1932

Abstract

Hippo signaling is an evolutionarily conserved network that has a central role in regulating cell proliferation and cell fate to control organ growth and regeneration. It promotes activation of the LATS kinases, which control gene expression by inhibiting the activity of the transcriptional coactivator proteins YAP and TAZ in mammals and Yorkie in . Diverse upstream inputs, including both biochemical cues and biomechanical cues, regulate Hippo signaling and enable it to have a key role as a sensor of cells’ physical environment and an integrator of growth control signals. Several components of this pathway localize to cell–cell junctions and contribute to regulation of Hippo signaling by cell polarity, cell contacts, and the cytoskeleton. Downregulation of Hippo signaling promotes uncontrolled cell proliferation, impairs differentiation, and is associated with cancer. We review the current understanding of Hippo signaling and highlight progress in the elucidation of its regulatory mechanisms and biological functions.

Keyword(s): cancergrowthHippoYAPYorkie
Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120417-031621
2018-11-23
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genet/52/1/annurev-genet-120417-031621.html?itemId=/content/journals/10.1146/annurev-genet-120417-031621&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Adler JJ, Johnson DE, Heller BL, Bringman LR, Ranahan WP et al. 2013. Serum deprivation inhibits the transcriptional co-activator YAP and cell growth via phosphorylation of the 130-kDa isoform of Angiomotin by the LATS1/2 protein kinases. PNAS 110:17368–73
    [Google Scholar]
  2. 2.  Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F et al. 2013. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–59
    [Google Scholar]
  3. 3.  Bae SJ, Ni L, Osinski A, Tomchick DR, Brautigam CA, Luo X 2017. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK. eLife 6:e30278
    [Google Scholar]
  4. 4.  Baumgartner R, Poernbacher I, Buser N, Hafen E, Stocker H 2010. The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev. Cell 18:309–16
    [Google Scholar]
  5. 5.  Benham-Pyle BW, Pruitt BL, Nelson WJ 2015. Mechanical strain induces E-cadherin–dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348:1024–27
    [Google Scholar]
  6. 6.  Bertero T, Oldham WM, Cottrill KA, Pisano S, Vanderpool RR et al. 2016. Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. J. Clin. Investig. 126:3313–35
    [Google Scholar]
  7. 7.  Boggiano JC, Vanderzalm PJ, Fehon RG 2011. Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev. Cell 21:888–95
    [Google Scholar]
  8. 8.  Boone E, Colombani J, Andersen DS, Léopold P 2016. The Hippo signalling pathway coordinates organ growth and limits developmental variability by controlling dilp8 expression. Nat. Commun. 7:13505
    [Google Scholar]
  9. 9.  Chakraborty S, Njah K, Pobbati AV, Lim YB, Raju A et al. 2017. Agrin as a mechanotransduction signal regulating YAP through the Hippo pathway. Cell Rep 18:2464–79
    [Google Scholar]
  10. 10.  Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, Hong W 2011. Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J. Biol. Chem. 286:7018–26
    [Google Scholar]
  11. 11.  Chan SW, Lim CJ, Guo F, Tan I, Leung T, Hong W 2013. Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation. J. Biol. Chem. 288:37296–307
    [Google Scholar]
  12. 12.  Chen C-L, Gajewski KM, Hamaratoglu F, Bossuyt W, Sansores-Garcia L et al. 2010. The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. PNAS 107:15810–15
    [Google Scholar]
  13. 13.  Cho E, Feng Y, Rauskolb C, Maitra S, Fehon R, Irvine KD 2006. Delineation of a Fat tumor suppressor pathway. Nat. Genet. 38:1142–50
    [Google Scholar]
  14. 14.  Chung H-L, Augustine GJ, Choi K-W 2016. Drosophila Schip1 links expanded and Tao-1 to regulate Hippo signaling. Dev. Cell 36:511–24
