1932

Abstract

The same mutation can have different effects in different individuals. One important reason for this is that the outcome of a mutation can depend on the genetic context in which it occurs. This dependency is known as epistasis. In recent years, there has been a concerted effort to quantify the extent of pairwise and higher-order genetic interactions between mutations through deep mutagenesis of proteins and RNAs. This research has revealed two major components of epistasis: nonspecific genetic interactions caused by nonlinearities in genotype-to-phenotype maps, and specific interactions between particular mutations. Here, we provide an overview of our current understanding of the mechanisms causing epistasis at the molecular level, the consequences of genetic interactions for evolution and genetic prediction, and the applications of epistasis for understanding biology and determining macromolecular structures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083118-014857
2019-08-31
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/genom/20/1/annurev-genom-083118-014857.html?itemId=/content/journals/10.1146/annurev-genom-083118-014857&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aakre CD, Herrou J, Phung TN, Perchuk BS, Crosson S, Laub MT 2015. Evolving new protein-protein interaction specificity through promiscuous intermediates. Cell 163:594–606
    [Google Scholar]
  2. 2.
    Ackers GK, Johnson AD, Shea MA 1982. Quantitative model for gene regulation by λ phage repressor. PNAS 79:1129–33
    [Google Scholar]
  3. 3.
    Aguilar-Rodríguez J, Payne JL, Wagner A 2017. A thousand empirical adaptive landscapes and their navigability. Nat. Ecol. Evol. 1:0045
    [Google Scholar]
  4. 4.
    Anderson DW, McKeown AN, Thornton JW 2015. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites. eLife 4:e07864
    [Google Scholar]
  5. 5.
    Araya CL, Fowler DM. 2011. Deep mutational scanning: assessing protein function on a massive scale. Trends Biotechnol 29:435–42
    [Google Scholar]
  6. 6.
    Araya CL, Fowler DM, Chen W, Muniez I, Kelly JW, Fields S 2012. A fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of protein function. PNAS 109:16858–63
    [Google Scholar]
  7. 7.
    Ashworth A, Lord CJ, Reis-Filho JS 2011. Genetic interactions in cancer progression and treatment. Cell 145:30–38
    [Google Scholar]
  8. 8.
    Australo-Anglo-Am. Spondyloarthritis Consort., Wellcome Trust Case Control Consort. 2 Evans DM, Spencer CCA, Pointon JJ et al. 2011. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43:761–67
    [Google Scholar]
  9. 9.
    Baeza-Centurion P, Miñana B, Schiedel JM, Valcárcel J, Lehner B 2019. Combinatorial genetics reveals a scaling law for the effects of mutations on splicing. Cell 176:549–63
    [Google Scholar]
  10. 10.
    Bandyopadhyay S, Mehta M, Kuo D, Sung M-K, Chuang R et al. 2010. Rewiring of genetic networks in response to DNA damage. Science 330:1385–89
    [Google Scholar]
  11. 11.
    Bank C, Hietpas RT, Jensen JD, Bolon DNA 2015. A systematic survey of an intragenic epistatic landscape. Mol. Biol. Evol. 32:229–38
    [Google Scholar]
  12. 12.
    Bank C, Hietpas RT, Wong A, Bolon DN, Jensen JD 2014. A Bayesian MCMC approach to assess the complete distribution of fitness effects of new mutations: uncovering the potential for adaptive walks in challenging environments. Genetics 196:841–52
    [Google Scholar]
  13. 13.
    Bank C, Matuszewski S, Hietpas RT, Jensen JD 2016. On the (un)predictability of a large intragenic fitness landscape. PNAS 113:14085–90
    [Google Scholar]
  14. 14.
    Bateson 1909. Discussion on the influence of heredity on disease, with special reference to tuberculosis, cancer, and diseases of the nervous system: introductory address. Proc. R. Soc. Med. 2:Gen. Rep.22–30
    [Google Scholar]
  15. 15.
    Bloom JD, Gong LI, Baltimore D 2010. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328:1272–75
    [Google Scholar]
  16. 16.
    Bloom JD, Labthavikul ST, Otey CR, Arnold FH 2006. Protein stability promotes evolvability. PNAS 103:5869–74
    [Google Scholar]
  17. 17.
