1932

Abstract

In the 100 years since sickle cell anemia (SCA) was first described in the medical literature, studies of its molecular and pathophysiological basis have been at the vanguard of scientific discovery. By contrast, the translation of such knowledge into treatments that improve the lives of those affected has been much too slow. Recent years, however, have seen major advances on several fronts. A more detailed understanding of the switch from fetal to adult hemoglobin and the identification of regulators such as provide hope that these findings will be translated into genomic-based approaches to the therapeutic reactivation of hemoglobin F production in patients with SCA. Meanwhile, an unprecedented number of new drugs aimed at both the treatment and prevention of end-organ damage are now in the pipeline, outcomes from potentially curative treatments such as allogeneic hematopoietic stem cell transplantation are improving, and great strides are being made in gene therapy, where methods employing both antisickling β-globin lentiviral vectors and gene editing are now entering clinical trials. Encouragingly, after a century of neglect, the profile of the vast majority of those with SCA in Africa and India is also finally improving.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083117-021320
2018-08-31
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/genom/19/1/annurev-genom-083117-021320.html?itemId=/content/journals/10.1146/annurev-genom-083117-021320&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abboud M, Laver J, Blau CA 1998. Granulocytosis causing sickle-cell crisis. Lancet 351:959
    [Google Scholar]
  2. 2.  Adams R, McKie V, Nichols F, Carl E, Zhang D-L et al. 1992. The use of transcranial ultrasonography to predict stroke in sickle cell disease. N. Engl. J. Med. 326:605–10
    [Google Scholar]
  3. 3.  Adams RJ, McKie VC, Hsu L, Files B, Vichinsky E et al. 1998. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N. Engl. J. Med. 339:5–11
    [Google Scholar]
  4. 4.  Adewoye AH, Nolan VG, Ma Q, Baldwin C, Wyszynski DF et al. 2006. Association of polymorphisms of IGF1R and genes in the transforming growth factor–β/bone morphogenetic protein pathway with bacteremia in sickle cell anemia. Clin. Infect. Dis. 43:593–98
    [Google Scholar]
  5. 5.  Adeyoju AB, Olujohungbe AB, Morris J, Yardumian A, Bareford D et al. 2002. Priapism in sickle-cell disease; incidence, risk factors and complications – an international multicentre study. BJU Int 90:898–902
    [Google Scholar]
  6. 6.  Adler BK, Salzman DE, Carabasi MH, Vaughan WP, Reddy VV, Prchal JT 2001. Fatal sickle cell crisis after granulocyte colony-stimulating factor administration. Blood 97:3313–14
    [Google Scholar]
  7. 7.  Alexander N, Higgs D, Dover G, Serjeant GR 2004. Are there clinical phenotypes of homozygous sickle cell disease?. Br. J. Haematol. 126:606–11
    [Google Scholar]
  8. 8.  Amin BR, Bauersachs RM, Meiselman HJ, Mohandas N, Hebbel RP et al. 1991. Monozygotic twins with sickle cell anemia and discordant clinical courses: clinical and laboratory studies. Hemoglobin 15:247–56
    [Google Scholar]
  9. 9.  Andrade FL, Annichino-Bizzacchi JM, Saad ST, Costa FF, Arruda VR 1998. Prothrombin mutant, factor V Leiden, and thermolabile variant of methylenetetrahydrofolate reductase among patients with sickle cell disease in Brazil. Am. J. Hematol. 59:46–50
    [Google Scholar]
  10. 10.  Ashley-Koch AE, Elliott L, Kail ME, De Castro LM, Jonassaint J et al. 2008. Identification of genetic polymorphisms associated with risk for pulmonary hypertension in sickle cell disease. Blood 111:5721–26
    [Google Scholar]
  11. 11.  Ashley-Koch AE, Okocha EC, Garrett ME, Soldano K, De Castro LM et al. 2011. MYH9 and APOL1 are both associated with sickle cell disease nephropathy. Br. J. Haematol. 155:386–94
    [Google Scholar]
  12. 12.  Ataga KI, Kutlar A, Kanter J, Liles D, Cancado R et al. 2016. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 376:429–39
    [Google Scholar]
  13. 13.  Ataga KI, Reid M, Ballas SK, Yasin Z, Bigelow C et al. 2011. Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043). Br. J. Haematol. 153:92–104
    [Google Scholar]
  14. 14.  Ataga KI, Smith WR, De Castro LM Swerdlow P, Saunthararajah Y et al. 2008. Efficacy and safety of the Gardos channel blocker, senicapoc (ICA-17043), in patients with sickle cell anemia. Blood 111:3991–97
    [Google Scholar]
  15. 15.  Baldwin C, Nolan VG, Wyszynski DF, Ma QL, Sebastiani P et al. 2005. Association of klotho, bone morphogenic protein 6, and annexin A2 polymorphisms with sickle cell osteonecrosis. Blood 106:372–75
    [Google Scholar]
  16. 16.  Ballas SK 2013. Lactate dehydrogenase and hemolysis in sickle cell disease. Blood 121:243–44
    [Google Scholar]
  17. 17.  Ballas SK, Gupta K, Adams-Graves P 2012. Sickle cell pain: a critical reappraisal. Blood 120:3647–56
    [Google Scholar]
  18. 18.  Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y et al. 2013. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342:253–57
    [Google Scholar]
  19. 19.  Bean CJ, Boulet SL, Ellingsen D, Pyle ME, Barron-Casella EA et al. 2012. Heme oxygenase-1 gene promoter polymorphism is associated with reduced incidence of acute chest syndrome among children with sickle cell disease. Blood 120:3822–28
    [Google Scholar]
  20. 20.  Beet EA 1949. The genetics of the sickle-cell trait in a Bantu tribe. Ann. Eugen. 14:279–84
    [Google Scholar]
  21. 21.  Belisário AR, Nogueira FL, Rodrigues RS, Toledo NE, Cattabriga AL et al. 2015. Association of alpha-thalassemia, TNF-alpha (-308G>A) and VCAM-1 (c.1238G>C) gene polymorphisms with cerebrovascular disease in a newborn cohort of 411 children with sickle cell anemia. Blood Cells Mol. Dis. 54:44–50
    [Google Scholar]
  22. 22.  Belisário AR, Sales RR, Toledo NE, Velloso-Rodrigues C, Silva CM, Viana MB 2015. Association between ENPP1 K173Q and stroke in a newborn cohort of 395 Brazilian children with sickle cell anemia. Blood 126:1259–60
