. 45.  2010. Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives. Development 137:142265–78 [Google Scholar]
  47. Greiner B, Ribi WA, Warrant EJ. 46.  2005. A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megalopta genalis. Cell Tissue Res 322:2313–20 [Google Scholar]
  48. Greiner B, Ribi WA, Wcislo WT, Warrant EJ. 47.  2004. Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis. Cell Tissue Res 318:2429–37 [Google Scholar]
  49. Grosskortenhaus R, Pearson BJ, Marusich A, Doe CQ. 48.  2005. Regulation of temporal identity transitions in Drosophila neuroblasts. Dev. Cell 8:2193–202 [Google Scholar]
  50. Hardie RC. 49.  1983. Projection and connectivity of sex-specific photoreceptors in the compound eye of the male housefly (Musca domestica). Cell Tissue Res 233:11–21 [Google Scholar]
  51. Hardie RC. 50.  1985. Functional organization of the fly retina. Progress in Sensory Physiology, Vol. 5 H Autrum, D Ottoson, ER Perl, RF Schmidt, H Shimazu, WD Willis 1–79 Berlin: Springer [Google Scholar]
  52. Hardie RC. 51.  1986. The photoreceptor array of the dipteran retina. Trends Neurosci 9:419–23 [Google Scholar]
  53. Hardie RC, Franceschini N, Ribi W, Kirschfeld K. 52.  1981. Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J. Comp. Physiol 145:2139–52 [Google Scholar]
  54. Hartenstein V, Posakony JW. 53.  1989. Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development 107:2389–405 [Google Scholar]
  55. Harzsch S. 54.  2002. The phylogenetic significance of crustacean optic neuropils and chiasmata: a re-examination. J. Comp. Neurol. 453:110–21 [Google Scholar]
  56. Hausen K. 55.  1984. The lobula-complex of the fly: structure, function and significance in visual behaviour. Photoreception and Vision in Invertebrates MA Ali 523–59 NATO Adv. Sci. Inst. Ser. 74 New York: Plenum Press [Google Scholar]
  57. Hausen K, Strausfeld NJ. 56.  1980. Sexually dimorphic interneuron arrangements in the fly visual system. Proc. R. Soc. B 208:117057–71 [Google Scholar]
  58. Hering L, Henze MJ, Kohler M, Kelber A, Bleidorn C. 57.  et al. 2012. Opsins in Onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods. Mol. Biol. Evol. 29:113451–58 [Google Scholar]
  59. Hornstein EP, O'Carroll DC, Anderson JC, Laughlin SB. 58.  2000. Sexual dimorphism matches photoreceptor performance to behavioural requirements. Proc. R. Soc. B 267:14572111–17 [Google Scholar]
  60. Hu CK, Hoekstra HE. 59.  2017. Peromyscus burrowing: a model system for behavioral evolution. Semin. Cell Dev. Biol. 61:107–14 [Google Scholar]
  61. Huang Z, Kunes S. 60.  1996. Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell 86:3411–22 [Google Scholar]
  62. Huang Z, Kunes S. 61.  1998. Signals transmitted along retinal axons in Drosophila: Hedgehog signal reception and the cell circuitry of lamina cartridge assembly. Development 125:193753–64 [Google Scholar]
  63. Huang Z, Shilo BZ, Kunes S. 62.  1998. A retinal axon fascicle uses Spitz, an EGF receptor ligand, to construct a synaptic cartridge in the brain of Drosophila. Cell 95:5693–703 [Google Scholar]
  64. Isshiki T, Pearson B, Holbrook S, Doe CQ. 63.  2001. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106:4511–21 [Google Scholar]
  65. Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A. 64.  2010. ON and OFF pathways in Drosophila motion vision. Nature 468:7321300–4 [Google Scholar]
  66. Joesch M, Weber F, Eichner H, Borst A. 65.  2013. Functional specialization of parallel motion detection circuits in the fly. J. Neurosci. 33:3902–5 [Google Scholar]
  67. Johnston RJ Jr., Desplan C. 66.  2014. Interchromosomal communication coordinates intrinsically stochastic expression between alleles. Science 343:6171661–65 [Google Scholar]
