1932

Abstract

Fungi see light of different colors by using photoreceptors such as the White Collar proteins and cryptochromes for blue light, opsins for green light, and phytochromes for red light. Light regulates fungal development, promotes the accumulation of protective pigments and proteins, and regulates tropic growth. The White Collar complex (WCC) is a photoreceptor and a transcription factor that is responsible for regulating transcription after exposure to blue light. In , light promotes the interaction of WCCs and their binding to the promoters to activate transcription. In , the WCC and the phytochrome interact to coordinate gene transcription and other responses, but the contribution of these photoreceptors to fungal photobiology varies across fungal species. Ultimately, the effect of light on fungal biology is the result of the coordinated transcriptional regulation and activation of signal transduction pathways.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120417-031415
2019-12-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/genet/53/1/annurev-genet-120417-031415.html?itemId=/content/journals/10.1146/annurev-genet-120417-031415&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahmed YL, Gerke J, Park HS, Bayram Ö, Neumann P et al. 2013. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. PLOS Biol 11:e1001750
    [Google Scholar]
  2. 2. 
    Arjona D, Aragón C, Aguilera JA, Ramírez L, Pisabarro AG 2009. Reproducible and controllable light induction of in vitro fruiting of the white-rot basidiomycete Pleurotus ostreatus. Mycol. Res 113:552–58
    [Google Scholar]
  3. 3. 
    Avalos J, Estrada AF. 2010. Regulation by light in Fusarium. Fungal Genet. Biol 47:930–38
    [Google Scholar]
  4. 4. 
    Avalos J, Limón MC. 2015. Biological roles of fungal carotenoids. Curr. Genet. 61:309–24
    [Google Scholar]
  5. 5. 
    Avelar GM, Schumacher RI, Zaini PA, Leonard G, Richards TA, Gomes SL 2014. A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr. Biol. 24:1234–40
    [Google Scholar]
  6. 6. 
    Bailey-Shrode L, Ebbole DJ. 2004. The fluffy gene of Neurospora crassa is necessary and sufficient to induce conidiophore development. Genetics 166:1741–49
    [Google Scholar]
  7. 7. 
    Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G 1996. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–57
    [Google Scholar]
  8. 8. 
    Bayram Ö, Bayram ÖS, Ahmed YL, Maruyama J, Valerius O et al. 2012. The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3 controls development and secondary metabolism. PLOS Genet 8:e1002816
    [Google Scholar]
  9. 9. 
    Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus GH 2008. More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Mol. Biol. Cell 19:3254–62
    [Google Scholar]
  10. 10. 
    Bayram Ö, Braus GH. 2012. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol. Rev. 36:1–24
    [Google Scholar]
  11. 11. 
    Bayram Ö, Braus GH, Fischer R, Rodriguez-Romero J 2010. Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet. Biol. 47:900–8
    [Google Scholar]
  12. 12. 
    Bayram Ö, Krappmann S, Ni M, Bok JW, Helmstaedt K et al. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–6
    [Google Scholar]
  13. 13. 
    Bayram Ö, Sari F, Braus GH, Irniger S 2009. The protein kinase ImeB is required for light-mediated inhibition of sexual development and for mycotoxin production in Aspergillus nidulans. Mol. Microbiol 71:1278–95
    [Google Scholar]
  14. 14. 
    Bazafkan H, Beier S, Stappler E, Böhmdorfer S, Oberlerchner JT et al. 2017. SUB1 has photoreceptor dependent and independent functions in sexual development and secondary metabolism in Trichoderma reesei. Mol. Microbiol 106:742–59
    [Google Scholar]
  15. 15. 
    Bejarano ER, Avalos J, Lipson ED, Cerdá-Olmedo E 1990. Photoinduced accumulation of carotene in Phycomyces. Planta 183:1–9
    [Google Scholar]
  16. 16. 
    Bergman K, Eslava AP, Cerdá-Olmedo E 1973. Mutants of Phycomyces with abnormal phototropism. Mol. Gen. Genet. 123:1–16
    [Google Scholar]
  17. 17. 
    Bieszke JA, Spudich EN, Scott KL, Borkovich KA, Spudich JL 1999. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry 38:14138–45
    [Google Scholar]
  18. 18. 
    Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D et al. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15:1833–38
    [Google Scholar]
  19. 19. 