    [Google Scholar]
  23. 23.  Bensinger TA, Gillette PN 1974. Hemolysis in sickle cell disease. Arch. Intern. Med. 133:624–31
    [Google Scholar]
  24. 24.  Bernaudin F, Verlhac S, Arnaud C, Kamdem A, Chevret S et al. 2011. Impact of early transcranial Doppler screening and intensive therapy on cerebral vasculopathy outcome in a newborn sickle cell anemia cohort. Blood 117:1130–40
    [Google Scholar]
  25. 25.  Bernaudin F, Verlhac S, Arnaud C, Kamdem A, Vasile M et al. 2015. Chronic and acute anemia and extracranial internal carotid stenosis are risk factors for silent cerebral infarcts in sickle cell anemia. Blood 125:1653–61
    [Google Scholar]
  26. 26.  Bernaudin F, Verlhac S, Chevret S, Torres M, Coic L et al. 2008. G6PD deficiency, absence of α-thalassemia, and hemolytic rate at baseline are significant independent risk factors for abnormally high cerebral velocities in patients with sickle cell anemia. Blood 112:4314–17
    [Google Scholar]
  27. 27.  Berry PA, Cross TJ, Thein SL, Portmann BC, Wendon JA et al. 2007. Hepatic dysfunction in sickle cell disease: a new system of classification based on global assessment. Clin. Gastroenterol. Hepatol. 5:1469–76
    [Google Scholar]
  28. 28.  Bhatnagar P, Purvis S, Barron-Casella E, DeBaun MR, Casella JF et al. 2011. Genome-wide association study identifies genetic variants influencing F-cell levels in sickle-cell patients. J. Hum. Genet. 56:316–23
    [Google Scholar]
  29. 29.  Bianchi E, Zini R, Salati S, Tenedini E, Norfo R et al. 2010. c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression. Blood 116:e99–110
    [Google Scholar]
  30. 30.  Bolanos-Meade J, Fuchs EJ, Luznik L, Lanzkron SM, Gamper CJ et al. 2012. HLA-haploidentical bone marrow transplantation with post-transplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood 120:4285–91
    [Google Scholar]
  31. 31.  Booth C, Inusa B, Obaro SK 2010. Infection in sickle cell disease: a review. Int. J. Infect. Dis. 14:e2–12
    [Google Scholar]
  32. 32.  Breda L, Motta I, Lourenco S, Gemmo C, Deng W et al. 2016. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood 128:1139–43
    [Google Scholar]
  33. 33.  Brendel C, Guda S, Renella R, Bauer DE, Canver MC et al. 2016. Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. J. Clin. Investig. 126:3868–78
    [Google Scholar]
  34. 34.  Brunson A, Lei A, Rosenberg AS, White RH, Keegan T, Wun T 2017. Increased incidence of VTE in sickle cell disease patients: risk factors, recurrence and impact on mortality. Br. J. Haematol. 178:319–26
    [Google Scholar]
  35. 35.  Bunn HF 1997. Pathogenesis and treatment of sickle cell disease. N. Engl. J. Med. 337:762–69
    [Google Scholar]
  36. 36.  Camus SM, De Moraes JA, Bonnin P, Abbyad P, Le Jeune S et al. 2015. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood 125:3805–14
    [Google Scholar]
  37. 37.  Canver MC, Orkin SH 2016. Customizing the genome as therapy for the β-hemoglobinopathies. Blood 127:2536–45
    [Google Scholar]
  38. 38.  Castro O, Brambilla DJ, Thorington B, Reindorf CA, Scott RB et al. 1994. The acute chest syndrome in sickle cell disease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood 84:643–49
    [Google Scholar]
  39. 39.  Castro V, Alberto FL, Costa RN, Lepikson-Neto J, Gualandro SF et al. 2004. Polymorphism of the human platelet antigen-5 system is a risk factor for occlusive vascular complications in patients with sickle cell anemia. Vox Sang 87:118–23
    [Google Scholar]
  40. 40.  Cavazzana M, Antoniani C, Miccio A 2017. Gene therapy for β-hemoglobinopathies. Mol. Ther. 25:1142–54
    [Google Scholar]
  41. 41.  Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K et al. 2010. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467:318–22
    [Google Scholar]
  42. 42.  Chaar V, Kéclard L, Diara JP, Leturdu C, Elion J et al. 2005. Association of UGT1A1 polymorphism with prevalence and age at onset of cholelithiasis in sickle cell anemia. Haematologica 90:188–99
    [Google Scholar]
  43. 43.  Chandramouli S, Medina-Selby A, Coit D, Schaefer M, Spencer T et al. 2013. Generation of a parvovirus B19 vaccine candidate. Vaccine 31:3872–78
    [Google Scholar]
  44. 44.  Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB et al. 1995. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. N. Engl. J. Med. 332:1317–22
    [Google Scholar]
  45. 45.  Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS 2014. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 123:3818–27
    [Google Scholar]
  46. 46.  Chou ST 2013. Transfusion therapy for sickle cell disease: a balancing act. Hematol. Am. Soc. Hematol. Educ. Program 2013:439–46
    [Google Scholar]
  47. 47.  Chou ST, Jackson T, Vege S, Smith-Whitley K, Friedman DF, Westhoff CM 2013. High prevalence of red blood cell alloimmunization in sickle cell disease despite transfusion from Rh-matched minority donors. Blood 122:1062–71
    [Google Scholar]
  48. 48.  Costa RN, Conran N, Albuquerque DM, Soares PH, Saad ST, Costa FF 2005. Association of the G-463A myeloperoxidase polymorphism with infection in sickle cell anemia. Haematologica 90:977–79
    [Google Scholar]
  49. 49.  Cox SE, Makani J, Soka D, L'Esperence VS, Kija E et al. 2014. Haptoglobin, alpha-thalassaemia and glucose-6-phosphate dehydrogenase polymorphisms and risk of abnormal transcranial Doppler among patients with sickle cell anaemia in Tanzania. Br. J. Haematol. 165:699–706
    [Google Scholar]
  50. 50.  Day TG, Drašar ER, Fulford T, Sharpe CC, Thein SL 2012. Association between hemolysis and albuminuria in adults with sickle cell anemia. Haematologica 97:201–5
    [Google Scholar]
  51. 51.  De Castro LM, Zennadi R, Jonassaint JC, Batchvarova M, Telen MJ 2012. Effect of propranolol as antiadhesive therapy in sickle cell disease. Clin. Transl. Sci. 5:437–44
    [Google Scholar]
