1932

Abstract

Sexual reproduction crucially depends on the production of sperm in males and oocytes in females. Both types of gamete arise from the same precursor, the germ cells. We review the events that characterize the development of germ cells during fetal life as they commit to, and prepare for, oogenesis or spermatogenesis. In females, fetal germ cells enter meiosis, whereas in males they delay meiosis and instead lose pluripotency, activate an irreversible program of prospermatogonial differentiation, and temporarily cease dividing. Both pathways involve sex-specific molecular signals from the somatic cells of the developing gonads and a suite of intrinsic receptors, signal transducers, transcription factors, RNA stability factors, and epigenetic modulators that act in complex, interconnected positive and negative regulatory networks. Understanding these networks is important in the contexts of the etiology, diagnosis, and treatment of infertility and gonadal cancers, and in efforts to augment human and animal fertility using stem cell approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120215-035449
2017-11-27
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/genet/51/1/annurev-genet-120215-035449.html?itemId=/content/journals/10.1146/annurev-genet-120215-035449&mimeType=html&fmt=ahah

Literature Cited

  1. Abby E, Tourpin S, Ribeiro J, Daniel K, Messiaen S. 1.  et al. 2016. Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts. Nat. Commun. 7:10324 [Google Scholar]
  2. Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG. 2.  et al. 2008. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. PNAS 105:14976–80 [Google Scholar]
  3. Bagheri-Fam S, Sim H, Bernard P, Jayakody I, Taketo MM. 3.  et al. 2008. Loss of Fgfr2 leads to partial XY sex reversal. Dev. Biol. 314:71–83 [Google Scholar]
  4. Baltus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE. 4.  et al. 2006. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat. Genet. 38:1430–34 [Google Scholar]
  5. Barau J, Teissandier A, Zamudio N, Roy S, Nalesso V. 5.  et al. 2016. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354:909–12 [Google Scholar]
  6. Barrios F, Filipponi D, Pellegrini M, Paronetto MP, Di Siena S. 6.  et al. 2010. Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J. Cell Sci. 123:871–80 [Google Scholar]
  7. Blake GET, Watson ED. 7.  2016. Unravelling the complex mechanisms of transgenerational epigenetic inheritance. Curr. Opin. Chem. Biol. 33:101–17 [Google Scholar]
  8. Boulogne B, Levacher C, Durand P, Habert R. 8.  1999. Retinoic acid receptors and retinoid X receptors in the rat testis during fetal and postnatal development: immunolocalization and implication in the control of the number of gonocytes. Biol. Reprod. 61:1548–57 [Google Scholar]
  9. Bourc'his D, Bestor TH. 9.  2004. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99 [Google Scholar]
  10. Bowles J, Feng CW, Miles K, Ineson J, Spiller C, Koopman P. 10.  2016. ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries. Nat. Commun. 7:10845 [Google Scholar]
  11. Bowles J, Feng CW, Spiller C, Davidson TL, Jackson A, Koopman P. 11.  2010. FGF9 suppresses meiosis and promotes male germ cell fate in mice. Dev. Cell 19:440–49 [Google Scholar]
  12. Bowles J, Knight D, Smith C, Wilhelm D, Richman J. 12.  et al. 2006. Retinoid signaling determines germ cell fate in mice. Science 312:596–600 [Google Scholar]
  13. Bowles J, Koopman P. 13.  2007. Retinoic acid, meiosis and germ cell fate in mammals. Development 134:3401–11 [Google Scholar]
  14. Brown S, Teo A, Pauklin S, Hannan N, Cho CH. 14.  et al. 2011. Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells 29:1176–85 [Google Scholar]