    Bodvard K, Peeters K, Roger F, Romanov N, Igbaria A et al. 2017. Light-sensing via hydrogen peroxide and a peroxiredoxin. Nat. Commun. 8:14791
    [Google Scholar]
  20. 20. 
    Brandhoff B, Simon A, Dornieden A, Schumacher J 2017. Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Curr. Genet. 63:931–49
    [Google Scholar]
  21. 21. 
    Brandt S, von Stetten D, Günther M, Hildebrandt P, Frankenberg-Dinkel N 2008. The fungal phytochrome FphA from Aspergillus nidulans. J. Biol. Chem 283:34605–14
    [Google Scholar]
  22. 22. 
    Braus GH, Irniger S, Bayram Ö 2010. Fungal development and the COP9 signalosome. Curr. Opin. Microbiol. 13:672–76
    [Google Scholar]
  23. 23. 
    Brenna A, Grimaldi B, Filetici P, Ballario P 2012. Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction in Neurospora crassa. Mol. Biol. Cell 23:3863–72
    [Google Scholar]
  24. 24. 
    Calvo AM. 2008. The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet. Biol. 45:1053–61
    [Google Scholar]
  25. 25. 
    Canessa P, Schumacher J, Hevia MA, Tudzynski P, Larrondo LF 2013. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar complex. PLOS ONE 8:e84223
    [Google Scholar]
  26. 26. 
    Carreras-Villaseñor N, Sánchez-Arreguín JA, Herrera-Estrella AH 2012. Trichoderma: sensing the environment for survival and dispersal. Microbiology 158:3–16
    [Google Scholar]
  27. 27. 
    Casas-Flores S, Ríos-Momberg M, Bibbins M, Ponce-Noyola P, Herrera-Estrella A 2004. BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride. Microbiology 150:3561–69
    [Google Scholar]
  28. 28. 
    Castrillo M, Avalos J. 2014. Light-mediated participation of the VIVID-like protein of Fusarium fujikuroi VvdA in pigmentation and development. Fungal Genet. Biol. 71:9–20
    [Google Scholar]
  29. 29. 
    Castrillo M, García-Martínez J, Avalos J 2013. Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl. Environ. Microbiol. 79:2777–88
    [Google Scholar]
  30. 30. 
    Cetz-Chel JE, Balcázar-López E, Esquivel-Naranjo EU, Herrera-Estrella A 2016. The Trichoderma atroviride putative transcription factor Blu7 controls light responsiveness and tolerance. BMC Genom 17:327
    [Google Scholar]
  31. 31. 
    Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T et al. 2011. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62:335–64
    [Google Scholar]
  32. 32. 
    Chen C-H, Demay BS, Gladfelter AS, Dunlap JC, Loros JJ 2010. Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora. PNAS 107:16715–20
    [Google Scholar]
  33. 33. 
    Chen C-H, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ 2009. Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28:1029–42
    [Google Scholar]
  34. 34. 
    Chen M, Chory J. 2011. Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–71
    [Google Scholar]
  35. 35. 
    Choi Y-E, Goodwin SB. 2011. MVE1, encoding the velvet gene product homolog in Mycosphaerella graminicola, is associated with aerial mycelium formation, melanin biosynthesis, hyphal swelling, and light signaling. Appl. Environ. Microbiol. 77:942–53
    [Google Scholar]
  36. 36. 
    Cohrs KC, Schumacher J. 2017. The two cryptochrome/photolyase family proteins fulfill distinct roles in DNA photorepair and regulation of conidiation in the gray mold fungus Botrytis cinerea. Appl. Environ. Microbiol 83:e00812–17
    [Google Scholar]
  37. 37. 
    Cohrs KC, Simon A, Viaud M, Schumacher J 2016. Light governs asexual differentiation in the grey mould fungus Botrytis cinerea via the putative transcription factor BcLTF2. Environ. Microbiol. 18:4068–86
    [Google Scholar]
  38. 38. 
    Corrochano LM, Galland P. 2016. Photomorphogenesis and gravitropism in fungi. The Mycota: Growth, Differentiation and Sexuality J Wendland 235–66 Cham, Switz.: Springer-International
    [Google Scholar]
  39. 39. 
    Corrochano LM, Galland P, Lipson ED, Cerdá-Olmedo E 1988. Photomorphogenesis in Phycomyces: fluence-response curves and action spectra. Planta 174:315–20
    [Google Scholar]
  40. 40. 