  52. 52.  de Montalembert M, Dumont MD, Heilbronner C, Brousse V, Charrara O et al. 2011. Delayed hemolytic transfusion reaction in children with sickle cell disease. Haematologica 96:801–7
    [Google Scholar]
  53. 53.  DeBaun MR, Gordon M, McKinstry RC, Noetzel MJ, White DA et al. 2014. Controlled trial of transfusions for silent cerebral infarcts in sickle cell anemia. N. Engl. J. Med. 371:699–710
    [Google Scholar]
  54. 54.  DeBaun MR, Kirkham FJ 2016. Central nervous system complications and management in sickle cell disease. Blood 127:829–38
    [Google Scholar]
  55. 55.  DeBaun MR, Sarnaik SA, Rodeghier MJ, Minniti CP, Howard TH et al. 2012. Associated risk factors for silent cerebral infarcts in sickle cell anemia: low baseline hemoglobin, gender and relative high systolic blood pressure. Blood 119:3684–90
    [Google Scholar]
  56. 56.  Deng W, Rupon JW, Krivega I, Breda L, Motta I et al. 2014. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158:849–60
    [Google Scholar]
  57. 57.  Dominical VM, Samsel L, Nichols JS, Costa FF, McCoy JP Jr. et al. 2014. Prominent role of platelets in the formation of circulating neutrophil-red cell heterocellular aggregates in sickle cell anemia. Haematologica 99:e214–17
    [Google Scholar]
  58. 58.  Dominical VM, Vital DM, O'Dowd F, Saad ST, Costa FF, Conran N 2015. In vitro microfluidic model for the study of vaso-occlusive processes. Exp. Hematol. 43:223–28
    [Google Scholar]
  59. 59.  Drasar ER, Igbineweka N, Vasavda N, Free M, Awogbade M et al. 2011. Blood transfusion usage among adults with sickle cell disease – a single institution experience over ten years. Br. J. Haematol. 152:766–70
    [Google Scholar]
  60. 60.  Drasar ER, Menzel S, Fulford T, Thein SL 2013. The effect of Duffy antigen receptor for chemokines on severity in sickle cell disease. Haematologica 98:e87
    [Google Scholar]
  61. 61.  Driscoll MC, Hurlet A, Styles L, McKie V, Files B et al. 2003. Stroke risk in siblings with sickle cell anemia. Blood 101:2401–4
    [Google Scholar]
  62. 62.  Du E, Diez-Silva M, Kato GJ, Dao M, Suresh S 2015. Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis. PNAS 112:1422–27
    [Google Scholar]
  63. 63.  Dufu K, Lehrer-Graiwer J, Ramos E, Oksenberg D 2016. GBT440 inhibits sickling of sickle cell trait blood under in vitro conditions mimicking strenuous exercise. Hematol. Rep. 8:6637
    [Google Scholar]
  64. 64.  Eaton WA, Bunn HF 2017. Treating sickle cell disease by targeting HbS polymerization. Blood 129:2719–26
    [Google Scholar]
  65. 65.  Elford HL 1968. Effect of hydroxyurea on ribonucleotide reductase. Biochem. Biophys. Res. Commun. 33:129–35
    [Google Scholar]
  66. 66.  Elliott L, Ashley-Koch AE, De Castro L, Jonassaint J, Price J et al. 2007. Genetic polymorphisms associated with priapism in sickle cell disease. Br. J. Haematol. 137:262–67
    [Google Scholar]
  67. 67.  Eltzschig HK, Eckle T 2011. Ischemia and reperfusion—from mechanism to translation. Nat. Med. 17:1391–401
    [Google Scholar]
  68. 68.  Embury SH, Dozy AM, Miller J, Davis JR, Kleman KM et al. 1982. Concurrent sickle-cell anemia and alpha-thalassemia: effect on severity of anemia. N. Engl. J. Med. 306:270–74
    [Google Scholar]
  69. 69.  Falletta JM, Woods GM, Verter JI, Buchanan GR, Pegelow CH et al.(Prophyl. Penicillin Study II). 1995. Discontinuing penicillin prophylaxis in children with sickle cell anemia. J. Pediatr. 127:685–90
    [Google Scholar]
  70. 70.  Fertrin KY, Melo MB, Assis AM, Saad ST, Costa FF 2003. UDP-glucuronosyltransferase 1 gene promoter polymorphism is associated with increased serum bilirubin levels and cholecystectomy in patients with sickle cell anemia. Clin. Genet. 64:160–62
    [Google Scholar]
  71. 71.  Flanagan JM, Frohlich DM, Howard TA, Schultz WH, Driscoll C et al. 2011. Genetic predictors for stroke in children with sickle cell anemia. Blood 117:6681–84
    [Google Scholar]
  72. 72.  Flanagan JM, Sheehan V, Linder H, Howard TA, Wang YD et al. 2013. Genetic mapping and exome sequencing identify 2 mutations associated with stroke protection in pediatric patients with sickle cell anemia. Blood 121:3237–45
    [Google Scholar]
  73. 73.  Flint J, Harding RM, Boyce AJ, Clegg JB 1998. The population genetics of the haemoglobinopathies. Bailliére's Clin. Haematol. 11:1–51
    [Google Scholar]
  74. 74.  Fonseca GH, Souza R, Salemi VM, Jardim CV, Gualandro SF 2012. Pulmonary hypertension diagnosed by right heart catheterisation in sickle cell disease. Eur. Respir. J. 39:112–18
    [Google Scholar]
  75. 75.  Frelinger AL III, Jakubowski JA, Brooks JK, Carmichael SL, Berny-Lang MA et al. 2014. Platelet activation and inhibition in sickle cell disease (pains) study. Platelets 25:27–35
    [Google Scholar]
  76. 76.  Galarneau G, Coady S, Garrett ME, Jeffries N, Puggal M et al. 2013. Gene-centric association study of acute chest syndrome and painful crisis in sickle cell disease patients. Blood 122:434–42
    [Google Scholar]
  77. 77.  Gardner K, Thein SL 2015. Super-elevated LDH and thrombocytopenia are markers of a severe subtype of vaso-occlusive crisis in sickle cell disease. Am. J. Hematol. 90:E206–7
    [Google Scholar]
  78. 78.  Geard A, Pule GD, Chetcha Chemegni B, Ngo Bitoungui VJ, Kengne AP et al. 2017. Clinical and genetic predictors of renal dysfunctions in sickle cell anaemia in Cameroon. Br. J. Haematol. 178:629–39
    [Google Scholar]
  79. 79.  Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P et al. 2010. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–45
    [Google Scholar]
  80. 80.  Gill FM, Sleeper LA, Weiner SJ, Brown AK, Bellevue R et al. 1995. Clinical events in the first decade in a cohort of infants with sickle cell disease. Cooperative Study of Sickle Cell Disease. Blood 86:776–83
    [Google Scholar]
  81. 81.  Gladwin MT, Sachdev V, Jison ML, Shizukuda Y, Plehn JF et al. 2004. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N. Engl. J. Med. 350:886–95
    [Google Scholar]