  15. Bullejos M, Koopman P. 15.  2004. Germ cells enter meiosis in a rostro-caudal wave during development of the mouse ovary. Mol. Reprod. Dev. 68:422–28 [Google Scholar]
  16. Bustamante-Marin X, Garness JA, Capel B. 16.  2013. Testicular teratomas: an intersection of pluripotency, differentiation and cancer biology. Int. J. Dev. Biol. 57:201–10 [Google Scholar]
  17. Byskov AG. 17.  1974. Does the rete ovarii act as a trigger for the onset of meiosis?. Nature 252:396–97 [Google Scholar]
  18. Byskov AG, Saxen L. 18.  1976. Induction of meiosis in fetal mouse testis in vitro. Dev. Biol. 52:193–200 [Google Scholar]
  19. Chassot AA, Gregoire EP, Lavery R, Taketo MM, de Rooij DG. 19.  et al. 2011. RSPO1/β-catenin signaling pathway regulates oogonia differentiation and entry into meiosis in the mouse fetal ovary. PLOS ONE 6:e25641 [Google Scholar]
  20. Chassot AA, Ranc F, Gregoire EP, Roepers-Gajadien HL, Taketo MM. 20.  et al. 2008. Activation of β-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum. Mol. Genet. 17:1264–77 [Google Scholar]
  21. Chen W, Jia W, Wang K, Si X, Zhu S. 21.  et al. 2013. Distinct roles for CBP and p300 on the RA-mediated expression of the meiosis commitment gene Stra8 in mouse embryonic stem cells. PLOS ONE 8:e66076 [Google Scholar]
  22. Childs AJ, Cowan G, Kinnell HL, Anderson RA, Saunders PT. 22.  2011. Retinoic acid signalling and the control of meiotic entry in the human fetal gonad. PLOS ONE 6:e20249 [Google Scholar]
  23. Choi Y, Yoon J, Pyo C, Kim J, Bae S, Park S. 23.  2010. A possible role of STRA8 as a transcription factor. Genes Genom 32:521–26 [Google Scholar]
  24. Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM. 24.  2001. Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104:875–89 [Google Scholar]
  25. Culty M. 25.  2009. Gonocytes, the forgotten cells of the germ cell lineage. Birth Defects Res. C Embryo Today 87:1–26 [Google Scholar]
  26. De Felici M, Dolci S, Pesce M. 26.  1992. Cellular and molecular aspects of mouse primordial germ cell migration and proliferation in culture. Int. J. Dev. Biol. 36:205–13 [Google Scholar]
  27. Dokshin GA, Baltus AE, Eppig JJ, Page DC. 27.  2013. Oocyte differentiation is genetically dissociable from meiosis in mice. Nat. Genet. 45:877–83 [Google Scholar]
  28. Donovan PJ, Stott D, Cairns LA, Heasman J, Wylie CC. 28.  1986. Migratory and postmigratory mouse primordial germ cells behave differently in culture. Cell 44:831–38 [Google Scholar]
  29. Durcova-Hills G, Adams IR, Barton SC, Surani MA, McLaren A. 29.  2006. The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells. Stem Cells 24:1441–49 [Google Scholar]
  30. Durcova-Hills G, Surani A. 30.  2008. Reprogramming primordial germ cells (PGC) to embryonic germ (EG) cells. Curr. Protoc. Stem. Cell Biol. 5:1A.3.1–1A.3.20 [Google Scholar]
  31. Evans EP, Ford CE, Lyon MF. 31.  1977. Direct evidence of the capacity of the XY germ cell in the mouse to become an oocyte. Nature 267:430–31 [Google Scholar]
  32. Feng YM, Liang GJ, Pan B, Qin XS, Zhang XF. 32.  et al. 2014. Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse. Cell Cycle 13:782–91 [Google Scholar]
  33. Fuhrmann G, Chung AC, Jackson KJ, Hummelke G, Baniahmad A. 33.  et al. 2001. Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev. Cell 1:377–87 [Google Scholar]
  34. Garcia-Castro MI, Anderson R, Heasman J, Wylie C. 34.  1997. Interactions between germ cells and extracellular matrix glycoproteins during migration and gonad assembly in the mouse embryo. J. Cell Biol. 138:471–80 [Google Scholar]
  35. Gill ME, Hu YC, Lin Y, Page DC. 35.  2011. Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. PNAS 108:7443–48 [Google Scholar]
  36. Giuili G, Tomljenovic A, Labrecque N, Oulad-Abdelghani M, Rassoulzadegan M, Cuzin F. 36.  2002. Murine spermatogonial stem cells: targeted transgene expression and purification in an active state. EMBO Rep 3:753–59 [Google Scholar]
