1932

Abstract

Genome-wide association studies (GWASs) have revolutionized human disease genetics by discovering tens of thousands of associations between common variants and complex diseases. In parallel, huge technological advances in DNA sequencing have made it possible to measure and analyze rare variation in populations. This review considers these two stories and how they have come together. We first review the history of GWASs and sequencing. We then consider how to understand the biological mechanisms that drive signals of strong association in the absence of rare-variant studies. We describe how rare-variant studies complement these approaches and highlight both data generation and statistical challenges in their interpretation. Finally, we consider how certain special study designs, such as those for families and isolated populations, fit in this paradigm.

Keyword(s): fine mappingGWASrare variants
Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083117-021641
2018-08-31
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/genom/19/1/annurev-genom-083117-021641.html?itemId=/content/journals/10.1146/annurev-genom-083117-021641&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 1000 Genomes Proj. Consort. 2015. A global reference for human genetic variation. Nature 526:68–74
    [Google Scholar]
  2. 2.  Barrett JC, Cardon LR 2006. Evaluating coverage of genome-wide association studies. Nat. Genet. 38:659–62
    [Google Scholar]
  3. 3.  Beissinger TM, Rosa GJ, Kaeppler SM, Gianola D, De Leon N 2015. Defining window-boundaries for genomic analyses using smoothing spline techniques. Genet. Sel. Evol. 47:30
    [Google Scholar]
  4. 4.  Benner C, Havulinna AS, Järvelin MR, Salomaa V, Ripatti S, Pirinen M 2017. Prospects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studies. Am. J. Hum. Genet. 101:539–51
    [Google Scholar]
  5. 5.  Benner C, Spencer CC, Havulinna AS, Salomaa V, Ripatti S, Pirinen M 2016. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32:1493–501
    [Google Scholar]
  6. 6.  Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A et al. 2010. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28:1045
    [Google Scholar]
  7. 7.  Boyle EA, Li YI, Pritchard JK 2017. An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–86
    [Google Scholar]
  8. 8. Broad Inst. Genom. Serv. 2018. Whole exome sequencing http://genomics.broadinstitute.org/products/whole-exome-sequencing
  9. 9.  Browning SR 2006. Multilocus association mapping using variable-length Markov chains. Am. J. Hum. Genet. 78:903–13
    [Google Scholar]
  10. 10.  Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10:1213
    [Google Scholar]
  11. 11.  Burdett T, Hall P, Hastings E, Hindorff L, Junkins H et al. 2018. The NHGRI-EBI Catalog of published genome-wide association studies http://www.ebi.ac.uk/gwas
  12. 12.  Chen W, Larrabee BR, Ovsyannikova IG, Kennedy RB, Haralambieva IH et al. 2015. Fine mapping causal variants with an approximate Bayesian method using marginal test statistics. Genetics 200:719–36
    [Google Scholar]
  13. 13.  Chun S, Casparino A, Patsopoulos NA, Croteau-Chonka DC, Raby BA et al. 2017. Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types. Nat. Genet. 49:600–5
    [Google Scholar]
  14. 14.  Cooper GM, Shendure J 2011. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet. 12:628–40
    [Google Scholar]
  15. 15.  DeBoever C, Li H, Jakubosky D, Benaglio P, Reyna J et al. 2017. Large-scale profiling reveals the influence of genetic variation on gene expression in human induced pluripotent stem cells. Cell Stem Cell 20:533–46
    [Google Scholar]
  16. 16. ENCODE Proj. Consort. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74
    [Google Scholar]
  17. 17.  Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V et al. 2016. The genetic architecture of type 2 diabetes. Nature 536:41–47
    [Google Scholar]
  18. 18.  Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K et al. 2015. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47:1091–98
    [Google Scholar]
  19. 19.  Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD et al. 2014. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLOS Genet 10:e1004383
    [Google Scholar]
  20. 20.  Gilly A, Kuchenbaecker K, Southam L, Suveges D, Moore R et al. 2017. Very low depth whole genome sequencing in complex trait association studies. bioRxiv 169789. https://doi.org/10.1101/169789
    [Crossref]
  21. 21.  Goldstein DB 2009. Common genetic variation and human traits. N. Engl. J. Med. 360:1696–98
    [Google Scholar]
  22. 22.  Grob S, Cavalli G 2018. Technical review: a hitchhiker's guide to chromosome conformation capture. Plant Chromatin Dynamics M Bemer, C Baroux 233–46 New York: Humana
    [Google Scholar]
  23. 23. GTEx Consort. 2017. Genetic effects on gene expression across human tissues. Nature 550:204–13
    [Google Scholar]
  24. 24.  Gusev A, Ko A, Shi H, Bhatia G, Chung W et al. 2016. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48:245–52
    [Google Scholar]
  25. 25. Haplotype Ref. Consort. 2016. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48:1279–83
    [Google Scholar]
  26. 26.  Huang H, Fang M, Jostins L, Mirkov MU, Boucher G et al. 2017. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547:173–78
    [Google Scholar]
  27. 27. Int. HapMap Consort. 2005. A haplotype map of the human genome. Nature 437:1299–320
    [Google Scholar]
  28. 28.  Johnson JL, Abecasis GR 2017. GAS Power Calculator: web-based power calculator for genetic association studies. bioRxiv 164343. https://doi.org/10.1101/164343
    [Crossref]
  29. 29.  Jostins L, Levine AP, Barrett JC 2013. Using genetic prediction from known complex disease loci to guide the design of next-generation sequencing experiments. PLOS ONE 8:e76328
    [Google Scholar]