  82. 82.  Gluckman E, Cappelli B, Bernaudin F, Labopin M, Volt F et al. 2017. Sickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood 129:1548–56
    [Google Scholar]
  83. 83.  Goldstein J, Konigsberg W, Hill RJ 1963. The structure of human hemoglobin: VI. The sequence of amino acids in the tryptic peptides of the β chain. J. Biol. Chem. 238:2016–27
    [Google Scholar]
  84. 84.  Goodman MA, Malik P 2016. The potential of gene therapy approaches for the treatment of hemoglobinopathies: achievements and challenges. Ther. Adv. Hematol. 7:302–15
    [Google Scholar]
  85. 85.  Gordeuk VR, Castro OL, Machado RF 2016. Pathophysiology and treatment of pulmonary hypertension in sickle cell disease. Blood 127:820–28
    [Google Scholar]
  86. 86.  Grigg AP 2001. Granulocyte colony-stimulating factor-induced sickle cell crisis and multiorgan dysfunction in a patient with compound heterozygous sickle cell/β+ thalassemia. Blood 97:3998–99
    [Google Scholar]
  87. 87.  Grosse SD, Odame I, Atrash HK, Amendah DD, Piel FB, Williams TN 2011. Sickle cell disease in Africa: a neglected cause of early childhood mortality. Am. J. Prev. Med. 41:S398–405
    [Google Scholar]
  88. 88.  Hassell KL 2010. Population estimates of sickle cell disease in the U.S. Am. J. Prev. Med. 38:S512–21
    [Google Scholar]
  89. 89.  Hatton CS, Bunch C, Weatherall DJ 1985. Hepatic sequestration in sickle cell anaemia. Br. Med. J. 290:744–45
    [Google Scholar]
  90. 90.  Hebbel RP 2011. Reconstructing sickle cell disease: a data-based analysis of the “hyperhemolysis paradigm” for pulmonary hypertension from the perspective of evidence-based medicine. Am. J. Hematol. 86:123–54
    [Google Scholar]
  91. 91.  Heeney MM, Hoppe CC, Abboud MR, Inusa B, Kanter J et al. 2016. A multinational trial of prasugrel for sickle cell vaso-occlusive events. N. Engl. J. Med. 374:625–35
    [Google Scholar]
  92. 92.  Heeney MM, Howard TA, Zimmerman SA, Ware RE 2003. UGT1A promoter polymorphisms influence bilirubin response to hydroxyurea therapy in sickle cell anemia. J. Lab. Clin. Med. 141:279–82
    [Google Scholar]
  93. 93.  Herrick JB 1910. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch. Intern. Med. 6:517–21
    [Google Scholar]
  94. 94.  Hicks EJ, Griep JA, Nordschow CD 1973. Comparison of results for three methods of hemoglobin S identification. Clin. Chem. 19:533–35
    [Google Scholar]
  95. 95.  Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Frenette PS 2009. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat. Med. 15:384–91
    [Google Scholar]
  96. 96.  Hoban MD, Orkin SH, Bauer DE 2016. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood 127:839–48
    [Google Scholar]
  97. 97.  Hoppe C, Klitz W, Cheng S, Apple R, Steiner L et al. 2004. Gene interactions and stroke risk in children with sickle cell anemia. Blood 103:2391–96
    [Google Scholar]
  98. 98.  Hoppe C, Klitz W, Noble J, Vigil L, Vichinsky E, Styles L 2003. Distinct HLA associations by stroke subtype in children with sickle cell anemia. Blood 101:2865–69
    [Google Scholar]
  99. 99.  Hsieh MM, Fitzhugh CD, Weitzel RP, Link ME, Coles WA et al. 2014. Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell transplantation for severe sickle cell phenotype. JAMA 312:48–56
    [Google Scholar]
  100. 100.  Ingram VM 1957. Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 180:326–28
    [Google Scholar]
  101. 101.  Inwald DP, Kirkham FJ, Peters MJ, Lane R, Wade A et al. 2000. Platelet and leucocyte activation in childhood sickle cell disease: association with nocturnal hypoxaemia. Br. J. Haematol. 111:474–81
    [Google Scholar]
  102. 102.  Jiang J, Best S, Menzel S, Silver N, Lai MI et al. 2006. cMYB is involved in the regulation of fetal hemoglobin production in adults. Blood 108:1077–83
    [Google Scholar]
  103. 103.  Joishy SK, Griner PF, Rowley PT 1976. Sickle β-thalassemia: identical twins differing in severity implicate nongenetic factors influencing course. Am. J. Hematol. 1:23–33
    [Google Scholar]
  104. 104.  Kan YW, Dozy AM 1978. Antenatal diagnosis of sickle-cell anaemia by D.N.A. analysis of amniotic-fluid cells. Lancet 312:910–12
    [Google Scholar]
  105. 105.  Kanter J, Telen MJ, Hoppe C, Roberts CL, Kim JS, Yang X 2015. Validation of a novel point of care testing device for sickle cell disease. BMC Med 13:225
    [Google Scholar]
  106. 106.  Kato GJ, Gladwin MT, Steinberg MH 2007. Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 21:37–47
    [Google Scholar]
  107. 107.  Kinney TR, Sleeper LA, Wang WC, Zimmerman RA, Pegelow CH et al. 1999. Silent cerebral infarcts in sickle cell anemia: a risk factor analysis. Pediatrics 103:640–45
    [Google Scholar]
  108. 108.  Kutlar A, Kutlar F, Turker I, Tural C 2001. The methylene tetrahydrofolate reductase (C677T) mutation as a potential risk factor for avascular necrosis in sickle cell disease. Hemoglobin 25:213–17
    [Google Scholar]
  109. 109.  Lard LR, Mul FP, de Haas M, Roos D, Duits AJ 1999. Neutrophil activation in sickle cell disease. J. Leukoc. Biol. 66:411–15
    [Google Scholar]
  110. 110.  Lebensburger JD, Palabindela P, Howard TH, Feig DI, Aban I, Askenazi DJ 2016. Prevalence of acute kidney injury during pediatric admissions for acute chest syndrome. Pediatr. Nephrol. 31:1363–68
    [Google Scholar]
  111. 111.  Lee MT, Piomelli S, Granger S, Miller ST, Harkness S et al. 2006. Stroke Prevention Trial in Sickle Cell Anemia (STOP): extended follow-up and final results. Blood 108:847–52
    [Google Scholar]
  112. 112.  Leonardo FC, Brugnerotto AF, Domingos IF, Fertrin KY, de Albuquerque DM et al. 2016. Reduced rate of sickle-related complications in Brazilian patients carrying HbF-promoting alleles at the BCL11A and HMIP-2 loci. Br. J. Haematol. 173:456–60
    [Google Scholar]
  113. 113.  Lettre G, Sankaran VG, Bezerra MA, Araújo AS, Uda M et al. 2008. DNA polymorphisms at the BCL11A, HBS1L-MYB, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. PNAS 105:11869–74