  68. Johnston RJ Jr., Otake Y, Sood P, Vogt N, Behnia R. 67.  et al. 2011. Interlocked feedforward loops control cell-type–specific Rhodopsin expression in the Drosophila eye. Cell 145:6956–68 [Google Scholar]
  69. Kambadur R, Koizumi K, Stivers C, Nagle J, Poole SJ, Odenwald WF. 68.  1998. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev 12:2246–60 [Google Scholar]
  70. Katsov AY, Clandinin TR. 69.  2008. Motion processing streams in Drosophila are behaviorally specialized. Neuron 59:2322–35 [Google Scholar]
  71. Kelber A. 70.  1999. Why “false” colours are seen by butterflies. Nature 402:6759251 [Google Scholar]
  72. Kelber A, Balkenius A, Warrant EJ. 71.  2002. Scotopic colour vision in nocturnal hawkmoths. Nature 419:6910922–25 [Google Scholar]
  73. Kelber A, Thunell C, Arikawa K. 72.  2001. Polarisation-dependent colour vision in Papilio butterflies. J. Exp. Biol. 204:142469–80 [Google Scholar]
  74. Kinoshita M, Arikawa K. 73.  2014. Color and polarization vision in foraging Papilio. J. Comp. Physiol. A 200:6513–26 [Google Scholar]
  75. Kinoshita M, Takahashi Y, Arikawa K. 74.  2008. Simultaneous color contrast in the foraging swallowtail butterfly, Papilio xuthus. J. Exp. Biol. 211:213504–11 [Google Scholar]
  76. Kohwi M, Doe CQ. 75.  2013. Temporal fate specification and neural progenitor competence during development. Nat. Rev. Neurosci. 14:12823–38 [Google Scholar]
  77. Kolodziejczyk A, Sun X, Meinertzhagen IA, Nässel DR, Goodman C. 76.  2008. Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system. PLOS ONE 3:5e2110 [Google Scholar]
  78. Konstantinides N, Rossi AM, Desplan C. 77.  2015. Common temporal identity factors regulate neuronal diversity in fly ventral nerve cord and mouse retina. Neuron 85:3447–49 [Google Scholar]
  79. Krapp HG, Hengstenberg B, Hengstenberg R. 78.  1998. Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J. Neurophysiol. 79:41902–17 [Google Scholar]
  80. Kumar JP. 79.  2012. Building an ommatidium one cell at a time. Dev. Dyn. 241:1136–49 [Google Scholar]
  81. Land MF, Nilsson D-E. 80.  2012. Animal Eyes Oxford, UK: Oxford Univ. Press
  82. Li X, Chen Z, Desplan C. 81.  2013. Temporal patterning of neural progenitors in Drosophila. Curr. Top. Dev. Biol. 105:69–96 [Google Scholar]
  83. Li X, Erclik T, Bertet C, Chen Z, Voutev R. 82.  et al. 2013. Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498:7455456–62 [Google Scholar]
  84. Lin T-Y, Luo J, Shinomiya K, Ting C-Y, Lu Z. 83.  et al. 2016. Mapping chromatic pathways in the Drosophila visual system. J. Comp. Neurol. 524:2213–27 [Google Scholar]
  85. Maisak MS, Haag J, Ammer G, Serbe E, Meier M. 84.  et al. 2013. A directional tuning map of Drosophila elementary motion detectors. Nature 500:7461212–16 [Google Scholar]
  86. Mattar P, Ericson J, Blackshaw S, Cayouette M. 85.  2015. A conserved regulatory logic controls temporal identity in mouse neural progenitors. Neuron 85:3497–504 [Google Scholar]
  87. Mauss AS, Meier M, Serbe E, Borst A. 86.  2014. Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J. Neurosci. 34:62254–63 [Google Scholar]
  88. Mauss AS, Pankova K, Arenz A, Nern A, Rubin GM, Borst A. 87.  2015. Neural circuit to integrate opposing motions in the visual field. Cell 162:2351–62 [Google Scholar]
  89. Mayer G. 88.  2006. Structure and development of onychophoran eyes: What is the ancestral visual organ in arthropods?. Arthropod Struct. Dev. 35:4231–45 [Google Scholar]
  90. Meier M, Serbe E, Maisak MS, Haag J, Dickson BJ, Borst A. 89.  2014. Neural circuit components of the Drosophila OFF motion vision pathway. Curr. Biol. 24:4385–92 [Google Scholar]