    [Google Scholar]
  15. 15.  Codelia VA, Sun G, Irvine KD 2014. Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Curr. Biol. 24:2012–17
    [Google Scholar]
  16. 16.  Couzens AL, Xiong S, Knight JDR, Mao DY, Guettler S et al. 2017. MOB1 mediated phospho-recognition in the core mammalian Hippo pathway. Mol. Cell. Proteom. 16:1098–110
    [Google Scholar]
  17. 17.  Cox AG, Hwang KL, Brown KK, Evason K, Beltz S et al. 2016. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat. Cell Biol. 18:886–96
    [Google Scholar]
  18. 18.  Del Re DP, Yang Y, Nakano N, Cho J, Zhai P et al. 2013. Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J. Biol. Chem. 288:3977–88
    [Google Scholar]
  19. 19.  Deng H, Wang W, Yu J, Zheng Y, Qing Y, Pan D 2015. Spectrin regulates Hippo signaling by modulating cortical actomyosin activity. eLife 4:e06567
    [Google Scholar]
  20. 20.  Deng Y, Matsui Y, Zhang Y, Lai Z-C 2013. Hippo activation through homodimerization and membrane association for growth inhibition and organ size control. Dev. Biol. 375:152–59
    [Google Scholar]
  21. 21.  DeRan M, Yang J, Shen CH, Peters EC, Fitamant J et al. 2014. Energy stress regulates Hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep 9:495–503
    [Google Scholar]
  22. 22.  Dewey EB, Sanchez D, Johnston CA 2015. Warts phosphorylates Mud to promote Pins-mediated mitotic spindle orientation in Drosophila, independent of Yorkie. Curr. Biol. 25:2751–62
    [Google Scholar]
  23. 23.  Dong J, Feldmann G, Huang J, Wu S, Zhang N et al. 2007. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130:1120–33
    [Google Scholar]
  24. 24.  Driscoll TP, Cosgrove BD, Heo S-J, Shurden ZE, Mauck RL 2015. Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys. J. 108:2783–93
    [Google Scholar]
  25. 25.  Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:179–83
    [Google Scholar]
  26. 26.  Dutta S, Mana-Capelli S, Paramasivam M, Dasgupta I, Cirka H et al. 2017. TRIP6 inhibits Hippo signaling in response to tension at adherens junctions. EMBO Rep 19:337–50
    [Google Scholar]
  27. 27.  Elbediwy A, Vincent-Mistiaen ZI, Spencer-Dene B, Stone RK, Boeing S et al. 2016. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 143:1674–87
    [Google Scholar]
  28. 28.  Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M et al. 2017. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171:1397–410.e14
    [Google Scholar]
  29. 29.  Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S et al. 2015. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J 34:1349–70
    [Google Scholar]
  30. 30.  Fan R, Kim N-G, Gumbiner BM 2013. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. PNAS 110:2569–74
    [Google Scholar]
  31. 31.  Feng X, Liu P, Zhou X, Li M-T, Li F-L et al. 2016. Thromboxane A2 activates YAP/TAZ protein to induce vascular smooth muscle cell proliferation and migration. J. Biol. Chem. 291:18947–58
    [Google Scholar]
  32. 32.  Fernández BG, Gaspar P, Brás-Pereira C, Jezowska B, Rebelo SR, Janody F 2011. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development 138:2337–46
    [Google Scholar]
  33. 33.  Fletcher GC, Elbediwy A, Khanal I, Ribeiro PS, Tapon N, Thompson BJ 2015. The Spectrin cytoskeleton regulates the Hippo signalling pathway. EMBO J 34:940–54
    [Google Scholar]
  34. 34.  Furukawa KT, Yamashita K, Sakurai N, Ohno S 2017. The epithelial circumferential actin belt regulates YAP/TAZ through Nucleocytoplasmic Shuttling of Merlin. Cell Rep 20:1435–47
    [Google Scholar]
  35. 35.  Galli GG, Carrara M, Yuan W-C, Valdes-Quezada C, Gurung B et al. 2015. YAP drives growth by controlling transcriptional pause release from dynamic enhancers. Mol. Cell 60:328–37
    [Google Scholar]