    Corrochano LM, Garre V. 2010. Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genet. Biol. 47:893–99
    [Google Scholar]
  41. 41. 
    Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A et al. 2016. Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr. Biol. 26:1577–84
    [Google Scholar]
  42. 42. 
    Dasgupta A, Chen C-H, Lee C, Gladfelter AS, Dunlap JC, Loros JL 2015. Biological significance of photoreceptor photocycle length: VIVID photocycle governs the dynamic VIVID-White Collar complex pool mediating photo-adaptation and response to changes in light intensity. PLOS Genet 11:e1005215
    [Google Scholar]
  43. 43. 
    Dasgupta A, Fuller KK, Dunlap JC, Loros JJ 2016. Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ. Microbiol. 18:5–20
    [Google Scholar]
  44. 44. 
    De Fabo EC, Harding RW, Shropshire W 1976. Action spectrum between 260 and 800 nanometers for the photoinduction of carotenoid biosynthesis in Neurospora crassa. Plant Physiol 57:440–45
    [Google Scholar]
  45. 45. 
    Degli-Innocenti F, Russo VE. 1984. Isolation of new white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J. Bacteriol. 159:757–61
    [Google Scholar]
  46. 46. 
    Dunlap JC, Loros JJ. 2017. Making time: conservation of biological clocks from fungi to animals. Microbiol. Spectr. 5:FUNK-0039–2016
    [Google Scholar]
  47. 47. 
    Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H 2014. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114:126–63
    [Google Scholar]
  48. 48. 
    Esquivel-Naranjo EU, García-Esquivel M, Medina-Castellanos E, Correa-Pérez VA, Parra-Arriaga JL et al. 2016. A Trichoderma atroviride stress-activated MAPK pathway integrates stress and light signals. Mol. Microbiol. 100:860–76
    [Google Scholar]
  49. 49. 
    Estrada AF, Avalos J. 2008. The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet. Biol. 45:705–18
    [Google Scholar]
  50. 50. 
    Fankhauser C, Christie JM. 2015. Plant phototropic growth. Curr. Biol. 25:R384–89
    [Google Scholar]
  51. 51. 
    Fischer R, Aguirre J, Herrera-Estrella A, Corrochano LM 2016. The complexity of fungal vision. Microbiol. Spectr. 4:FUNK–0020-2016
    [Google Scholar]
  52. 52. 
    Franchi L, Fulci V, Macino G 2005. Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC-1. Mol. Microbiol. 56:334–45
    [Google Scholar]
  53. 53. 
    Froehlich AC, Chen C-H, Belden WJ, Madeti C, Roenneberg T et al. 2010. Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa. Eukaryot. Cell 9:738–50
    [Google Scholar]
  54. 54. 
    Froehlich AC, Liu Y, Loros JJ, Dunlap JC 2002. White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–19
    [Google Scholar]
  55. 55. 
    Froehlich AC, Noh B, Vierstra RD, Loros J, Dunlap JC 2005. Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. Eukaryot. Cell 4:2140–52
    [Google Scholar]
  56. 56. 
    Fuller KK, Cramer RA, Zegans ME, Dunlap JC, Loros JJ 2016. Aspergillus fumigatus photobiology illuminates the marked heterogeneity between isolates. mBio 7:e01517–16
    [Google Scholar]
  57. 57. 
    Fuller KK, Loros JJ, Dunlap JC 2015. Fungal photobiology: visible light as a signal for stress, space and time. Curr. Genet. 61:275–88
    [Google Scholar]
  58. 58. 
    Fuller KK, Ringelberg CS, Loros JJ, Dunlap JC 2013. The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. mBio 4:e00142–13
    [Google Scholar]
  59. 59. 
    Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND et al. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–68
    [Google Scholar]
  60. 60. 
    Galland P. 1992. Forty years of blue-light research and no anniversary. Photochem. Photobiol. 56:847–53
    [Google Scholar]
  61. 61. 
    Galland P, Lipson ED. 1985. Action spectra for phototropic balance in Phycomyces blakesleeanus: dependence on reference wavelength and intensity range. Photochem. Photobiol. 41:323–29
    [Google Scholar]
  62. 62. 
    García-Martínez J, Brunk M, Avalos J, Terpitz U 2015. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. Sci. Rep. 5:7798
    [Google Scholar]
  63. 63. 
    Gmoser R, Ferreira JA, Lennartsson PR, Taherzadeh MJ 2017. Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol. Biotechnol. 4:4
    [Google Scholar]
  64. 64. 