    Boj SF, Petrov D, Ferrer J 2010. Epistasis of transcriptomes reveals synergism between transcriptional activators Hnf1α and Hnf4α. PLOS Genet 6:e1000970
    [Google Scholar]
  18. 18.
    Braun S, Enculescu M, Setty ST, Cortés-López M, de Almeida BP et al. 2018. Decoding a cancer-relevant splicing decision in the RON proto-oncogene using high-throughput mutagenesis. Nat. Commun. 9:3315
    [Google Scholar]
  19. 19.
    Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA 2012. Epistasis as the primary factor in molecular evolution. Nature 490:535–38
    [Google Scholar]
  20. 20.
    Bridgham JT, Carroll SM, Thornton JW 2006. Evolution of hormone-receptor complexity by molecular exploitation. Science 312:97–101
    [Google Scholar]
  21. 21.
    Burga A, Casanueva MO, Lehner B 2011. Predicting mutation outcome from early stochastic variation in genetic interaction partners. Nature 480:250–53
    [Google Scholar]
  22. 22.
    Burga A, Lehner B. 2012. Beyond genotype to phenotype: why the phenotype of an individual cannot always be predicted from their genome sequence and the environment that they experience. FEBS J 279:3765–75
    [Google Scholar]
  23. 23.
    Burga A, Lehner B. 2013. Predicting phenotypic variation from genotypes, phenotypes and a combination of the two. Curr. Opin. Biotechnol. 24:803–9
    [Google Scholar]
  24. 24.
    Casanueva MO, Burga A, Lehner B 2012. Fitness trade-offs and environmentally induced mutation buffering in isogenic C. elegans. . Science 335:82–85
    [Google Scholar]
  25. 25.
    Chou H-H, Delaney NF, Draghi JA, Marx CJ 2014. Mapping the fitness landscape of gene expression uncovers the cause of antagonism and sign epistasis between adaptive mutations. PLOS Genet 10:e1004149
    [Google Scholar]
  26. 26.
    Corbett-Detig RB, Zhou J, Clark AG, Hartl DL, Ayroles JF 2013. Genetic incompatibilities are widespread within species. Nature 504:135–37
    [Google Scholar]
  27. 27.
    Cortes A, Pulit SL, Leo PJ, Pointon JJ, Robinson PC et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat. Commun 6:7146
    [Google Scholar]
  28. 28.
    Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C et al. 2016. A global genetic interaction network maps a wiring diagram of cellular function. Science 353:aaf1420
    [Google Scholar]
  29. 29.
    Daubner GM, Cléry A, Allain FH-T 2013. RRM-RNA recognition: NMR or crystallography…and new findings. Curr. Opin. Struct. Biol. 23:100–8
    [Google Scholar]
  30. 30.
    de Visser JAGM, Krug J 2014. Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genet. 15:480–90
    [Google Scholar]
  31. 31.
    Dekel E, Alon U. 2005. Optimality and evolutionary tuning of the expression level of a protein. Nature 436:588–92
    [Google Scholar]
  32. 32.
    Diss G, Lehner B. 2018. The genetic landscape of a physical interaction. eLife 7:e32472
    [Google Scholar]
  33. 33.
    Dixon SJ, Andrews BJ, Boone C 2009. Exploring the conservation of synthetic lethal genetic interaction networks. Commun. Integr. Biol. 2:78–81
    [Google Scholar]
  34. 34.
    Domingo J, Diss G, Lehner B 2018. Pairwise and higher-order genetic interactions during the evolution of a tRNA. Nature 558:117–21
    [Google Scholar]
  35. 35.
    Dowell RD, Ryan O, Jansen A, Cheung D, Agarwala S et al. 2010. Genotype to phenotype: a complex problem. Science 328:469
    [Google Scholar]
  36. 36.
    du Plessis L, Leventhal GE, Bonhoeffer S 2016. How good are statistical models at approximating complex fitness landscapes. ? Mol. Biol. Evol. 33:2454–68
    [Google Scholar]
  37. 37.
    Eldar A, Elowitz MB. 2010. Functional roles for noise in genetic circuits. Nature 467:167–73
    [Google Scholar]
  38. 38.