    [Google Scholar]
  114. 114.  Lionnet F, Hammoudi N, Stojanovic KS, Avellino V, Grateau G et al. 2012. Hemoglobin SC disease complications: a clinical study of 179 cases. Haematologica 97:1136–41
    [Google Scholar]
  115. 115.  Lysenko AJ, Semashko IN 1968. Geography of malaria. A medico-geographic profile of an ancient disease. Itogi Nauki: Medicinskaja Geografija AW Lebedew 25–146 Moscow: Acad. Sci. USSR (in Russian)
    [Google Scholar]
  116. 116.  Machado RD, Pauciulo MW, Thomson JR, Lane KB, Morgan NV et al. 2001. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am. J. Hum. Genet. 68:92–102
    [Google Scholar]
  117. 117.  Makani J, Menzel S, Nkya S, Cox SE, Drasar ER et al. 2011. Genetics of fetal hemoglobin in Tanzanian and British patients with sickle cell anemia. Blood 117:1390–92
    [Google Scholar]
  118. 118. Malar. Genom. Epidemiol. Netw. 2014. Reappraisal of known malaria resistance loci in a large multicenter study. Nat. Genet. 46:1197–204
    [Google Scholar]
  119. 119.  Martin OO, Moquist KL, Hennessy JM, Nelson SC 2018. Invasive pneumococcal disease in children with sickle cell disease in the pneumococcal conjugate vaccine era. Pediatr. Blood Cancer 65:e26713
    [Google Scholar]
  120. 120.  McCavit TL, Xuan L, Zhang S, Flores G, Quinn CT 2012. Hospitalization for invasive pneumococcal disease in a national sample of children with sickle cell disease before and after PCV7 licensure. Pediatr. Blood Cancer 58:945–49
    [Google Scholar]
  121. 121.  Mehari A, Gladwin MT, Tian X, Machado RF, Kato GJ 2012. Mortality in adults with sickle cell disease and pulmonary hypertension. JAMA 307:1254–56
    [Google Scholar]
  122. 122.  Menzel S, Garner C, Gut I, Matsuda F, Yamaguchi M et al. 2007. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat. Genet. 39:1197–99
    [Google Scholar]
  123. 123.  Metcalf B, Chuang C, Dufu K, Patel MP, Silva-Garcia A et al. 2017. Discovery of GBT440, an orally bioavailable R-state stabilizer of sickle cell hemoglobin. ACS Med. Chem. Lett. 8:321–26
    [Google Scholar]
  124. 124.  Milton JN, Sebastiani P, Solovieff N, Hartley SW, Bhatnagar P et al. 2012. A genome-wide association study of total bilirubin and cholelithiasis risk in sickle cell anemia. PLOS ONE 7:e34741
    [Google Scholar]
  125. 125.  Misra H, Bainbridge J, Berryman J, Abuchowski A, Galvez KM et al. 2017. A Phase Ib open label, randomized, safety study of SANGUINATE in patients with sickle cell anemia. Rev. Bras. Hematol. Hemoter. 39:20–27
    [Google Scholar]
  126. 126.  Moat SJ, Rees D, George RS, King L, Dodd A et al. 2017. Newborn screening for sickle cell disorders using tandem mass spectrometry: three years’ experience of using a protocol to detect only the disease states. Ann. Clin. Biochem. 54:601–11
    [Google Scholar]
  127. 127.  Modell B, Darlison M 2008. Global epidemiology of haemoglobin disorders and derived service indicators. Bull. World Health Organ. 86:480–87
    [Google Scholar]
  128. 128.  Morris CR, Suh JH, Hagar W, Larkin S, Bland DA et al. 2008. Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood 111:402–10
    [Google Scholar]
  129. 129.  Mozzarelli A, Hofrichter J, Eaton WA 1987. Delay time of hemoglobin S polymerization prevents most cells from sickling in vivo. Science 237:500–6
    [Google Scholar]
  130. 130.  Mtatiro SN, Singh T, Rooks H, Mgaya J, Mariki H et al. 2014. Genome wide association study of fetal hemoglobin in sickle cell anemia in Tanzania. PLOS ONE 9:e111464
    [Google Scholar]
  131. 131.  Mushemi-Blake S, Melikian N, Drasar ER, Bhan A, Lunt A et al. 2015. Pulmonary haemodynamics in sickle cell disease are driven predominantly by a high-output state rather than elevated pulmonary vascular resistance: a prospective 3-dimensional echocardiography/Doppler study. PLOS ONE 10:e0135472
    [Google Scholar]
  132. 132. Natl. Heart Lung Blood Inst. 2014. Evidence-based management of sickle cell disease: expert panel report, 2014 Evid. Rep. US Dep. Health Hum. Serv Washington, DC:
  133. 133. Natl. Inst. Health. 2016. Sickle cell disease in sub-Saharan Africa: collaborative consortium (U24) Funding Oppor. Announc. RFA-HL-17-006 Natl. Inst. Health Bethesda, MD: https://grants.nih.gov/grants/guide/rfa-files/RFA-HL-17-006.html
  134. 134.  Navalkele P, Ozgonenel B, McGrath E, Lephart P, Sarnaik S 2017. Invasive pneumococcal disease in patients with sickle cell disease. J. Pediatr. Hematol. Oncol. 39:341–44
    [Google Scholar]
  135. 135.  Nebor D, Broquere C, Brudey K, Mougenel D, Tarer V et al. 2010. Alpha-thalassemia is associated with a decreased occurrence and a delayed age-at-onset of albuminuria in sickle cell anemia patients. Blood Cells Mol. Dis. 45:154–58
    [Google Scholar]
  136. 136.  Nebor D, Durpes MC, Mougenel D, Mukisi-Mukaza M, Elion J et al. 2010. Association between Duffy antigen receptor for chemokines expression and levels of inflammation markers in sickle cell anemia patients. Clin. Immunol. 136:116–22
    [Google Scholar]
  137. 137.  Neel JV 1949. The inheritance of sickle cell anemia. Science 110:64–66
    [Google Scholar]
  138. 138.  Nolan VG, Adewoye A, Baldwin C, Wang L, Ma Q et al. 2006. Sickle cell leg ulcers: associations with haemolysis and SNPs in Klotho, TEK and genes of the TGF-β/BMP pathway. Br. J. Haematol. 133:570–78
    [Google Scholar]
  139. 139.  Nolan VG, Baldwin C, Ma Q, Wyszynski DF, Amirault Y et al. 2005. Association of single nucleotide polymorphisms in klotho with priapism in sickle cell anaemia. Br. J. Haematol. 128:266–72
    [Google Scholar]
  140. 140.  Oder E, Safo MK, Abdulmalik O, Kato GJ 2016. New developments in anti-sickling agents: can drugs directly prevent the polymerization of sickle haemoglobin in vivo?. Br. J. Haematol. 175:24–30
    [Google Scholar]
  141. 141.  Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S et al. 1998. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood 91:288–94
    [Google Scholar]