    Grimaldi B, Coiro P, Filetici P, Berge E, Dobosy JR et al. 2006. The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. Mol. Biol. Cell 17:4576–83
    [Google Scholar]
  65. 65. 
    Harting R, Bayram Ö, Laubinger K, Valerius O, Braus GH 2013. Interplay of the fungal sumoylation network for control of multicellular development. Mol. Microbiol. 90:1125–45
    [Google Scholar]
  66. 66. 
    He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y 2002. White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–43
    [Google Scholar]
  67. 67. 
    He Q, Liu Y. 2005. Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev 19:2888–99
    [Google Scholar]
  68. 68. 
    Hedtke M, Rauscher S, Röhrig J, Rodríguez-Romero J, Yu Z, Fischer R 2015. Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Mol. Microbiol. 97:733–45
    [Google Scholar]
  69. 69. 
    Heintzen C, Loros JJ, Dunlap JC 2001. The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104:453–64
    [Google Scholar]
  70. 70. 
    Hevia MA, Canessa P, Müller-Esparza H, Larrondo LF 2015. A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana. PNAS 112:8744–49
    [Google Scholar]
  71. 71. 
    Horwitz BA, Gressel J, Malkin S 1985. Photoperception mutants in Trichoderma: mutants that sporulate in response to stress but not light. Curr. Genet. 9:605–13
    [Google Scholar]
  72. 72. 
    Horwitz BA, Gressel J, Malkin S, Epel BL 1985. Modified cryptochrome in vivo absorption in dim photosporulation mutants of Trichoderma. PNAS 82:2736–40
    [Google Scholar]
  73. 73. 
    Hunt SM, Thompson S, Elvin M, Heintzen C 2010. VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora. PNAS 107:16709–14
    [Google Scholar]
  74. 74. 
    Hurley JM, Chen C-H, Loros JJ, Dunlap JC 2012. Light-inducible system for tunable protein expression in Neurospora crassa. Genes Genomes Genet 2:1207–12
    [Google Scholar]
  75. 75. 
    Idnurm A, Crosson S. 2009. The photobiology of microbial pathogenesis. PLOS Pathog 5:e1000470
    [Google Scholar]
  76. 76. 
    Idnurm A, Heitman J. 2005. Light controls growth and development via a conserved pathway in the fungal kingdom. PLOS Biol 3:e95
    [Google Scholar]
  77. 77. 
    Idnurm A, Rodríguez-Romero J, Corrochano LM, Sanz C, Iturriaga EA et al. 2006. The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. PNAS 103:4546–51
    [Google Scholar]
  78. 78. 
    Idnurm A, Verma S, Corrochano LM 2010. A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet. Biol. 47:881–92
    [Google Scholar]
  79. 79. 
    Káldi K, González BH, Brunner M 2006. Transcriptional regulation of the Neurospora circadian clock gene wc-1 affects the phase of circadian output. EMBO Rep 7:199–204
    [Google Scholar]
  80. 80. 
    Kamada T, Sano H, Nakazawa T, Nakahori K 2010. Regulation of fruiting body photomorphogenesis in Coprinopsis cinerea. Fungal Genet. Biol 47:917–21
    [Google Scholar]
  81. 81. 
    Kim H, Son H, Lee Y-W 2014. Effects of light on secondary metabolism and fungal development of Fusarium graminearum. J. Appl. Microbiol 116:380–89
    [Google Scholar]
  82. 82. 
    Kojima M, Kimura N, Miura R 2015. Regulation of primary metabolic pathways in oyster mushroom mycelia induced by blue light stimulation: accumulation of shikimic acid. Sci. Rep. 5:8630
    [Google Scholar]
  83. 83. 
    Kuratani M, Tanaka K, Terashima K, Muraguchi H, Nakazawa T et al. 2010. The dst2 gene essential for photomorphogenesis of Coprinopsis cinerea encodes a protein with a putative FAD-binding-4 domain. Fungal Genet. Biol. 47:152–58
    [Google Scholar]
  84. 84. 
    Lauter FR, Yanofsky C. 1993. Day/night and circadian rhythm control of con gene expression in Neurospora. PNAS 90:8249–53
    [Google Scholar]
  85. 85. 
    Linden H, Macino G. 1997. White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16:98–109
    [Google Scholar]
  86. 86. 