    Fischer B, Sandmann T, Horn T, Billmann M, Chaudhary V et al. 2015. A map of directional genetic interactions in a metazoan cell. eLife 4:e05464
    [Google Scholar]
  39. 39.
    Fisher RA. 1919. XV.—The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52:399–433
    [Google Scholar]
  40. 40.
    Forsberg SKG, Bloom JS, Sadhu MJ, Kruglyak L, Carlborg Ö 2017. Accounting for genetic interactions improves modeling of individual quantitative trait phenotypes in yeast. Nat. Genet. 49:497–503
    [Google Scholar]
  41. 41.
    Fowler DM, Araya CL, Fleishman SJ, Kellogg EH, Stephany JJ et al. 2010. High-resolution mapping of protein sequence-function relationships. Nat. Methods 7:741–46
    [Google Scholar]
  42. 42.
    Gao L, Zhang J. 2003. Why are some human disease-associated mutations fixed in mice. ? Trends Genet 19:678–81
    [Google Scholar]
  43. 43.
    Genet. Anal. Psoriasis Consort., Wellcome Trust Case Control Consort. 2 2010. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet 42:985–90
    [Google Scholar]
  44. 44.
    Gerke J, Lorenz K, Ramnarine S, Cohen B 2010. Gene-environment interactions at nucleotide resolution. PLOS Genet 6:e1001144
    [Google Scholar]
  45. 45.
    Goodwin EB, Ellis RE. 2002. Turning clustering loops: sex determination in Caenorhabditis elegans. Curr. Biol 12:R111–20
    [Google Scholar]
  46. 46.
    Guy MP, Young DL, Payea MJ, Zhang X, Kon Y et al. 2014. Identification of the determinants of tRNA function and susceptibility to rapid tRNA decay by high-throughput in vivo analysis. Genes Dev 28:1721–32
    [Google Scholar]
  47. 47.
    Haerd T, Dahlman K, Carlstedt-Duke J, Gustafsson JA, Rigler R 1990. Cooperativity and specificity in the interactions between DNA and the glucocorticoid receptor DNA binding domain. Biochemistry 29:5358–64
    [Google Scholar]
  48. 48.
    Halabi N, Rivoire O, Leibler S, Ranganathan R 2009. Protein sectors: evolutionary units of three-dimensional structure. Cell 138:774–86
    [Google Scholar]
  49. 49.
    Harms MJ, Thornton JW. 2014. Historical contingency and its biophysical basis in glucocorticoid receptor evolution. Nature 512:203–7
    [Google Scholar]
  50. 50.
    Harrison R, Papp B, Pál C, Oliver SG, Delneri D 2007. Plasticity of genetic interactions in metabolic networks of yeast. PNAS 104:2307–12
    [Google Scholar]
  51. 51.
    Hayden EJ, Bendixsen DP, Wagner A 2015. Intramolecular phenotypic capacitance in a modular RNA molecule. PNAS 112:12444–49
    [Google Scholar]
  52. 52.
    Hayden EJ, Ferrada E, Wagner A 2011. Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature 474:92–95
    [Google Scholar]
  53. 53.
    Hietpas RT, Bank C, Jensen JD, Bolon DNA 2013. Shifting fitness landscapes in response to altered environments. Evolution 67:3512–22
    [Google Scholar]
  54. 54.
    Hinkley T, Martins J, Chappey C, Haddad M, Stawiski E et al. 2011. A systems analysis of mutational effects in HIV-1 protease and reverse transcriptase. Nat. Genet. 43:487–89
    [Google Scholar]
  55. 55.
    Hopf TA, Colwell LJ, Sheridan R, Rost B, Sander C, Marks DS 2012. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149:1607–21
    [Google Scholar]
  56. 56.
    Horlbeck MA, Xu A, Wang M, Bennett NK, Park CY et al. 2018. Mapping the genetic landscape of human cells. Cell 174:953–67.e22
    [Google Scholar]
  57. 57.
    Horovitz A. 1996. Double-mutant cycles: a powerful tool for analyzing protein structure and function. Fold. Des. 1:R121–26
    [Google Scholar]
  58. 58.