  37. Godin I, Wylie CC. 37.  1991. TGFβ1 inhibits proliferation and has a chemotropic effect on mouse primordial germ cells in culture. Development 113:1451–57 [Google Scholar]
  38. Gu P, LeMenuet D, Chung AC, Mancini M, Wheeler DA, Cooney AJ. 38.  2005. Orphan nuclear receptor GCNF is required for the repression of pluripotency genes during retinoic acid–induced embryonic stem cell differentiation. Mol. Cell Biol. 25:8507–19 [Google Scholar]
  39. Gudas LJ, Wagner JA. 39.  2011. Retinoids regulate stem cell differentiation. J. Cell. Physiol. 226:322–30 [Google Scholar]
  40. Gustin SE, Stringer JM, Hogg K, Sinclair AH, Western PS. 40.  2016. FGF9, activin and TGFβ promote testicular characteristics in an XX gonad organ culture model. Reproduction 152:529–43 [Google Scholar]
  41. Hajkova P. 41.  2011. Epigenetic reprogramming in the germline: towards the ground state of the epigenome. Philos. Trans. R. Soc. B 366:2266–73 [Google Scholar]
  42. Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC. 42.  et al. 2008. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452:877–81 [Google Scholar]
  43. Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. 43.  2010. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329:78–82 [Google Scholar]
  44. Haston KM, Tung JY, Reijo Pera RA. 44.  2009. Dazl functions in maintenance of pluripotency and genetic and epigenetic programs of differentiation in mouse primordial germ cells in vivo and in vitro. PLOS ONE 4:e5654 [Google Scholar]
  45. Hogarth CA, Griswold MD. 45.  2010. The key role of vitamin A in spermatogenesis. J. Clin. Investig. 120:956–62 [Google Scholar]
  46. Jameson SA, Lin YT, Capel B. 46.  2012. Testis development requires the repression of Wnt4 by Fgf signaling. Dev. Biol. 370:24–32 [Google Scholar]
  47. Jameson SA, Natarajan A, Cool J, DeFalco T, Maatouk DM. 47.  et al. 2012. Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad. PLOS Genet 8:e1002575 [Google Scholar]
  48. Jorgensen A, Nielsen JE, Blomberg Jensen M, Graem N, Rajpert-De Meyts E. 48.  2012. Analysis of meiosis regulators in human gonads: A sexually dimorphic spatio-temporal expression pattern suggests involvement of DMRT1 in meiotic entry. Mol. Hum. Reprod. 18:523–34 [Google Scholar]
  49. Karl J, Capel B. 49.  1995. Three-dimensional structure of the developing mouse genital ridge. Philos. Trans. R. Soc. B 350:235–42 [Google Scholar]
  50. Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M. 50.  et al. 2007. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum. Mol. Genet. 16:2272–80 [Google Scholar]
  51. Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B. 51.  2007. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. PNAS 104:16558–63 [Google Scholar]
  52. Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J. 52.  et al. 2006. Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLOS Biol 4:e187 [Google Scholar]
  53. Koizumi M, Oyama K, Yamakami Y, Kida T, Satoh R. 53.  et al. 2015. Lgr4 controls specialization of female gonads in mice. Biol. Reprod. 93:90 [Google Scholar]
  54. Koubova J, Hu YC, Bhattacharyya T, Soh YQ, Gill ME. 54.  et al. 2014. Retinoic acid activates two pathways required for meiosis in mice. PLOS Genet 10:e1004541 [Google Scholar]
  55. Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC. 55.  2006. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. PNAS 103:2474–79 [Google Scholar]
  56. Krentz AD, Murphy MW, Kim S, Cook MS, Capel B. 56.  et al. 2009. The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. PNAS 106:22323–28 [Google Scholar]
  57. Krentz AD, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D. 57.  2011. DMRT1 promotes oogenesis by transcriptional activation of Stra8 in the mammalian fetal ovary. Dev. Biol. 356:63–70 [Google Scholar]