  36. 36.  Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N 2010. Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev. Cell 18:300–8
    [Google Scholar]
  37. 37.  Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME et al. 2016. Designer matrices for intestinal stem cell and organoid culture. Nature 539:560–64
    [Google Scholar]
  38. 38.  Guo T, Lu Y, Li P, Yin M-X, Lv D et al. 2013. A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Cell Res 23:1201–14
    [Google Scholar]
  39. 39.  Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E et al. 2006. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat. Cell Biol. 8:27–36
    [Google Scholar]
  40. 40.  Hansen CG, Moroishi T, Guan K-L 2015. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 25:499–513
    [Google Scholar]
  41. 41.  Hansen CG, Ng YL, Lam W-LM, Plouffe SW, Guan K-L 2015. The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res. 25:1299–313
    [Google Scholar]
  42. 42.  Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT et al. 2013. Hippo signaling impedes adult heart regeneration. Development 140:4683–90
    [Google Scholar]
  43. 43.  Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E et al. 2011. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332:458–61
    [Google Scholar]
  44. 44.  Hirata H, Samsonov M, Sokabe M 2017. Actomyosin contractility provokes contact inhibition in E-cadherin-ligated keratinocytes. Sci. Rep. 7:46326
    [Google Scholar]
  45. 45.  Hirate Y, Hirahara S, Inoue K-i, Suzuki A, Alarcon VB et al. 2013. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr. Biol. 23:1181–94
    [Google Scholar]
  46. 46.  Hong AW, Meng Z, Yuan H-X, Plouffe SW, Moon S et al. 2017. Osmotic stress-induced phosphorylation by NLK at Ser128 activates YAP. EMBO Rep 18:72–86
    [Google Scholar]
  47. 47.  Hong X, Nguyen HT, Chen Q, Zhang R, Hagman Z et al. 2014. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover. EMBO J 33:2447–57
    [Google Scholar]
  48. 48.  Hu JK-H, Du W, Shelton SJ, Oldham MC, DiPersio CM, Klein OD 2017. An FAK-YAP-mTOR signaling axis regulates stem cell-based tissue renewal in mice. Cell Stem Cell 21:91–106.e6
    [Google Scholar]
  49. 49.  Huang J, Wu S, Barrera J, Matthews K, Pan D 2005. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122:421–34
    [Google Scholar]
  50. 50.  Ibar C, Kirichenko E, Keepers B, Enners E, Fleisch K, Irvine KD 2018. Tension-dependent regulation of mammalian Hippo signaling through LIMD1. J. Cell Sci. 131:jcs214700
    [Google Scholar]
  51. 51.  Irvine KD 2012. Integration of intercellular signaling through the Hippo pathway. Semin. Cell Dev. Biol. 23:812–17
    [Google Scholar]
  52. 52.  Irvine KD, Harvey KF 2015. Control of organ growth by patterning and Hippo signaling in Drosophila. Cold Spring Harb. Perspect. Biol. 7:a019224
    [Google Scholar]
  53. 53.  Jiao S, Wang H, Shi Z, Dong A, Zhang W et al. 2014. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25:166–80
    [Google Scholar]
  54. 54.  Jin Y, Dong L, Lu Y, Wu W, Hao Q et al. 2012. Dimerization and cytoplasmic localization regulate Hippo kinase signaling activity in organ size control. J. Biol. Chem. 287:5784–96
    [Google Scholar]
  55. 55.  Kim M, Kim T, Johnson RL, Lim DS 2015. Transcriptional co-repressor function of the Hippo pathway transducers YAP and TAZ. Cell Rep 11:270–82
    [Google Scholar]
  56. 56.  Kim N-G, Gumbiner BM 2015. Adhesion to fibronectin regulates Hippo signaling via the FAK–Src–PI3K pathway. J. Cell Biol. 210:503–15
    [Google Scholar]
  57. 57.  Kim N-G, Koh E, Chen X, Gumbiner BM 2011. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. PNAS 108:11930–35
    [Google Scholar]
  58. 58.  Koontz LM, Liu-Chittenden Y, Yin F, Zheng Y, Yu J et al. 2013. The Hippo effector Yorkie controls normal tissue growth by antagonizing Scalloped-mediated default repression. Dev. Cell 25:388–401