  91. Meinertzhagen IA, Hanson TE. 90.  1993. The development of the optic lobe. The Development of Drosophila melanogaster, Vol. 2 M Bate, A Martinez Arias 1363–491 Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press [Google Scholar]
  92. Meinertzhagen IA, O'Neil SD. 91.  1991. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J. Comp. Neurol. 305:2232–63 [Google Scholar]
  93. Melnattur KV, Pursley R, Lin T-Y, Ting C-Y, Smith PD. 92.  et al. 2014. Multiple redundant medulla projection neurons mediate color vision in Drosophila. J. Neurogenet. 28:374–88 [Google Scholar]
  94. Mitchell KJ. 93.  2007. The genetics of brain wiring: from molecule to mind. PLOS Biol 5:4e113 [Google Scholar]
  95. Mollereau B, Dominguez M, Webel R, Colley NJ, Keung B. 94.  et al. 2001. Two-step process for photoreceptor formation in Drosophila. Nature 412:6850911–13 [Google Scholar]
  96. Morante J, Desplan C. 95.  2008. The color-vision circuit in the medulla of Drosophila. Curr. Biol. 18:8553–65 [Google Scholar]
  97. Mullins MC, Rubin GM. 96.  1991. Isolation of temperature-sensitive mutations of the tyrosine kinase receptor sevenless (sev) in Drosophila and their use in determining its time of action. PNAS 88:219387–91 [Google Scholar]
  98. Nei M, Niimura Y, Nozawa M. 97.  2008. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat. Rev. Genet. 9:12951–63 [Google Scholar]
  99. Nordström K, Barnett PD, Moyer de Miguel IM, Brinkworth RSA, O'Carroll DC. 98.  2008. Sexual dimorphism in the hoverfly motion vision pathway. Curr. Biol. 18:9661–67 [Google Scholar]
  100. Novotny T, Eiselt R, Urban J. 99.  2002. Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. Development 129:41027–36 [Google Scholar]
  101. Oliva C, Choi C-M, Nicolai LJJ, Mora N, De Geest N, Hassan BA. 100.  2014. Proper connectivity of Drosophila motion detector neurons requires Atonal function in progenitor cells. Neural Dev 9:14 [Google Scholar]
  102. Papatsenko D, Sheng G, Desplan C. 101.  1997. A new rhodopsin in R8 photoreceptors of Drosophila: evidence for coordinate expression with Rh3 in R7 cells. Development 124:91665–73 [Google Scholar]
  103. Perez SE, Steller H. 102.  1996. Migration of glial cells into retinal axon target field in Drosophila melanogaster. J. Neurobiol. 30:3359–73 [Google Scholar]
  104. Perez SE, Steller H. 103.  1996. Molecular and genetic analyses of lama, an evolutionarily conserved gene expressed in the precursors of the Drosophila first optic ganglion. Mech. Dev. 59:111–27 [Google Scholar]
  105. Perry MW, Desplan C. 104.  2016. Love spots. Curr. Biol. 26:12R484–85 [Google Scholar]
  106. Perry MW, Kinoshita M, Saldi G, Huo L, Arikawa K, Desplan C. 105.  2016. Molecular logic behind the three-way stochastic choices that expand butterfly colour vision. Nature 535:7611280–84 [Google Scholar]
  107. Prieto-Godino LL, Rytz R, Cruchet S, Bargeton B, Abuin L. 106.  et al. 2017. Evolution of acid-sensing olfactory circuits in Drosophilids. Neuron 93:3661–676 [Google Scholar]
  108. Ready DF. 107.  1989. A multifaceted approach to neural development. Trends Neurosci 12:3102–10 [Google Scholar]
  109. Ready DF, Hanson TE, Benzer S. 108.  1976. Development of the Drosophila retina, a neurocrystalline lattice. Dev. Biol. 53:2217–40 [Google Scholar]
  110. Ribi WA. 109.  1974. Neurons in the first synaptic region of the bee, Apis mellifera. Cell Tissue Res. 148:2277–86 [Google Scholar]
  111. Ribi WA. 110.  1975. The neurons of the first optic ganglion of the bee (Apis mellifera). Adv. Anat. Embryol. Cell Biol. 50:41–43 [Google Scholar]