  142. 142.  Oksenberg D, Dufu K, Patel MP, Chuang C, Li Z et al. 2016. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. Br. J. Haematol. 175:141–53
    [Google Scholar]
  143. 143.  Olujohungbe AB, Adeyoju A, Yardumian A, Akinyanju O, Morris J et al. 2011. A prospective diary study of stuttering priapism in adolescents and young men with sickle cell anemia: report of an international randomized control trial—the Priapism in Sickle Cell Study. J. Androl. 32:375–82
    [Google Scholar]
  144. 144. Optim. Prim. Stroke Prev. Sickle Cell Anemia (STOP 2) Trial Investig. 2005. Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. N. Engl. J. Med. 353:2769–78
    [Google Scholar]
  145. 145.  Orringer EP, Casella JF, Ataga K, Koshy M, Adams-Graves P et al. 2001. Purified poloxamer 188 for treatment of acute vaso-occlusive crisis of sickle cell disease: a randomized controlled trial. JAMA 286:2099–106
    [Google Scholar]
  146. 146.  Pagnier J, Mears JG, Dunda-Belkhodja O, Schaefer-Rego KE, Beldjord C et al. 1984. Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. PNAS 81:1771–73
    [Google Scholar]
  147. 147.  Parent F, Bachir D, Inamo J, Lionnet F, Driss F et al. 2011. A hemodynamic study of pulmonary hypertension in sickle cell disease. N. Engl. J. Med. 365:44–53
    [Google Scholar]
  148. 148.  Passon RG, Howard TA, Zimmerman SA, Schultz WH, Ware RE 2001. Influence of bilirubin uridine diphosphate-glucuronosyltransferase 1a promoter polymorphisms on serum bilirubin levels and cholelithiasis in children with sickle cell anemia. Am. J. Pediatr. Hematol. Oncol. 23:448–51
    [Google Scholar]
  149. 149.  Pauling L, Itano HA, Singer SJ, Wells IC 1949. Sickle cell anemia: a molecular disease. Science 110:543–48
    [Google Scholar]
  150. 150.  Penkert RR, Young NS, Surman SL, Sealy RE, Rosch J et al. 2017. Saccharomyces cerevisiae-derived virus-like particle parvovirus B19 vaccine elicits binding and neutralizing antibodies in a mouse model for sickle cell disease. Vaccine 35:3615–20
    [Google Scholar]
  151. 151.  Perkins A, Xu X, Higgs DR, Patrinos GP, Arnaud L et al. 2016. Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood 127:1856–62
    [Google Scholar]
  152. 152.  Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW et al. 2010. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat. Commun. 1:104
    [Google Scholar]
  153. 153.  Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW et al. 2013. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet 381:142–51
    [Google Scholar]
  154. 154.  Piel FB, Tatem AJ, Huang Z, Gupta S, Williams TN, Weatherall DJ 2014. Global migration and the changing distribution of sickle haemoglobin: a quantitative study of temporal trends between 1960 and 2000. Lancet Glob. Health 2:e80–89
    [Google Scholar]
  155. 155.  Piel FB, Tewari S, Brousse V, Analitis A, Font A et al. 2017. Associations between environmental factors and hospital admissions for sickle cell disease. Haematologica 102:666–75
    [Google Scholar]
  156. 156.  Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O et al. 1994. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N. Engl. J. Med. 330:1639–44
    [Google Scholar]
  157. 157.  Platt OS, Orkin SH, Dover G, Beardsley GP, Miller B, Nathan DG 1984. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J. Clin. Investig. 74:652–56
    [Google Scholar]
  158. 158.  Poillon WN, Kim BC, Rodgers GP, Noguchi CT, Schechter AN 1993. Sparing effect of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S at physiologic ligand saturations. PNAS 90:5039–43
    [Google Scholar]
  159. 159.  Polanowska-Grabowska R, Wallace K, Field JJ, Chen L, Marshall MA et al. 2010. P-selectin-mediated platelet-neutrophil aggregate formation activates neutrophils in mouse and human sickle cell disease. Arterioscler. Thromb. Vasc. Biol. 30:2392–99
    [Google Scholar]
  160. 160.  Powars DR, Chan LS, Hiti A, Ramicone E, Johnson C 2005. Outcome of sickle cell anemia: a 4-decade observational study of 1056 patients. Medicine 84:363–76
    [Google Scholar]
  161. 161.  Proenca-Ferreira R, Brugnerotto AF, Garrido VT, Dominical VM, Vital DM et al. 2014. Endothelial activation by platelets from sickle cell anemia patients. PLOS ONE 9:e89012
    [Google Scholar]
  162. 162.  Quek L, Sharpe C, Dutt N, Height S, Allman M et al. 2010. Acute human parvovirus B19 infection and nephrotic syndrome in patients with sickle cell disease. Br. J. Haematol. 149:289–91
    [Google Scholar]
  163. 163.  Reading NS, Shooter C, Song J, Miller R, Agarwal A et al. 2016. Loss of major DNase I hypersensitive sites in duplicated β-globin gene cluster incompletely silences HBB gene expression. Hum. Mutat. 37:1153–56
    [Google Scholar]
  164. 164.  Reid ME, El Beshlawy A, Inati A, Kutlar A, Abboud MR et al. 2014. A double-blind, placebo-controlled phase II study of the efficacy and safety of 2,2-dimethylbutyrate (HQK-1001), an oral fetal globin inducer, in sickle cell disease. Am. J. Hematol. 89:709–13
    [Google Scholar]
  165. 165.  Reiter CD, Gladwin MT 2003. An emerging role for nitric oxide in sickle cell disease vascular homeostasis and therapy. Curr. Opin. Hematol. 10:99–107
    [Google Scholar]
  166. 166.  Ribeil JA, Hacein-Bey-Abina S, Payen E, Magnani A, Semeraro M et al. 2017. Gene therapy in a patient with sickle cell disease. N. Engl. J. Med. 376:848–55
    [Google Scholar]
  167. 167.  Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT et al. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–54
    [Google Scholar]
  168. 168.  Sandor B, Marin M, Lapoumeroulie C, Rabaï M, Lefevre SD et al. 2016. Effects of Poloxamer 188 on red blood cell membrane properties in sickle cell anaemia. Br. J. Haematol. 173:145–49
    [Google Scholar]
  169. 169.  Sankaran VG, Xu J, Ragoczy T, Ippolito GC, Walkley CR et al. 2009. Developmental and species-divergent globin switching are driven by BCL11A. Nature 460:1093–97
    [Google Scholar]