  58. Kumar S, Chatzi C, Brade T, Cunningham TJ, Zhao X, Duester G. 58.  2011. Sex-specific timing of meiotic initiation is regulated by Cyp26b1 independent of retinoic acid signalling. Nat. Commun. 2:151 [Google Scholar]
  59. La Salle S, Mertineit C, Taketo T, Moens PB, Bestor TH, Trasler JM. 59.  2004. Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells. Dev. Biol. 268:403–15 [Google Scholar]
  60. Le Bouffant R, Guerquin MJ, Duquenne C, Frydman N, Coffigny H. 60.  et al. 2010. Meiosis initiation in the human ovary requires intrinsic retinoic acid synthesis. Hum. Reprod. 25:2579–90 [Google Scholar]
  61. Le Bouffant R, Souquet B, Duval N, Duquenne C, Herve R. 61.  et al. 2011. Msx1 and Msx2 promote meiosis initiation. Development 138:5393–402 [Google Scholar]
  62. Lei N, Hornbaker KI, Rice DA, Karpova T, Agbor VA, Heckert LL. 62.  2007. Sex-specific differences in mouse DMRT1 expression are both cell type– and stage-dependent during gonad development. Biol. Reprod. 77:466–75 [Google Scholar]
  63. Lesch BJ, Page DC. 63.  2014. Poised chromatin in the mammalian germ line. Development 141:3619–26 [Google Scholar]
  64. Li H, Clagett-Dame M. 64.  2009. Vitamin A deficiency blocks the initiation of meiosis of germ cells in the developing rat ovary in vivo. Biol. Reprod. 81:996–1001 [Google Scholar]
  65. Li H, Kim KH. 65.  2004. Retinoic acid inhibits rat XY gonad development by blocking mesonephric cell migration and decreasing the number of gonocytes. Biol. Reprod. 70:687–93 [Google Scholar]
  66. Liang GJ, Zhang XF, Wang JJ, Sun YC, Sun XF. 66.  et al. 2015. Activin A accelerates the progression of fetal oocytes throughout meiosis and early oogenesis in the mouse. Stem Cells Dev 24:2455–65 [Google Scholar]
  67. Lin Y, Page DC. 67.  2005. Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice. Dev. Biol. 288:309–16 [Google Scholar]
  68. Looijenga LH, Gillis AJ, Stoop HJ, Hersmus R, Oosterhuis JW. 68.  2007. Chromosomes and expression in human testicular germ-cell tumors: insight into their cell of origin and pathogenesis. Ann. N. Y. Acad. Sci. 1120:187–214 [Google Scholar]
  69. Maatouk DM, Kellam LD, Mann MR, Lei H, Li E. 69.  et al. 2006. DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development 133:3411–18 [Google Scholar]
  70. MacLean G, Li H, Metzger D, Chambon P, Petkovich M. 70.  2007. Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice. Endocrinology 148:4560–67 [Google Scholar]
  71. Mark M, Ghyselinck NB, Chambon P. 71.  2006. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu. Rev. Pharmacol. Toxicol. 46:451–80 [Google Scholar]
  72. Matson CK, Zarkower D. 72.  2012. Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat. Rev. Genet. 13:163–74 [Google Scholar]
  73. Matsui Y, Mochizuki K. 73.  2014. A current view of the epigenome in mouse primordial germ cells. Mol. Reprod. Dev. 81:160–70 [Google Scholar]
  74. Matsui Y, Zsebo K, Hogan BL. 74.  1992. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–47 [Google Scholar]
  75. McLaren A. 75.  1984. Meiosis and differentiation of mouse germ cells. Symp. Soc. Exp. Biol. 38:7–23 [Google Scholar]
  76. McLaren A. 76.  1985. Relation of germ cell sex to gonadal differentiation. The Origin and Evolution of Sex HO Halvorson, A Monroy 289–300 New York: Liss [Google Scholar]
  77. McLaren A. 77.  1995. Germ cells and germ cell sex. Philos. Trans. R. Soc. B 350:229–33 [Google Scholar]
  78. Memon MA, Anway MD, Covert TR, Uzumcu M, Skinner MK. 78.  2008. Transforming growth factor beta (TGFβ1, TGFβ2 and TGFβ3) null–mutant phenotypes in embryonic gonadal development. Mol. Cell. Endocrinol. 294:70–80 [Google Scholar]