    Hu X, Deutsch AJ, Lenz TL, Onengut-Gumuscu S, Han B et al. 2015. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 47:898–905
    [Google Scholar]
  59. 59.
    Int. Mult. Scler. Genet. Consort 2015. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat. Genet 47:1107–13
    [Google Scholar]
  60. 60.
    Ives JAL, Carr JA, Mendel DB, Tai CY, Lambkin R et al. 2002. The H274Y mutation in the influenza A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leave virus severely compromised both in vitro and in vivo. Antiviral Res 55:307–17
    [Google Scholar]
  61. 61.
    Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR et al. 2013. DNA-binding specificities of human transcription factors. Cell 152:327–39
    [Google Scholar]
  62. 62.
    Jordan DM, Frangakis SG, Golzio C, Cassa CA, Kurtzberg J et al. 2015. Identification of cis-suppression of human disease mutations by comparative genomics. Nature 524:225–29
    [Google Scholar]
  63. 63.
    Julien P, Miñana B, Baeza-Centurion P, Valcárcel J, Lehner B 2016. The complete local genotype-phenotype landscape for the alternative splicing of a human exon. Nat. Commun. 7:11558
    [Google Scholar]
  64. 64.
    Kacser H, Burns JA. 1981. The molecular basis of dominance. Genetics 97:639–66
    [Google Scholar]
  65. 65.
    Kammenga JE. 2017. The background puzzle: how identical mutations in the same gene lead to different disease symptoms. FEBS J 284:3362–73
    [Google Scholar]
  66. 66.
    Ke S, Shang S, Kalachikov SM, Morozova I, Yu L et al. 2011. Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res 21:1360–74
    [Google Scholar]
  67. 67.
    Kelleher AD, Long C, Holmes EC, Allen RL, Wilson J et al. 2001. Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J. Exp. Med. 193:375–86
    [Google Scholar]
  68. 68.
    Kemble HE, Eisenhauer C, Couce A, Chapron A, Magnan M et al. 2018. Flux, toxicity and protein expression costs shape genetic interaction in a metabolic pathway. bioRxiv 362327. https://doi.org/10.1101/362327
    [Crossref]
  69. 69.
    Keren L, Hausser J, Lotan-Pompan M, Vainberg Slutskin I, Alisar H et al. 2016. Massively parallel interrogation of the effects of gene expression levels on fitness. Cell 166:1282–94.e18
    [Google Scholar]
  70. 70.
    Kiel C, Verschueren E, Yang J-S, Serrano L 2013. Integration of protein abundance and structure data reveals competition in the ErbB signaling network. Sci. Signal. 6:ra109
    [Google Scholar]
  71. 71.
    Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I 2013. Genome-wide association analysis identifies new susceptibility loci for Behçet's disease and epistasis between HLA-B*51 and ERAP1. Nat. Genet 45:202–7
    [Google Scholar]
  72. 72.
    Kondrashov AS, Sunyaev S, Kondrashov FA 2002. Dobzhansky-Muller incompatibilities in protein evolution. PNAS 99:14878–83
    [Google Scholar]
  73. 73.
    Kondrashov FA, Kondrashov AS. 2001. Multidimensional epistasis and the disadvantage of sex. PNAS 98:12089–92
    [Google Scholar]
  74. 74.
    Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB 2011. Prevalence of epistasis in the evolution of influenza A surface proteins. PLOS Genet 7:e1001301
    [Google Scholar]
  75. 75.
    Kuzmin E, VanderSluis B, Wang W, Tan G, Deshpande R et al. 2018. Systematic analysis of complex genetic interactions. Science 360:eaao1729
    [Google Scholar]
  76. 76.
    Lalić J, Elena SF. 2013. Epistasis between mutations is host-dependent for an RNA virus. Biol. Lett. 9:20120396
    [Google Scholar]
  77. 77.
    Laufer C, Fischer B, Billmann M, Huber W, Boutros M 2013. Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping. Nat. Methods 10:427–31
    [Google Scholar]
  78. 78.
    Laufer C, Fischer B, Huber W, Boutros M 2014. Measuring genetic interactions in human cells by RNAi and imaging. Nat. Protoc. 9:2341–53
    [Google Scholar]
  79. 79.