  170. 170.  Saraf SL, Shah BN, Zhang X, Han J, Tayo BO et al. 2017. APOL1, α-thalassemia, and BCL11A variants as a genetic risk profile for progression of chronic kidney disease in sickle cell anemia. Haematologica 102:e1–6
    [Google Scholar]
  171. 171.  Schechter AN 2008. Hemoglobin research and the origins of molecular medicine. Blood 112:3927–38
    [Google Scholar]
  172. 172.  Scott JA, Berkley JA, Mwangi I, Ochola L, Uyoga S et al. 2011. Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case-control study and a longitudinal study. Lancet 378:1316–23
    [Google Scholar]
  173. 173.  Serjeant GR, Serjeant BE, Mason KP, Hambleton IR, Fisher C, Higgs DR 2009. The changing face of homozygous sickle cell disease: 102 patients over 60 years. Int. J. Lab. Hematol. 31:585–96
    [Google Scholar]
  174. 174.  Serjeant GR, Topley JM, Mason K, Serjeant BE, Pattison JR et al. 1981. Outbreak of aplastic crises in sickle cell anaemia associated with parvovirus-like agent. Lancet 318:595–97
    [Google Scholar]
  175. 175.  Sharan K, Surrey S, Ballas S, Borowski M, Devoto M et al. 2004. Association of T-786C eNOS gene polymorphism with increased susceptibility to acute chest syndrome in females with sickle cell disease. Br. J. Haematol. 124:240–43
    [Google Scholar]
  176. 176.  Shooter C, Senior McKenzie T, Oakley M, Jacques T, Clark B, Thein SL 2015. First reported duplication of the entire beta globin gene cluster causing an unusual sickle cell trait phenotype. Br. J. Haematol. 170:128–31
    [Google Scholar]
  177. 176a.  Shriner D, Rotimi CN 2018. Whole-genome-sequence-based haplotypes reveal single origin of the sickle allele during the Holocene Wet Phase. Am. J. Hum. Genet. 102:547–56
    [Google Scholar]
  178. 177.  Stadhouders R, Aktuna S, Thongjuea S, Aghajanirefah A, Pourfarzad F et al. 2014. HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. J. Clin. Investig. 124:1699–710
    [Google Scholar]
  179. 178.  Stamatoyannopoulos G 2005. Control of globin gene expression during development and erythroid differentiation. Exp. Hematol. 33:259–71
    [Google Scholar]
  180. 179.  Steinberg MH, Adewoye AH 2006. Modifier genes and sickle cell anemia. Curr. Opin. Hematol. 13:131–36
    [Google Scholar]
  181. 180.  Steinberg MH, Embury SH 1986. Alpha-thalassemia in blacks: genetic and clinical aspects and interactions with the sickle hemoglobin gene. Blood 68:985–90
    [Google Scholar]
  182. 181.  Steinberg MH, Forget BG, Higgs DR, Weatherall DJ 2009. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management Cambridge, UK: Cambridge Univ. Press, 2nd ed..
  183. 182.  Styles L, Hoppe C, Klitz W, Vichinsky E, Lubin B, Trachtenberg E 2000. Evidence for HLA-related susceptibility for stroke in children with sickle cell disease. Blood 95:3562–67
    [Google Scholar]
  184. 183.  Sullivan KJ, Kissoon N, Duckworth LJ, Sandler E, Freeman B et al. 2001. Low exhaled nitric oxide and a polymorphism in the NOS I gene is associated with acute chest syndrome. Am. J. Respir. Crit. Care Med. 164:2186–90
    [Google Scholar]
  185. 184.  Tallack MR, Perkins AC 2013. Three fingers on the switch: Krüppel-like factor 1 regulation of γ-globin to β-globin gene switching. Curr. Opin. Hematol. 20:193–200
    [Google Scholar]
  186. 185.  Tamouza R, Busson M, Fortier C, Diagne I, Diallo D et al. 2007. HLA-E*0101 allele in homozygous state favors severe bacterial infections in sickle cell anemia. Hum. Immunol. 68:849–53
    [Google Scholar]
  187. 186.  Tang DC, Prauner R, Liu W, Kim KH, Hirsch RP et al. 2001. Polymorphisms within the angiotensinogen gene (GT-repeat) and the risk of stroke in pediatric patients with sickle cell disease: a case-control study. Am. J. Hematol. 68:164–69
    [Google Scholar]
  188. 187.  Tantawy AA, Adly AA, Ismail EA, Aly SH 2015. Endothelial nitric oxide synthase gene intron 4 VNTR polymorphism in sickle cell disease: relation to vasculopathy and disease severity. Pediatr. Blood Cancer 62:389–94
    [Google Scholar]
  189. 188.  Taylor JG VI, Tang DC, Savage SA, Leitman SF, Heller SI et al. 2002. Variants in the VCAM1 gene and risk for symptomatic stroke in sickle cell disease. Blood 100:4303–9
    [Google Scholar]
  190. 189.  Telen MJ 2016. Beyond hydroxyurea: new and old drugs in the pipeline for sickle cell disease. Blood 127:810–19
    [Google Scholar]
  191. 190.  Telen MJ, Wun T, McCavit TL, De Castro LM, Krishnamurti L et al. 2015. Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood 125:2656–64
    [Google Scholar]
  192. 191.  Thein SL, Menzel S, Peng X, Best S, Jiang J et al. 2007. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. PNAS 104:11346–51
    [Google Scholar]
  193. 192.  Traeger-Synodinos J, Harteveld CL 2014. Advances in technologies for screening and diagnosis of hemoglobinopathies. Biomark. Med. 8:119–31
    [Google Scholar]
  194. 193.  Traxler EA, Yao Y, Wang YD, Woodard KJ, Kurita R et al. 2016. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat. Med. 22:987–90
    [Google Scholar]
  195. 194.  Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS 2002. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. PNAS 99:3047–51
    [Google Scholar]
  196. 195.  Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG et al. 2008. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. PNAS 105:1620–25
    [Google Scholar]
  197. 196.  Ulug P, Vasavda N, Awogbade M, Cunningham J, Menzel S, Thein SL 2009. Association of sickle avascular necrosis with bone morphogenic protein 6. Ann. Hematol. 88:803–5
    [Google Scholar]
  198. 197. UN Gen. Assem. 2000. Resolution adopted by the General Assembly: 55/2. United Nations Millennium Declaration. Resolut. 55/2 UN Gen. Assembly New York:
  199. 198.  van Hamel Parsons V, Gardner K, Patel R, Thein S 2016. Venous thromboembolism in adults with sickle cell disease: experience of a single centre in the UK. Ann. Hematol. 95:227–32
    [Google Scholar]