    Luque EM, Gutiérrez G, Navarro-Sampedro L, Olmedo M, Rodríguez-Romero J et al. 2012. A relationship between carotenoid accumulation and the distribution of species of the fungus Neurospora in Spain. PLOS ONE 7:e33658
    [Google Scholar]
  87. 87. 
    Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G et al. 2009. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLOS Genet 5:e1000549
    [Google Scholar]
  88. 88. 
    Malzahn E, Ciprianidis S, Káldi K, Schafmeier T, Brunner M 2010. Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142:762–72
    [Google Scholar]
  89. 89. 
    Navarro E, Peñaranda A, Hansberg W, Torres-Martínez S, Garre V 2013. A White Collar 1-like protein mediates opposite regulatory functions in Mucor circinelloides. Fungal Genet. Biol 52:42–52
    [Google Scholar]
  90. 90. 
    Navarro-Sampedro L, Yanofsky C, Corrochano LM 2008. A genetic selection for Neurospora crassa mutants altered in their light regulation of transcription. Genetics 178:171–83
    [Google Scholar]
  91. 91. 
    Nsa IY, Karunarathna N, Liu X, Huang H, Boetteger B, Bell-Pedersen D 2015. A novel cryptochrome-dependent oscillator in Neurospora crassa. Genetics 199:233–45
    [Google Scholar]
  92. 92. 
    Olmedo M, Navarro-Sampedro L, Ruger-Herreros C, Kim SR, Jeong BK et al. 2010. A role in the regulation of transcription by light for RCO-1 and RCM-1, the Neurospora homologs of the yeast Tup1–Ssn6 repressor. Fungal Genet. Biol. 47:939–52
    [Google Scholar]
  93. 93. 
    Olmedo M, Ruger-Herreros C, Corrochano LM 2010. Regulation by blue light of the fluffy gene encoding a major regulator of conidiation in Neurospora crassa. Genetics 184:651–58
    [Google Scholar]
  94. 94. 
    Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM 2010. A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genet. Biol 47:352–63
    [Google Scholar]
  95. 95. 
    Otto MK, Jayaram M, Hamilton RM, Delbrück M 1981. Replacement of riboflavin by an analogue in the blue-light photoreceptor of Phycomyces. PNAS 78:266–69
    [Google Scholar]
  96. 96. 
    Palmer JM, Theisen JM, Duran RM, Grayburn WS, Calvo AM, Keller NP 2013. Secondary metabolism and development is mediated by LlmF control of VeA subcellular localization in Aspergillus nidulans. PLOS Genet 9:e1003193
    [Google Scholar]
  97. 97. 
    Polaino S, Villalobos-Escobedo JM, Shakya VPS, Miralles-Durán A, Chaudhary S et al. 2017. A Ras GTPase associated protein is involved in the phototropic and circadian photobiology responses in fungi. Sci. Rep. 7:44790
    [Google Scholar]
  98. 98. 
    Purschwitz J, Müller S, Fischer R 2009. Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB. Mol. Genet. Genom. 281:35–42
    [Google Scholar]
  99. 99. 
    Purschwitz J, Müller S, Kastner C, Schöser M, Haas H et al. 2008. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr. Biol 18:255–59
    [Google Scholar]
  100. 100. 
    Rauscher S, Pacher S, Hedtke M, Kniemeyer O, Fischer R 2016. A phosphorylation code of the Aspergillus nidulans global regulator VelvetA (VeA) determines specific functions. Mol. Microbiol. 99:909–24
    [Google Scholar]
  101. 101. 
    Rodríguez-Romero J, Corrochano LM. 2006. Regulation by blue light and heat shock of gene transcription in the fungus Phycomyces: proteins required for photoinduction and mechanism for adaptation to light. Mol. Microbiol. 61:1049–59
    [Google Scholar]
  102. 102. 
    Röhrig J, Yu Z, Chae KS, Kim JH, Han KH, Fischer R 2017. The Aspergillus nidulans Velvet-interacting protein, VipA, is involved in light-stimulated heme biosynthesis. Mol. Microbiol. 105:825–38
    [Google Scholar]
  103. 103. 
    Ruesch CE, Ramakrishnan M, Park J, Li N, Chong HS et al. 2015. The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression. Genes Genomes Genet 5:93–101
    [Google Scholar]
  104. 104. 