    [Google Scholar]
  59. 59.  Lai D, Ho KC, Hao Y, Yang X 2011. Taxol resistance in breast cancer cells is mediated by the Hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71:2728–38
    [Google Scholar]
  60. 60.  Leung CY, Zernicka-Goetz M 2013. Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nat. Commun. 4:2251
    [Google Scholar]
  61. 61.  Li P, Silvis MR, Honaker Y, Lien W-H, Arron ST, Vasioukhin V 2016. αE-catenin inhibits a Src–YAP1 oncogenic module that couples tyrosine kinases and the effector of Hippo signaling pathway. Genes Dev 30:798–811
    [Google Scholar]
  62. 62.  Li Q, Li S, Mana-Capelli S, Roth Flach RJ, Danai LV et al. 2014. The conserved Misshapen-Warts-Yorkie pathway acts in enteroblasts to regulate intestinal stem cells in Drosophila. Dev. Cell 31:291–304
    [Google Scholar]
  63. 63.  Li S, Cho YS, Yue T, Ip YT, Jiang J 2015. Overlapping functions of the MAP4K family kinases Hppy and Msn in Hippo signaling. Cell Discov 1:15038
    [Google Scholar]
  64. 64.  Li Y, Zhou H, Li F, Chan SW, Lin Z et al. 2015. Angiomotin binding-induced activation of Merlin/NF2 in the Hippo pathway. Cell Res 25:801–17
    [Google Scholar]
  65. 65.  Lian I, Kim J, Okazawa H, Zhao J, Zhao B et al. 2010. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 24:1106–18
    [Google Scholar]
  66. 66.  Liang N, Zhang C, Dill P, Panasyuk G, Pion D et al. 2014. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J. Exp. Med. 211:2249–63
    [Google Scholar]
  67. 67.  Lin C, Yao E, Zhang K, Jiang X, Croll S et al. 2017. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. eLife 6:e21130
    [Google Scholar]
  68. 68.  Lin KC, Moroishi T, Meng Z, Jeong H-S, Plouffe SW et al. 2017. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat. Cell Biol. 19:996–1002
    [Google Scholar]
  69. 69.  Lin L, Sabnis AJ, Chan E, Olivas V, Cade L et al. 2015. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47:250–56
    [Google Scholar]
  70. 70.  Lin Z, von Gise A, Zhou P, Gu F, Ma Q et al. 2014. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine myocardial infarction model. Circ. Res. 115:354–63
    [Google Scholar]
  71. 71.  Liu B, Zheng Y, Yin F, Yu J, Silverman N, Pan D 2016. Toll receptor-mediated Hippo signaling controls innate immunity in Drosophila. Cell 164:406–19
    [Google Scholar]
  72. 72.  Liu C-Y, Zha Z-Y, Zhou X, Zhang H, Huang W et al. 2010. The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TrCP E3 ligase. J. Biol. Chem. 285:37159–69
    [Google Scholar]
  73. 73.  Liu F, Lagares D, Choi KM, Stopfer L, Marinković A et al. 2015. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 308:L344–57
    [Google Scholar]
  74. 74.  Liu X, Grammont M, Irvine KD 2000. Roles for scalloped and vestigial in regulating cell affinity and interactions between the wing blade and the wing hinge. Dev. Biol. 228:287–303
    [Google Scholar]
  75. 75.  Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee S-J et al. 2012. Genetic and pharmacological disruption of the TEAD–YAP complex suppresses the oncogenic activity of YAP. Genes Dev 26:1300–5
    [Google Scholar]
  76. 76.  Lucas EP, Khanal I, Gaspar P, Fletcher GC, Polesello C et al. 2013. The Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells. J. Cell Biol. 201:875–85
    [Google Scholar]
  77. 77.  Maître J-L, Turlier H, Illukkumbura R, Eismann B, Niwayama R et al. 2016. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536:344–48
    [Google Scholar]
  78. 78.  Mana-Capelli S, Paramasivam M, Dutta S, McCollum D 2014. Angiomotins link F-actin architecture to Hippo pathway signaling. Mol. Biol. Cell 25:1676–85
    [Google Scholar]
  79. 79.  Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM et al. 2011. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development 138:947–57