  79. Mendis SH, Meachem SJ, Sarraj MA, Loveland KL. 79.  2011. Activin A balances Sertoli and germ cell proliferation in the fetal mouse testis. Biol. Reprod. 84:379–91 [Google Scholar]
  80. Menke DB, Koubova J, Page DC. 80.  2003. Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Dev. Biol. 262:303–12 [Google Scholar]
  81. Menke DB, Page DC. 81.  2002. Sexually dimorphic gene expression in the developing mouse gonad. Gene Expr. Patterns 2:359–67 [Google Scholar]
  82. Miles DC, Wakeling SI, Stringer JM, van den Bergen JA, Wilhelm D. 82.  et al. 2013. Signaling through the TGF β-activin receptors ALK4/5/7 regulates testis formation and male germ cell development. PLOS ONE 8:e54606 [Google Scholar]
  83. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. 83.  2016. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs—Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 70:93–105 [Google Scholar]
  84. Moniot B, Ujjan S, Champagne J, Hirai H, Aritake K. 84.  et al. 2014. Prostaglandin D2 acts through the Dp2 receptor to influence male germ cell differentiation in the foetal mouse testis. Development 141:3561–71 [Google Scholar]
  85. Monk M, Boubelik M, Lehnert S. 85.  1987. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99:371–82 [Google Scholar]
  86. Moreno SG, Attali M, Allemand I, Messiaen S, Fouchet P. 86.  et al. 2010. TGFβ signaling in male germ cells regulates gonocyte quiescence and fertility in mice. Dev. Biol. 342:74–84 [Google Scholar]
  87. Morita Y, Tilly JL. 87.  1999. Segregation of retinoic acid effects on fetal ovarian germ cell mitosis versus apoptosis by requirement for new macromolecular synthesis. Endocrinology 140:2696–703 [Google Scholar]
  88. Mu X, Wen J, Guo M, Wang J, Li G. 88.  et al. 2013. Retinoic acid derived from the fetal ovary initiates meiosis in mouse germ cells. J. Cell. Physiol. 228:627–39 [Google Scholar]
  89. Naillat F, Prunskaite-Hyyrylainen R, Pietila I, Sormunen R, Jokela T. 89.  et al. 2010. Wnt4/5a signalling coordinates cell adhesion and entry into meiosis during presumptive ovarian follicle development. Hum. Mol. Genet. 19:1539–50 [Google Scholar]
  90. Ohta K, Lin Y, Hogg N, Yamamoto M, Yamazaki Y. 90.  2010. Direct effects of retinoic acid on entry of fetal male germ cells into meiosis in mice. Biol. Reprod. 83:1056–63 [Google Scholar]
  91. Okumura LM, Lesch BJ, Page DC. 91.  2013. The ligand binding domain of GCNF is not required for repression of pluripotency genes in mouse fetal ovarian germ cells. PLOS ONE 8:e66062 [Google Scholar]
  92. Oulad-Abdelghani M, Bouillet P, Decimo D, Gansmuller A, Heyberger S. 92.  et al. 1996. Characterization of a premeiotic germ cell–specific cytoplasmic protein encoded by Stra8, a novel retinoic acid–responsive gene. J. Cell Biol. 135:469–77 [Google Scholar]
  93. Pesce M, Wang X, Wolgemuth DJ, Scholer H. 93.  1998. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech. Dev. 71:89–98 [Google Scholar]
  94. Rastetter RH, Bernard P, Palmer JS, Chassot AA, Chen H. 94.  et al. 2014. Marker genes identify three somatic cell types in the fetal mouse ovary. Dev. Biol. 394:242–52 [Google Scholar]
  95. Resnick JL, Bixler LS, Cheng L, Donovan PJ. 95.  1992. Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550–51 [Google Scholar]
  96. Rhinn M, Dolle P. 96.  2012. Retinoic acid signalling during development. Development 139:843–58 [Google Scholar]
  97. Ruggiu M, Speed R, Taggart M, McKay SJ, Kilanowski F. 97.  et al. 1997. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389:73–77 [Google Scholar]
  98. Saba R, Kato Y, Saga Y. 98.  2014. NANOS2 promotes male germ cell development independent of meiosis suppression. Dev. Biol. 385:32–40 [Google Scholar]
  99. Saba R, Wu Q, Saga Y. 99.  2014. CYP26B1 promotes male germ cell differentiation by suppressing STRA8-dependent meiotic and STRA8-independent mitotic pathways. Dev. Biol. 389:173–81 [Google Scholar]