  112. Rister J, Desplan C, Vasiliauskas D. 111.  2013. Establishing and maintaining gene expression patterns: insights from sensory receptor patterning. Development 140:3493–503 [Google Scholar]
  113. Rister J, Pauls D, Schnell B, Ting C-Y, Lee C-H. 112.  et al. 2007. Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56:1155–70 [Google Scholar]
  114. Rogge RD, Karlovich CA, Banerjee U. 113.  1991. Genetic dissection of a neurodevelopmental pathway: Son of sevenless functions downstream of the sevenless and EGF receptor tyrosine kinases. Cell 64:139–48 [Google Scholar]
  115. Roignant J-Y, Treisman JE. 114.  2009. Pattern formation in the Drosophila eye disc. Int. J. Dev. Biol. 53:795–804 [Google Scholar]
  116. Schnell B, Raghu SV, Nern A, Borst A. 115.  2012. Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J. Comp. Physiol. A 198:5389–95 [Google Scholar]
  117. Serbe E, Meier M, Leonhardt A, Borst A. 116.  2016. Comprehensive characterization of the major presynaptic elements to the Drosophila OFF motion detector. Neuron 89:4829–41 [Google Scholar]
  118. Shinomiya K, Karuppudurai T, Lin T-Y, Lu Z, Lee C-H, Meinertzhagen IA. 117.  2014. Candidate neural substrates for OFF-edge motion detection in Drosophila. Curr. Biol. 24:101062–70 [Google Scholar]
  119. Shinomiya K, Takemura S, Rivlin PK, Plaza SM, Scheffer LK, Meinertzhagen IA. 118.  2015. A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system. Front. Neural Circuits 9:33 [Google Scholar]
  120. Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR. 119.  2013. Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79:1111–27 [Google Scholar]
  121. Sinakevitch I, Douglass JK, Scholtz G, Loesel R, Strausfeld NJ. 120.  2003. Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J. Comp. Neurol. 467:2150–72 [Google Scholar]
  122. Spaethe J, Briscoe AD. 121.  2005. Molecular characterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. J. Exp. Biol. 208:122347–61 [Google Scholar]
  123. Stöckl AL, O'Carroll DC, Warrant EJ. 122.  2016. Neural summation in the hawkmoth visual system extends the limits of vision in dim light. Curr. Biol. 26:6821–26 [Google Scholar]
  124. Stöckl AL, Ribi WA, Warrant EJ. 123.  2016. Adaptations for nocturnal and diurnal vision in the hawkmoth lamina. J. Comp. Neurol. 524:1160–75 [Google Scholar]
  125. Strausfeld NJ. 124.  1991. Structural organization of male-specific visual neurons in calliphorid optic lobes. J. Comp. Physiol. A. 169:4379–93 [Google Scholar]
  126. Strausfeld NJ. 125.  2005. The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct. Dev. 34:3235–56 [Google Scholar]
  127. Strausfeld NJ. 126.  2009. Brain organization and the origin of insects: an assessment. Proc. R. Soc. B 276:16641929–37 [Google Scholar]
  128. Strother JA, Nern A, Reiser MB. 127.  2014. Direct observation of ON and OFF pathways in the Drosophila visual system. Curr. Biol. 24:9976–83 [Google Scholar]
  129. Suzuki T, Kaido M, Takayama R, Sato M. 128.  2013. A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev. Biol. 380:112–24 [Google Scholar]
  130. Takemura S, Bharioke A, Lu Z, Nern A, Vitaladevuni S. 129.  et al. 2013. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:7461175–81 [Google Scholar]
  131. Takemura S, Karuppudurai T, Ting C-Y, Lu Z, Lee C-H, Meinertzhagen IA. 130.  2011. Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Curr. Biol. 21:242077–84 [Google Scholar]
  132. Takemura S, Xu CS, Lu Z, Rivlin PK, Parag T. 131.  et al. 2015. Synaptic circuits and their variations within different columns in the visual system of Drosophila. PNAS 112:4413711–16 [Google Scholar]