    [Google Scholar]
  80. 80.  Mao Y, Rauskolb C, Cho E, Hu W-L, Hayter H et al. 2006. Dachs: an unconventional myosin that functions downstream of Fat to regulate growth, affinity and gene expression in Drosophila. Development 133:2539–51
    [Google Scholar]
  81. 81.  Martin K, Pritchett J, Llewellyn J, Mullan AF, Athwal VS et al. 2016. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat. Commun. 7:12502
    [Google Scholar]
  82. 82.  Meng Z, Moroishi T, Guan K-L 2016. Mechanisms of Hippo pathway regulation. Genes Dev. 30:1–17
    [Google Scholar]
  83. 83.  Meng Z, Moroishi T, Mottier-Pavie V, Plouffe SW, Hansen CG et al. 2015. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat. Commun. 6:8357
    [Google Scholar]
  84. 84.  Misra JR, Irvine KD 2016. Vamana couples Fat signaling to the Hippo pathway. Dev. Cell 39:254–66
    [Google Scholar]
  85. 85.  Mo J-S, Meng Z, Kim YC, Park HW, Hansen CG et al. 2015. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat. Cell Biol. 17:500–10
    [Google Scholar]
  86. 86.  Mo J-S, Park HW, Guan K-L 2014. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 15:642–56
    [Google Scholar]
  87. 87.  Moeller ME, Nagy S, Gerlach SU, Soegaard KC, Danielsen ET et al. 2017. Warts signaling controls organ and body growth through regulation of ecdysone. Curr. Biol. 27:1652–59.e4
    [Google Scholar]
  88. 88.  Moon S, Kim W, Kim S, Kim Y, Song Y et al. 2017. Phosphorylation by NLK inhibits YAP-14-3-3-interactions and induces its nuclear localization. EMBO Rep 18:61–71
    [Google Scholar]
  89. 89.  Moroishi T, Hayashi T, Pan WW, Fujita Y, Holt MV et al. 2016. The Hippo pathway kinases LATS1/2 suppress cancer immunity. Cell 167:1525–39.e17
    [Google Scholar]
  90. 90.  Nakajima H, Yamamoto K, Agarwala S, Terai K, Fukui H et al. 2017. Flow-dependent endothelial YAP regulation contributes to vessel maintenance. Dev. Cell 40:523–36.e6
    [Google Scholar]
  91. 91.  Ni L, Zheng Y, Hara M, Pan D, Luo X 2015. Structural basis for Mob1-dependent activation of the core Mst–Lats kinase cascade in Hippo signaling. Genes Dev 29:1416–31
    [Google Scholar]
  92. 92.  Nishioka N, Inoue K-i, Adachi K, Kiyonari H, Ota M et al. 2009. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16:398–410
    [Google Scholar]
  93. 93.  Oh H, Slattery M, Ma L, Crofts A, White KP et al. 2013. Genome-wide association of Yorkie with chromatin and chromatin-remodeling complexes. Cell Rep 3:309–18
    [Google Scholar]
  94. 94.  Oh H, Slattery M, Ma L, White KP, Mann RS, Irvine KD 2014. Yorkie promotes transcription by recruiting a histone methyltransferase complex. Cell Rep 8:449–59
    [Google Scholar]
  95. 95.  Pan D 2010. The Hippo signaling pathway in development and cancer. Dev. Cell 19:491–505
    [Google Scholar]
  96. 96.  Pan G, Feng Y, Ambegaonkar AA, Sun G, Huff M et al. 2013. Signal transduction by the Fat cytoplasmic domain. Development 140:831–42
    [Google Scholar]
  97. 97.  Pan Y, Heemskerk I, Ibar C, Shraiman BI, Irvine KD 2016. Differential growth triggers mechanical feedback that elevates Hippo signaling. PNAS 113:E6974–83
    [Google Scholar]
  98. 98.  Panciera T, Azzolin L, Fujimura A, Di Biagio D, Frasson C et al. 2016. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell 19:725–37
    [Google Scholar]
  99. 99.  Parker J, Struhl G 2015. Scaling the Drosophila wing: TOR-dependent target gene access by the Hippo pathway transducer Yorkie. PLOS Biol 13:e1002274
    [Google Scholar]
  100. 100.  Peng C, Zhu Y, Zhang W, Liao Q, Chen Y et al. 2017. Regulation of the Hippo-YAP pathway by glucose sensor O-GlcNAcylation. Mol. Cell 68:591–604.e5
    [Google Scholar]
  101. 101.  Poernbacher I, Baumgartner R, Marada SK, Edwards K, Stocker H 2012. Drosophila Pez acts in Hippo signaling to restrict intestinal stem cell proliferation. Curr. Biol. 22:389–96