  100. Sabour D, Xu X, Chung AC, Le Menuet D, Ko K. 100.  et al. 2014. Germ cell nuclear factor regulates gametogenesis in developing gonads. PLOS ONE 9:e103985 [Google Scholar]
  101. Saga Y. 101.  2008. Sexual development of mouse germ cells: Nanos2 promotes the male germ cell fate by suppressing the female pathway. Dev. Growth Differ. 50:Suppl. 1S141–47 [Google Scholar]
  102. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J. 102.  et al. 2012. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48:849–62 [Google Scholar]
  103. Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y. 103.  2005. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol. 278:440–58 [Google Scholar]
  104. Skakkebaek NE. 104.  1972. Possible carcinoma-in-situ of the testis. Lancet 2:516–17 [Google Scholar]
  105. Soh YQ, Junker JP, Gill ME, Mueller JL, van Oudenaarden A, Page DC. 105.  2015. A gene regulatory program for meiotic prophase in the fetal ovary. PLOS Genet 11:e1005531 [Google Scholar]
  106. Sonne SB, Almstrup K, Dalgaard M, Juncker AS, Edsgard D. 106.  et al. 2009. Analysis of gene expression profiles of microdissected cell populations indicates that testicular carcinoma in situ is an arrested gonocyte. Cancer Res 69:5241–50 [Google Scholar]
  107. Souquet B, Tourpin S, Messiaen S, Moison D, Habert R, Livera G. 107.  2012. Nodal signaling regulates the entry into meiosis in fetal germ cells. Endocrinology 153:2466–73 [Google Scholar]
  108. Spiller CM, Feng CW, Jackson A, Gillis AJ, Rolland AD. 108.  et al. 2012. Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development 139:4123–32 [Google Scholar]
  109. Spiller CM, Gillis AJ, Burnet G, Stoop H, Koopman P. 109.  et al. 2016. Cripto: expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors. Mol. Oncol. 10:526–37 [Google Scholar]
  110. Spiller CM, Wilhelm D, Koopman P. 110.  2010. Retinoblastoma 1 protein modulates XY germ cell entry into G1/G0 arrest during fetal development in mice. Biol. Reprod. 82:433–43 [Google Scholar]
  111. Stevens LC. 111.  1967. Origin of testicular teratomas from primordial germ cells in mice. J. Natl. Cancer Inst. 38:549–52 [Google Scholar]
  112. Stevens LC. 112.  1984. Spontaneous and experimentally induced testicular teratomas in mice. Cell Differ 15:69–74 [Google Scholar]
  113. Stevens LC, Little CC. 113.  1954. Spontaneous testicular teratomas in an inbred strain of mice. PNAS 40:1080–87 [Google Scholar]
  114. Suzuki A, Igarashi K, Aisaki K, Kanno J, Saga Y. 114.  2010. NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. PNAS 107:3594–99 [Google Scholar]
  115. Suzuki A, Saga Y. 115.  2008. Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev 22:430–35 [Google Scholar]
  116. Tam PP, Snow MH. 116.  1981. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J. Embryol. Exp. Morphol. 64:133–47 [Google Scholar]
  117. Tedesco M, Desimio MG, Klinger FG, De Felici M, Farini D. 117.  2013. Minimal concentrations of retinoic acid induce stimulation by retinoic acid 8 and promote entry into meiosis in isolated pregonadal and gonadal mouse primordial germ cells. Biol. Reprod. 88:145 [Google Scholar]
  118. Tedesco M, La Sala G, Barbagallo F, De Felici M, Farini D. 118.  2009. STRA8 shuttles between nucleus and cytoplasm and displays transcriptional activity. J. Biol. Chem. 284:35781–93 [Google Scholar]
  119. Tian-Zhong M, Bi C, Ying Z, Xia J, Cai-Ling P. 119.  et al. 2016. Critical role of Emx2 in the pluripotency–differentiation transition in male gonocytes via regulation of FGF9/NODAL pathway. Reproduction 151:673–81 [Google Scholar]
  120. Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y. 120.  et al. 2008. R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum. Mol. Genet. 17:1278–91 [Google Scholar]