    Ruger-Herreros C, del Mar Gil-Sánchez M, Sancar G, Brunner M, Corrochano LM 2014. Alteration of light-dependent gene regulation by the absence of the RCO-1/RCM-1 repressor complex in the fungus Neurospora crassa. PLOS ONE 9:e95069
    [Google Scholar]
  105. 105. 
    Ruger-Herreros C, Rodríguez-Romero J, Fernández-Barranco R, Olmedo M, Fischer R et al. 2011. Regulation of conidiation by light in Aspergillus nidulans. Genetics 188:809–22
    [Google Scholar]
  106. 106. 
    Ruiz-Roldán MC, Garre V, Guarro J, Mariné M, Roncero MIG 2008. Role of the white collar 1 photoreceptor in carotenogenesis, UV resistance, hydrophobicity, and virulence of Fusarium oxysporum. Eukaryot. Cell 7:1227–30
    [Google Scholar]
  107. 107. 
    Russo VEA. 1986. Are carotenoids the blue-light photoreceptor in the photoinduction of protoperithecia in Neurospora crassa?. Planta 168:56–60
    [Google Scholar]
  108. 108. 
    Salinas F, Rojas V, Delgado V, Agosin E, Larrondo LF 2017. Optogenetic switches for light-controlled gene expression in yeast. Appl. Microbiol. Biotechnol. 101:2629–40
    [Google Scholar]
  109. 109. 
    Sancar C, Ha N, Yilmaz R, Tesorero R, Fisher T et al. 2015. Combinatorial control of light induced chromatin remodeling and gene activation in Neurospora. PLOS Genet 11:e1005105
    [Google Scholar]
  110. 110. 
    Sánchez-Arreguín A, Pérez-Martínez AS, Herrera-Estrella A 2012. Proteomic analysis of Trichoderma atroviride reveals independent roles for transcription factors BLR-1 and BLR-2 in light and darkness. Eukaryot. Cell 11:30–41
    [Google Scholar]
  111. 111. 
    Sanz C, Rodríguez-Romero J, Idnurm A, Christie JM, Heitman J et al. 2009. Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. PNAS 106:7095–100
    [Google Scholar]
  112. 112. 
    Saranak J, Foster KW. 1997. Rhodopsin guides fungal phototaxis. Nature 387:465–66
    [Google Scholar]
  113. 113. 
    Sarikaya-Bayram Ö, Bayram Ö, Feussner K, Kim JH, Kim HS et al. 2014. Membrane-bound methyltransferase complex VapA-VipC-VapB guides epigenetic control of fungal development. Dev. Cell 29:406–20
    [Google Scholar]
  114. 114. 
    Sarikaya Bayram Ö, Bayram Ö, Valerius O, Park HS, Irniger S et al. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLOS Genet 6:e1001226
    [Google Scholar]
  115. 115. 
    Sarikaya-Bayram Ö, Palmer JM, Keller N, Braus GH, Bayram Ö 2015. One Juliet and four Romeos: VeA and its methyltransferases. Front. Microbiol. 6:1
    [Google Scholar]
  116. 116. 
    Schafmeier T, Haase A, Káldi K, Scholz J, Fuchs M, Brunner M 2005. Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor. Cell 122:235–46
    [Google Scholar]
  117. 117. 
    Schmoll M, Esquivel-Naranjo EU, Herrera-Estrella A 2010. Trichoderma in the light of day—physiology and development. Fungal Genet. Biol. 47:909–16
    [Google Scholar]
  118. 118. 
    Schmoll M, Franchi L, Kubicek CP 2005. Envoy, a PAS/LOV domain protein of Hypocrea jecorina (anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot. Cell 4:1998–2007
    [Google Scholar]
  119. 119. 
    Schumacher J. 2017. How light affects the life of Botrytis. Fungal Genet. Biol 106:26–41
    [Google Scholar]
  120. 120. 
    Schumacher J, Pradier JM, Simon A, Traeger S, Moraga J et al. 2012. Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea. PLOS ONE 7:e47840
    [Google Scholar]
  121. 121. 
    Schumacher J, Simon A, Cohrs KC, Viaud M, Tudzynski P 2014. The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLOS Genet 10:e1004040
    [Google Scholar]
  122. 122. 
    Schuster A, Tisch D, Seidl-Seiboth V, Kubicek CP, Schmoll M 2012. Roles of protein kinase A and adenylate cyclase in light-modulated cellulase regulation in Trichoderma reesei. Appl. Environ. Microbiol 78:2168–78
    [Google Scholar]
  123. 123. 