    [Google Scholar]
  102. 102.  Poon CLC, Lin JI, Zhang X, Harvey KF 2011. The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev. Cell 21:896–906
    [Google Scholar]
  103. 103.  Porazinski S, Wang H, Asaoka Y, Behrndt M, Miyamoto T et al. 2015. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 521:217–21
    [Google Scholar]
  104. 104.  Praskova M, Xia F, Avruch J 2008. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr. Biol. 18:311–21
    [Google Scholar]
  105. 105.  Qing Y, Yin F, Wang W, Zheng Y, Guo P et al. 2014. The Hippo effector Yorkie activates transcription by interacting with a histone methyltransferase complex through Ncoa6. eLife 3:e02564
    [Google Scholar]
  106. 106.  Ragni CV, Diguet N, Le Garrec JF, Novotova M, Resende TP et al. 2017. Amotl1 mediates sequestration of the Hippo effector Yap1 downstream of Fat4 to restrict heart growth. Nat. Commun. 8:14582
    [Google Scholar]
  107. 107.  Rauskolb C, Sun S, Sun G, Pan Y, Irvine KD 2014. Cytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complex. Cell 158:143–56
    [Google Scholar]
  108. 108.  Reddy BVVG, Irvine KD 2011. Regulation of Drosophila glial cell proliferation by Merlin-Hippo signaling. Development 138:5201–12
    [Google Scholar]
  109. 109.  Reddy BVVG, Irvine KD 2013. Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev. Cell 24:459–71
    [Google Scholar]
  110. 110.  Reginensi A, Scott RP, Gregorieff A, Bagherie-Lachidan M, Chung C et al. 2013. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLOS Genet 9:e1003380
    [Google Scholar]
  111. 111.  Ribeiro PS, Josué F, Wepf A, Wehr MC, Rinner O et al. 2010. Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling. Mol. Cell 39:521–34
    [Google Scholar]
  112. 112.  Sabra H, Brunner M, Mandati V, Wehrle-Haller B, Lallemand D et al. 2017. β1 integrin dependent Rac/group I PAK signaling mediates YAP activation of Yes associated protein 1 (YAP1) via NF2/merlin. J. Biol. Chem. 292:19179–97
    [Google Scholar]
  113. 113.  Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V et al. 2008. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat. Genet. 40:1010–15
    [Google Scholar]
  114. 114.  Sansores-Garcia L, Bossuyt W, Wada K-I, Yonemura S, Tao C et al. 2011. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J 30:2325–35
    [Google Scholar]
  115. 115.  Sasaki H 2015. Position- and polarity-dependent Hippo signaling regulates cell fates in preimplantation mouse embryos. Semin. Cell Dev. Biol. 47–48:80–87
    [Google Scholar]
  116. 116.  Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR et al. 2011. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144:782–95
    [Google Scholar]
  117. 117.  Serrano I, McDonald PC, Lock F, Muller WJ, Dedhar S 2013. Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nat. Commun. 4:2976
    [Google Scholar]
  118. 118.  Shen S, Guo X, Yan H, Lu Y, Ji X et al. 2015. A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis. Cell Res 25:997–1012
    [Google Scholar]
  119. 119.  Si Y, Ji X, Cao X, Dai X, Xu L et al. 2017. Src inhibits the Hippo tumor suppressor pathway through tyrosine phosphorylation of Lats1. Cancer Res 77:4868–80
    [Google Scholar]
  120. 120.  Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M et al. 2014. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16:357–66
    [Google Scholar]
  121. 121.  Staley BK, Irvine KD 2012. Hippo signaling in Drosophila: recent advances and insights. Dev. Dyn. 241:3–15
    [Google Scholar]
  122. 122.  Stein C, Bardet AF, Roma G, Bergling S, Clay I et al. 2015. YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLOS Genet 11:e1005465
    [Google Scholar]
  123. 123.  Straßburger K, Tiebe M, Pinna F, Breuhahn K, Teleman AA 2012. Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev. Biol. 367:187–96