  121. Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M, Noce T. 121.  2000. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech. Dev. 93:139–49 [Google Scholar]
  122. Trautmann E, Guerquin MJ, Duquenne C, Lahaye JB, Habert R, Livera G. 122.  2008. Retinoic acid prevents germ cell mitotic arrest in mouse fetal testes. Cell Cycle 7:656–64 [Google Scholar]
  123. Tsuda M, Sasaoka Y, Kiso M, Abe K, Haraguchi S. 123.  et al. 2003. Conserved role of Nanos proteins in germ cell development. Science 301:1239–41 [Google Scholar]
  124. Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP. 124.  1999. Female development in mammals is regulated by Wnt-4 signalling. Nature 397:405–9 [Google Scholar]
  125. Vallier L, Alexander M, Pedersen RA. 125.  2005. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118:4495–509 [Google Scholar]
  126. van de Geijn GJ, Hersmus R, Looijenga LH. 126.  2009. Recent developments in testicular germ cell tumor research. Birth Defects Res. C Embryo Today 87:96–113 [Google Scholar]
  127. Wang N, Tilly JL. 127.  2010. Epigenetic status determines germ cell meiotic commitment in embryonic and postnatal mammalian gonads. Cell Cycle 9:339–49 [Google Scholar]
  128. Western PS, Miles DC, van den Bergen JA, Burton M, Sinclair AH. 128.  2008. Dynamic regulation of mitotic arrest in fetal male germ cells. Stem Cells 26:339–47 [Google Scholar]
  129. Western PS, van den Bergen JA, Miles DC, Sinclair AH. 129.  2010. Male fetal germ cell differentiation involves complex repression of the regulatory network controlling pluripotency. FASEB J 24:3026–35 [Google Scholar]
  130. White JA, Guo YD, Baetz K, Beckett-Jones B, Bonasoro J. 130.  et al. 1996. Identification of the retinoic acid–inducible all-trans-retinoic acid 4–hydroxylase. J. Biol. Chem. 271:29922–27 [Google Scholar]
  131. Wu Q, Fukuda K, Kato Y, Zhou Z, Deng CX, Saga Y. 131.  2016. Sexual fate change of XX germ cells caused by the deletion of SMAD4 and STRA8 independent of somatic sex reprogramming. PLOS Biol 14:e1002553 [Google Scholar]
  132. Wu Q, Fukuda K, Weinstein M, Graff JM, Saga Y. 132.  2015. SMAD2 and p38 signaling pathways act in concert to determine XY primordial germ cell fate in mice. Development 142:575–86 [Google Scholar]
  133. Wu Q, Kanata K, Saba R, Deng CX, Hamada H, Saga Y. 133.  2013. Nodal/activin signaling promotes male germ cell fate and suppresses female programming in somatic cells. Development 140:291–300 [Google Scholar]
  134. Yao HH, DiNapoli L, Capel B. 134.  2003. Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads. Development 130:5895–902 [Google Scholar]
  135. Yashiro K, Zhao X, Uehara M, Yamashita K, Nishijima M. 135.  et al. 2004. Regulation of retinoic acid distribution is required for proximodistal patterning and outgrowth of the developing mouse limb. Dev. Cell 6:411–22 [Google Scholar]
  136. Yokobayashi S, Liang CY, Kohler H, Nestorov P, Liu Z. 136.  et al. 2013. PRC1 coordinates timing of sexual differentiation of female primordial germ cells. Nature 495:236–40 [Google Scholar]
  137. Young JC, Wakitani S, Loveland KL. 137.  2015. TGF-β superfamily signaling in testis formation and early male germline development. Semin. Cell Dev. Biol. 45:94–103 [Google Scholar]
  138. Zamboni L. 138.  1986. Meiosis as a sexual dimorphic character of germinal cell differentiation. Tokai. J. Exp. Clin. Med. 11:377–90 [Google Scholar]
  139. Zamudio N, Barau J, Teissandier A, Walter M, Borsos M. 139.  et al. 2015. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev 29:1256–70 [Google Scholar]
/content/journals/10.1146/annurev-genet-120215-035449
Loading
/content/journals/10.1146/annurev-genet-120215-035449
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error