  200. 199.  Vasavda N, Badiger S, Rees D, Height S, Howard J, Thein SL 2008. The presence of α-thalassaemia trait blunts the response to hydroxycarbamide in patients with sickle cell disease. Br. J. Haematol. 143:589–92
    [Google Scholar]
  201. 200.  Vasavda N, Menzel S, Kondaveeti S, Maytham E, Awogbade M et al. 2007. The linear effects of α-thalassaemia, the UGT1A1 and HMOX1 polymorphisms on cholelithiasis in sickle cell disease. Br. J. Haematol. 138:263–70
    [Google Scholar]
  202. 201.  Vicari P, Adegoke SA, Mazzotti DR, Cancado RD, Nogutti MA, Figueiredo MS 2015. Interleukin-1β and interleukin-6 gene polymorphisms are associated with manifestations of sickle cell anemia. Blood Cells Mol. Dis. 54:244–49
    [Google Scholar]
  203. 202.  Vichinsky EP, Neumayr LD, Earles AN, Williams R, Lennette ET et al.(Natl. Acute Chest Syndr. Study Group). 2000. Causes and outcomes of the acute chest syndrome in sickle cell disease. N. Engl. J. Med. 342:1855–65
    [Google Scholar]
  204. 203.  Vichinsky EP, Styles LA, Colangelo LH, Wright EC, Castro O et al. 1997. Acute chest syndrome in sickle cell disease: clinical presentation and course. Blood 89:1787–92
    [Google Scholar]
  205. 204.  Vidler JB, Gardner K, Amenyah K, Mijovic A, Thein SL 2015. Delayed haemolytic transfusion reaction in adults with sickle cell disease: a 5-year experience. Br. J. Haematol. 169:746–53
    [Google Scholar]
  206. 205.  Vierstra J, Reik A, Chang KH, Stehling-Sun S, Zhou Y et al. 2015. Functional footprinting of regulatory DNA. Nat. Methods 12:927–30
    [Google Scholar]
  207. 206.  Villagra J, Shiva S, Hunter LA, Machado RF, Gladwin MT, Kato GJ 2007. Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood 110:2166–72
    [Google Scholar]
  208. 207.  Wagener FA, Eggert A, Boerman OC, Oyen WJ, Verhofstad A et al. 2001. Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 98:1802–11
    [Google Scholar]
  209. 208.  Wali Y, Beshlawi I, Fawaz N, Alkhayat A, Zalabany M et al. 2012. Coexistence of sickle cell disease and severe congenital neutropenia: first impressions can be deceiving. Eur. J. Haematol. 89:245–49
    [Google Scholar]
  210. 209.  Wang WC, Pavlakis SG, Helton KJ, McKinstry RC, Casella JF et al. 2008. MRI abnormalities of the brain in one-year-old children with sickle cell anemia. Pediatr. Blood Cancer 51:643–46
    [Google Scholar]
  211. 210.  Ware RE 2010. How I use hydroxyurea to treat young patients with sickle cell anemia. Blood 115:5300–11
    [Google Scholar]
  212. 211.  Ware RE, Davis BR, Schultz WH, Brown RC, Aygun B et al. 2016. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial Doppler flow velocities in children with sickle cell anaemia—TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial. Lancet 387:661–70
    [Google Scholar]
  213. 212.  Ware RE, Helms RW 2012. Stroke With Transfusions Changing to Hydroxyurea (SWiTCH). Blood 119:3925–32
    [Google Scholar]
  214. 213.  Ware RE, Rees RC, Sarnaik SA, Iyer RV, Alvarez OA et al. 2010. Renal function in infants with sickle cell anemia: baseline data from the BABY HUG trial. J. Pediatr. 156:66–70
    [Google Scholar]
  215. 214.  Weatherall MW, Higgs DR, Weiss H, Weatherall DJ, Serjeant GR 2005. Phenotype/genotype relationships in sickle cell disease: a pilot twin study. Clin. Lab. Haematol. 27:384–90
    [Google Scholar]
  216. 215.  Wienert B, Funnell AP, Norton LJ, Pearson RC, Wilkinson-White LE et al. 2015. Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin. Nat. Commun. 6:7085
    [Google Scholar]
  217. 216.  Williams TN 2016. Host genetics. Advances in Malaria Research D Gaur, CE Chitnis, VS Chauhan 465–94 Hoboken, NJ: Wiley & Sons
    [Google Scholar]
  218. 217.  Wilmore DW 2017. Food and Drug Administration approval of glutamine for sickle cell disease: success and precautions in glutamine research. J. Parenter. Enter. Nutr. 41:912–17
    [Google Scholar]
  219. 218.  Wilson JT, Milner PF, Summer ME, Nallaseth FS, Fadel HE et al. 1982. Use of restriction endonucleases for mapping the allele for βS-globin. PNAS 79:3628–31
    [Google Scholar]
  220. 219.  Wonkam A, Ngo Bitoungui VJ, Vorster AA, Ramesar R, Cooper RS et al. 2014. Association of variants at BCL11A and HBS1L-MYB with hemoglobin F and hospitalization rates among sickle cell patients in Cameroon. PLOS ONE 9:e92506
    [Google Scholar]
  221. 220. World Health Organ. 2006. Sickle-cell anaemia: report by the Secretariat Provisional Agenda Item 11.4 World Health Organ. Geneva: http://apps.who.int/iris/handle/10665/20890
  222. 221.  Wun T, Paglieroni T, Tablin F, Welborn J, Nelson K, Cheung A 1997. Platelet activation and platelet-erythrocyte aggregates in patients with sickle cell anemia. J. Lab. Clin. Med. 129:507–16
    [Google Scholar]
  223. 222.  Xu J, Peng C, Sankaran VG, Shao Z, Esrick EB et al. 2011. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science 334:993–96
    [Google Scholar]
  224. 223.  Yawn BP, Buchanan GR, Afenyi-Annan AN, Ballas SK, Hassell KL et al. 2014. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA 312:1033–48
    [Google Scholar]
  225. 224.  Yazdanbakhsh K, Ware RE, Noizat-Pirenne F 2012. Red blood cell alloimmunization in sickle cell disease: pathophysiology, risk factors, and transfusion management. Blood 120:528–37
    [Google Scholar]
  226. 225.  Zhang D, Xu C, Manwani D, Frenette PS 2016. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood 127:801–9
    [Google Scholar]
  227. 226.  Zhang X, Zhang W, Ma SF, Desai AA, Saraf S et al. 2014. Hypoxic response contributes to altered gene expression and precapillary pulmonary hypertension in patients with sickle cell disease. Circulation 129:1650–58
    [Google Scholar]
  228. 227.  Zimmerman SA, Ware RE 1998. Inherited DNA mutations contributing to thrombotic complications in patients with sickle cell disease. Am. J. Hematol. 59:267–72
    [Google Scholar]
/content/journals/10.1146/annurev-genom-083117-021320
Loading
/content/journals/10.1146/annurev-genom-083117-021320
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error