    [Google Scholar]
  124. 124.  Su T, Ludwig MZ, Xu J, Fehon RG 2017. Kibra and Merlin activate the Hippo pathway spatially distinct from and independent of Expanded. Dev. Cell 40:478–90.e3
    [Google Scholar]
  125. 125.  Sun S, Irvine KD 2016. Cellular organization and cytoskeletal regulation of the Hippo signaling network. Trends Cell Biol 26:694–704
    [Google Scholar]
  126. 126.  Sun S, Reddy BVVG, Irvine KD 2015. Localization of Hippo signaling complexes and Warts activation in vivo. Nat. Commun. 6:8402
    [Google Scholar]
  127. 127.  Szymaniak AD, Mahoney JE, Cardoso WV, Varelas X 2015. Crumbs3-mediated polarity directs airway epithelial cell fate through the Hippo pathway effector Yap. Dev. Cell 34:283–96
    [Google Scholar]
  128. 128.  Taniguchi K, Wu L-W, Grivennikov SI, de Jong PR, Lian I et al. 2015. A gp130–Src–YAP module links inflammation to epithelial regeneration. Nature 519:57–62
    [Google Scholar]
  129. 129.  Touil Y, Igoudjil W, Corvaisier M, Dessein A-F, Vandomme J et al. 2014. Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clin. Cancer Res. 20:837–46
    [Google Scholar]
  130. 130.  Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H et al. 2012. YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nat. Cell Biol. 14:1322–29
    [Google Scholar]
  131. 131.  Varelas X 2014. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141:1614–26
    [Google Scholar]
  132. 132.  Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM et al. 2008. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol. 10:837–48
    [Google Scholar]
  133. 133.  Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K et al. 2010. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev. Cell 19:831–44
    [Google Scholar]
  134. 134.  Vrabioiu AM, Struhl G 2015. Fat/Dachsous signaling promotes Drosophila wing growth by regulating the conformational state of the NDR kinase Warts. Dev. Cell 35:737–49
    [Google Scholar]
  135. 135.  Wada K-I, Itoga K, Okano T, Yonemura S, Sasaki H 2011. Hippo pathway regulation by cell morphology and stress fibers. Development 138:3907–14
    [Google Scholar]
  136. 136.  Wang KC, Yeh YT, Nguyen P, Limqueco E, Lopez J et al. 2016. Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. PNAS 113:11525–30
    [Google Scholar]
  137. 137.  Wang W, Huang J, Chen J 2011. Angiomotin-like proteins associate with and negatively regulate YAP1. J. Biol. Chem. 286:4364–70
    [Google Scholar]
  138. 138.  Wang W, Xiao Z-D, Li X, Aziz KE, Gan B et al. 2015. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat. Cell Biol. 17:490–99
    [Google Scholar]
  139. 139.  Wang X, Freire Valls A, Schermann G, Shen Y, Moya IM et al. 2017. YAP/TAZ orchestrate VEGF signaling during developmental angiogenesis. Dev. Cell 42:462–78.e7
    [Google Scholar]
  140. 140.  Wang Y, Hu G, Liu F, Wang X, Wu M et al. 2014. Deletion of Yes-associated protein (YAP) specifically in cardiac and vascular smooth muscle cells reveals a crucial role for YAP in mouse cardiovascular development. Circ. Res. 114:957–65
    [Google Scholar]
  141. 141.  Wang Z, Wu Y, Wang H, Zhang Y, Mei L et al. 2014. Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. PNAS 111:E89–98
    [Google Scholar]
  142. 142.  Wei X, Shimizu T, Lai Z-C 2007. Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Drosophila. EMBO J. 26:1772–81
    [Google Scholar]
  143. 143.  Wu S, Liu Y, Zheng Y, Dong J, Pan D 2008. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev. Cell 14:388–98
    [Google Scholar]
  144. 144.  Xin M, Kim Y, Sutherland LB, Murakami M, Qi X et al. 2013. Hippo pathway effector Yap promotes cardiac regeneration. PNAS 110:13839–44
    [Google Scholar]