    Schwerdtfeger C, Linden H. 2000. Localization and light-dependent phosphorylation of white collar 1 and 2, the two central components of blue light signaling in Neurospora crassa. Eur. J. Biochem 267:414–22
    [Google Scholar]
  124. 124. 
    Schwerdtfeger C, Linden H. 2001. Blue light adaptation and desensitization of light signal transduction in Neurospora crassa. Mol. Microbiol 39:1080–87
    [Google Scholar]
  125. 125. 
    Schwerdtfeger C, Linden H. 2003. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–55
    [Google Scholar]
  126. 126. 
    Seibel C, Gremel G, do Nascimento Silva R, Schuster A, Kubicek CP, Schmoll M 2009. Light-dependent roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei). BMC Biol 7:58
    [Google Scholar]
  127. 127. 
    Shrode LB, Lewis ZA, White LD, Bell-Pedersen D, Ebbole DJ 2001. vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet. Biol. 32:169–81
    [Google Scholar]
  128. 128. 
    Silva F, Navarro E, Peñaranda A, Murcia-Flores L, Torres-Martínez S, Garre V 2008. A RING-finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a White Collar-1-like activator. Mol. Microbiol. 70:1026–36
    [Google Scholar]
  129. 129. 
    Silva F, Torres-Martínez S, Garre V 2006. Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol. Microbiol 61:1023–37
    [Google Scholar]
  130. 130. 
    Smith KM, Sancar G, Dekhang R, Sullivan CM, Li S et al. 2010. Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora white collar complex. Eukaryot. Cell 9:1549–56
    [Google Scholar]
  131. 131. 
    Stinnett SM, Espeso EA, Cobeño L, Araújo-Bazán L, Calvo AM 2007. Aspergillus nidulans VeA subcellular localization is dependent on the importin α carrier and on light. Mol. Microbiol. 63:242–55
    [Google Scholar]
  132. 132. 
    Tagua VG, Pausch M, Eckel M, Gutiérrez G, Miralles-Durán A et al. 2015. Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution. PNAS 112:15130–35
    [Google Scholar]
  133. 133. 
    Talora C, Franchi L, Linden H, Ballario P, Macino G 1999. Role of a white collar-1–white collar-2 complex in blue-light signal transduction. EMBO J 18:4961–68
    [Google Scholar]
  134. 134. 
    Tisch D, Kubicek CP, Schmoll M 2011. New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genet. Biol. 48:631–40
    [Google Scholar]
  135. 135. 
    Vaidya AT, Chen C-H, Dunlap JC, Loros JJ, Crane BR 2011. Structure of a light-activated LOV protein dimer that regulates transcription. Sci. Signal. 4:ra50
    [Google Scholar]
  136. 136. 
    Wang Z, Li N, Li J, Dunlap JC, Trail F, Townsend JP 2016. The fast-evolving phy-2 gene modulates sexual development in response to light in the model fungus Neurospora crassa. mBio 7:e02148
    [Google Scholar]
  137. 137. 
    Wang Z, Wang J, Li N, Li J, Trail F et al. 2018. Light sensing by opsins and fungal ecology: NOP-1 modulates entry into sexual reproduction in response to environmental cues. Mol. Ecol. 27:216–32
    [Google Scholar]
  138. 138. 
    Wu C, Yang F, Smith KM, Peterson M, Dekhang R et al. 2014. Genome-wide characterization of light-regulated genes in Neurospora crassa. Genes Genomes Genet 4:1731–45
    [Google Scholar]
  139. 139. 
    Yu Z, Armant O, Fischer R 2016. Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. Nat. Microbiol. 1:16019
    [Google Scholar]
  140. 140. 
    Yu Z, Fischer R. 2019. Light sensing and responses in fungi. Nat. Rev. Microbiol. 17:25–36
    [Google Scholar]
  141. 141. 
    Zoltowski BD, Crane BR. 2008. Light activation of the LOV protein Vivid generates a rapidly exchanging dimer. Biochemistry 47:7012–19
    [Google Scholar]
  142. 142. 
    Zoltowski BD, Schwerdtfeger C, Widom J, Loros JJ, Bilwes AM et al. 2007. Conformational switching in the fungal light sensor Vivid. Science 316:1054–57
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120417-031415
Loading
/content/journals/10.1146/annurev-genet-120417-031415
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error