  133. Tomlinson A, Bowtell DDL, Hafen E, Rubin GM. 132.  1987. Localization of the sevenless protein, a putative receptor for positional information, in the eye imaginal disc of Drosophila. Cell 51:1143–50 [Google Scholar]
  134. Tomlinson A, Mavromatakis YE, Struhl G. 133.  2011. Three distinct roles for Notch in Drosophila R7 photoreceptor specification. PLOS Biol 9:8e1001132 [Google Scholar]
  135. Tomlinson A, Ready DF. 134.  1987. Neuronal differentiation in Drosophila ommatidium. Dev. Biol. 120:2366–76 [Google Scholar]
  136. Trischler C, Boeddeker N, Egelhaaf M. 135.  2007. Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli. J. Comp. Physiol. A 193:5559–72 [Google Scholar]
  137. Tuthill JC, Nern A, Holtz SL, Rubin GM, Reiser MB. 136.  2013. Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79:1128–40 [Google Scholar]
  138. Wakakuwa M, Kurasawa M, Giurfa M, Arikawa K. 137.  2005. Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften 92:10464–67 [Google Scholar]
  139. Warrant E, Nilsson D-E. 138.  2006. Invertebrate Vision Cambridge, UK: Cambridge Univ. Press
  140. Weber JN, Peterson BK, Hoekstra HE. 139.  2013. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature 493:7432402–5 [Google Scholar]
  141. Wells BS, Pistillo D, Barnhart E, Desplan C. 139a.  2017. Parallel Activin and BMP signaling coordinates R7/R8 photoreceptor subtype pairing in the stochastic Drosophila retina. eLife 6:e25301 [Google Scholar]
  142. Wernet MF, Desplan C. 140.  2014. Homothorax and Extradenticle alter the transcription factor network in Drosophila ommatidia at the dorsal rim of the retina. Development 141:4918–28 [Google Scholar]
  143. Wernet MF, Labhart T, Baumann F, Mazzoni EO, Pichaud F, Desplan C. 141.  2003. Homothorax switches function of Drosophila photoreceptors from color to polarized light sensors. Cell 115:3267–79 [Google Scholar]
  144. Wernet MF, Mazzoni EO, Celik A, Duncan DM, Duncan I. 142.  et al. 2006. Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 440:7081174–80 [Google Scholar]
  145. Wernet MF, Perry MW, Desplan C. 143.  2015. The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic. Trends Genet 31:6316–28 [Google Scholar]
  146. Wernet MF, Velez MM, Clark DA, Baumann-Klausener F, Brown JR. 144.  et al. 2012. Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr. Biol. 22:112–20 [Google Scholar]
  147. Wiegmann BM, Trautwein MD, Kim J-W, Cassel BK, Bertone MA. 145.  et al. 2009. Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 7:134 [Google Scholar]
  148. Williamson WR, Wang D, Haberman AS, Hiesinger PR. 146.  2010. A dual function of V0-ATPase a1 provides an endolysosomal degradation mechanism in Drosophila melanogaster photoreceptors. J. Cell Biol. 189:5885–99 [Google Scholar]
  149. Winberg ML, Perez SE, Steller H. 147.  1992. Generation and early differentiation of glial cells in the first optic ganglion of Drosophila melanogaster. Development 115:4903–11 [Google Scholar]
  150. Wolff T, Ready DF. 148.  1993. Pattern formation in the Drosophila retina. The Development of Drosophila melanogaster 2 M Bate, A Martinez Arias 1277–325 Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press [Google Scholar]
  151. Wunderer H, Smola U. 149.  1982. Morphological differentiation of the central visual cells R7/8 in various regions of the blowfly eye. Tissue Cell 14:2341–58 [Google Scholar]
  152. Zeil J. 150.  1983. Sexual dimorphism in the visual system of flies: the compound eyes and neural superposition in bibionidae (Diptera). J. Comp. Physiol. 150:3379–93 [Google Scholar]
/content/journals/10.1146/annurev-genet-120215-035312
Loading
/content/journals/10.1146/annurev-genet-120215-035312
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error