  145. 145.  Yan Y, Denef N, Tang C, Schüpbach T 2011. Drosophila PI4KIIIalpha is required in follicle cells for oocyte polarization and Hippo signaling. Development 138:1697–703
    [Google Scholar]
  146. 146.  Yang C-C, Graves HK, Moya IM, Tao C, Hamaratoglu F et al. 2015. Differential regulation of the Hippo pathway by adherens junctions and apical–basal cell polarity modules. PNAS 112:1785–90
    [Google Scholar]
  147. 147.  Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D 2013. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 154:1342–55
    [Google Scholar]
  148. 148.  Yu F-X, Zhao B, Guan K-L 2015. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163:811–28
    [Google Scholar]
  149. 149.  Yu F-X, Zhao B, Panupinthu N, Jewell JL, Lian I et al. 2012. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150:780–91
    [Google Scholar]
  150. 150.  Yu J, Zheng Y, Dong J, Klusza S, Deng W-M, Pan D 2010. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev. Cell 18:288–99
    [Google Scholar]
  151. 151.  Yue T, Tian A, Jiang J 2012. The cell adhesion molecule Echinoid functions as a tumor suppressor and upstream regulator of the Hippo signaling pathway. Dev. Cell 22:255–67
    [Google Scholar]
  152. 152.  Zanconato F, Battilana G, Cordenonsi M, Piccolo S 2016. YAP/TAZ as therapeutic targets in cancer. Curr. Opin. Pharmacol. 29:26–33
    [Google Scholar]
  153. 153.  Zanconato F, Cordenonsi M, Piccolo S 2016. YAP/TAZ at the roots of cancer. Cancer Cell 29:783–803
    [Google Scholar]
  154. 154.  Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E et al. 2015. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17:1218–27
    [Google Scholar]
  155. 155.  Zhang C, Robinson BS, Xu W, Yang L, Yao B et al. 2015. The Ecdysone receptor coactivator Taiman links Yorkie to transcriptional control of germline stem cell factors in somatic tissue. Dev. Cell 34:168–80
    [Google Scholar]
  156. 156.  Zhang L, Tang F, Terracciano L, Hynx D, Kohler R et al. 2015. NDR functions as a physiological YAP1 kinase in the intestinal epithelium. Curr. Biol. 25:296–305
    [Google Scholar]
  157. 157.  Zhang P, Pei C, Wang X, Xiang J, Sun B-F et al. 2017. A balance of Yki/Sd activator and E2F1/Sd repressor complexes controls cell survival and affects organ size. Dev. Cell 43:603–17.e5
    [Google Scholar]
  158. 158.  Zhang X, Qiao Y, Wu Q, Chen Y, Zou S et al. 2017. The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat. Commun. 8:15280
    [Google Scholar]
  159. 159.  Zhang Y, Wang X, Matakatsu H, Fehon R, Blair SS 2016. The novel SH3 domain protein Dlish/CG10933 mediates fat signaling in Drosophila by binding and regulating Dachs. eLife 5:e16624
    [Google Scholar]
  160. 160.  Zhao B, Li L, Lu Q, Wang LH, Liu C-Y et al. 2011. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 25:51–63
    [Google Scholar]
  161. 161.  Zhao B, Li L, Tumaneng K, Wang C-Y, Guan K-L 2010. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev. 24:72–85
    [Google Scholar]
  162. 162.  Zhao B, Li L, Wang L, Wang C-Y, Yu J, Guan K-L 2012. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26:54–68
    [Google Scholar]
  163. 163.  Zhao B, Wei X, Li W, Udan RS, Yang Q et al. 2007. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–61
    [Google Scholar]
  164. 164.  Zheng Y, Liu B, Wang L, Lei H, Pulgar Prieto KD, Pan D 2017. Homeostatic control of Hpo/MST kinase activity through autophosphorylation-dependent recruitment of the STRIPAK PP2A phosphatase complex. Cell Rep 21:3612–23
    [Google Scholar]
  165. 165.  Zheng Y, Wang W, Liu B, Deng H, Uster E, Pan D 2015. Identification of Happyhour/MAP4K as alternative Hpo/Mst-like kinases in the Hippo kinase cascade. Dev. Cell 34:642–55
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120417-031621
Loading
/content/journals/10.1146/annurev-genet-120417-031621
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error