  30. 30.  Levine AP, Pontikos N, Schiff ER, Jostins L, Speed D et al. 2016. Genetic complexity of Crohn's disease in two large Ashkenazi Jewish families. Gastroenterology 151:698–709
    [Google Scholar]
  31. 31.  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–79
    [Google Scholar]
  32. 32.  Li Y, Sung WK, Liu JJ 2007. Association mapping via regularized regression analysis of single-nucleotide–polymorphism haplotypes in variable-sized sliding windows. Am. J. Hum. Genet. 80:705–15
    [Google Scholar]
  33. 33.  Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R et al. 2015. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47:979–86
    [Google Scholar]
  34. 34.  Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH et al. 2015. Genetic studies of body mass index yield new insights for obesity biology. Nature 518:197–206
    [Google Scholar]
  35. 35.  Luo Y, de Lange KM, Jostins L, Moutsianas L, Randall J et al. 2017. Exploring the genetic architecture of inflammatory bowel disease by whole genome sequencing identifies association at ADCY7. Nat. . Genet 49:186–92
    [Google Scholar]
  36. 36.  Mägi R, Horikoshi M, Sofer T, Mahajan A, Kitajima H et al. 2017. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26:3639–50
    [Google Scholar]
  37. 37.  Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ et al. 2014. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46:234–44
    [Google Scholar]
  38. 38.  Maller JB, McVean G, Byrnes J, Vukcevic D, Palin K et al. 2012. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44:1294–301
    [Google Scholar]
  39. 39.  McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–303
    [Google Scholar]
  40. 40.  Morris AP 2011. Transethnic meta-analysis of genomewide association studies. Genet. Epidemiol. 35:809–22
    [Google Scholar]
  41. 41.  Natarajan P, Peloso GM, Zekavat SM, Montasser M, Ganna A et al. 2017. Deep-coverage whole genome sequences and blood lipids among 16,324 individuals. bioRxiv 224378. https://doi.org/10.1101/224378
    [Crossref]
  42. 42.  Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B et al. 2011. Testing for an unusual distribution of rare variants. PLOS Genet 7:e1001322
    [Google Scholar]
  43. 43.  Nejentsev S, Walker N, Riches D, Egholm M, Todd JA 2009. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–89
    [Google Scholar]
  44. 44.  Nica AC, Dermitzakis ET 2013. Expression quantitative trait loci: present and future. Philos. Trans. R. Soc. Lond. B 368:20120362
    [Google Scholar]
  45. 45.  Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S et al. 2018. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50:381–89
    [Google Scholar]
  46. 46.  Pickrell JK 2014. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94:559–73
    [Google Scholar]
  47. 47.  Poplin R, Newburger D, Dijamco J, Nguyen N, Loy D et al. 2018. Creating a universal SNP and small indel variant caller with deep neural networks. bioRxiv 092890. https://doi.org/10.1101/092890
    [Crossref]
  48. 48.  Pulit SL, de With SAJ, de Bakker PIW 2016. The multiple testing burden in sequencing-based disease studies of global populations. bioRxiv 053264. https://doi.org/10.1101/053264
    [Crossref]
  49. 49.  Rashkin S, Jun G, Chen SGenet. Epidemiol. Colorectal Cancer Consort. (GECCO), Abecasis GR 2017. Optimal sequencing strategies for identifying disease-associated singletons. PLOS Genetics 13:e1006811
    [Google Scholar]
  50. 50.  Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SR et al. 2014. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 46:912–18
    [Google Scholar]
  51. 51.  Rivas MA, Graham D, Sulem P, Stevens C, Desch AN et al. 2016. A protein-truncating R179X variant in RNF186 confers protection against ulcerative colitis. Nat. Commun. 7:12342
    [Google Scholar]
  52. 52.  Singh T, Kurki MI, Curtis D, Purcell SM, Crooks L et al. 2016. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat. Neurosci. 19:571–77
    [Google Scholar]
  53. 53.  Singh T, Walters JT, Johnstone M, Curtis D, Suvisaari J et al. 2017. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat. Genet. 49:1167–73
    [Google Scholar]
  54. 54.  Southam L, Gilly A, Süveges D, Farmaki AE, Schwartzentruber J et al. 2017. Whole genome sequencing and imputation in isolated populations identify genetic associations with medically-relevant complex traits. Nat. Commun. 8:15606
    [Google Scholar]
  55. 55.  Spain SL, Barrett JC 2015. Strategies for fine-mapping complex traits. Hum. Mol. Genet. 24:R111–19
    [Google Scholar]
  56. 56.  Tachmazidou I, Dedoussis G, Southam L, Farmaki AE, Ritchie GR et al. 2013. A rare functional cardioprotective APOC3 variant has risen in frequency in distinct population isolates. Nat. Commun. 4:2872
    [Google Scholar]
  57. 57.  Tang R, Feng T, Sha Q, Zhang S 2009. A variable-sized sliding-window approach for genetic association studies via principal component analysis. Ann. Hum. Genet. 73:631–37
    [Google Scholar]
  58. 58.  Wang X, Teo YY 2015. Trans-ethnic fine-mapping of rare causal variants. Assessing Rare Variation in Complex Traits E Zeggini, A Morris 253–61 New York: Springer
    [Google Scholar]
  59. 59. Wellcome Trust Case Control Consort. 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–78
    [Google Scholar]
  60. 60.  Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X 2011. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89:82–93
    [Google Scholar]
  61. 61.  Zhao J, Akinsanmi I, Arafat D, Cradick T, Lee CM et al. 2016. A burden of rare variants associated with extremes of gene expression in human peripheral blood. Am. J. Hum. Genet. 98:299–309
    [Google Scholar]
/content/journals/10.1146/annurev-genom-083117-021641
Loading
/content/journals/10.1146/annurev-genom-083117-021641
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error