    Lehner B. 2011. Molecular mechanisms of epistasis within and between genes. Trends Genet 27:323–31
    [Google Scholar]
  80. 80.
    Lehner B. 2013. Genotype to phenotype: lessons from model organisms for human genetics. Nat. Rev. Genet. 14:168–78
    [Google Scholar]
  81. 81.
    Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG 2006. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat. Genet. 38:896–903
    [Google Scholar]
  82. 82.
    Lenz TL, Deutsch AJ, Han B, Hu X, Okada Y et al. 2015. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat. Genet. 47:1085–90
    [Google Scholar]
  83. 83.
    Lewontin RC. 1974. The Genetic Basis of Evolutionary Change New York: Columbia Univ. Press
  84. 84.
    Li C, Qian W, Maclean CJ, Zhang J 2016. The fitness landscape of a tRNA gene. Science 352:837–40
    [Google Scholar]
  85. 85.
    Li C, Zhang J. 2018. Multi-environment fitness landscapes of a tRNA gene. Nat. Ecol. Evol. 2:1025–32
    [Google Scholar]
  86. 86.
    Li X, Lalic C, Baeza-Centurion P, Dhar R, Lehner B 2019. Changes in gene expression shift and switch genetic interactions. bioRxiv 578419. https://doi.org/10.1101/578419
    [Crossref]
  87. 87.
    Lunzer M, Miller SP, Felsheim R, Dean AM 2005. The biochemical architecture of an ancient adaptive landscape. Science 310:499–501
    [Google Scholar]
  88. 88.
    Mackay TFC, Moore JH. 2014. Why epistasis is important for tackling complex human disease genetics. Genome Med 6:42
    [Google Scholar]
  89. 89.
    Mani R, St. Onge RP, Hartman JL IV, Giaever G, Roth FP. 2008. Defining genetic interaction. PNAS 105:3461–66
    [Google Scholar]
  90. 90.
    Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A et al. 2011. Protein 3D structure computed from evolutionary sequence variation. PLOS ONE 6:e28766
    [Google Scholar]
  91. 91.
    Marks DS, Hopf TA, Sander C 2012. Protein structure prediction from sequence variation. Nat. Biotechnol. 30:1072–80
    [Google Scholar]
  92. 92.
    Matzaraki V, Kumar V, Wijmenga C, Zhernakova A 2017. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol 18:76
    [Google Scholar]
  93. 93.
    McKeown AN, Bridgham JT, Anderson DW, Murphy MN, Ortlund EA, Thornton JW 2014. Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module. Cell 159:58–68
    [Google Scholar]
  94. 94.
    McLaughlin RN Jr, Poelwijk FJ, Raman A, Gosal WS, Ranganathan R. 2012. The spatial architecture of protein function and adaptation. Nature 491:138–42
    [Google Scholar]
  95. 95.
    McLornan DP, List A, Mufti GJ 2014. Applying synthetic lethality for the selective targeting of cancer. N. Engl. J. Med. 371:1725–35
    [Google Scholar]
  96. 96.
    Megiorni F, Pizzuti A. 2012. HLA-DQA1 and HLA-DQB1 in celiac disease predisposition: practical implications of the HLA molecular typing. J. Biomed. Sci. 19:88
    [Google Scholar]
  97. 97.
    Melamed D, Young DL, Gamble CE, Miller CR, Fields S 2013. Deep mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein. RNA 19:1537–51
    [Google Scholar]
  98. 98.
    Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS et al. 2011. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. PNAS 108:E1293–301
    [Google Scholar]
  99. 99.
    Morgunova E, Taipale J. 2017. Structural perspective of cooperative transcription factor binding. Curr. Opin. Struct. Biol. 47:1–8
    [Google Scholar]
  100. 100.
    Morgunova E, Yin Y, Das PK, Jolma A, Zhu F et al. 2018. Two distinct DNA sequences recognized by transcription factors represent enthalpy and entropy optima. eLife 7:e32963
    [Google Scholar]
  101. 101.
    Moscona A. 2009. Global transmission of oseltamivir-resistant influenza. N. Engl. J. Med. 360:953–56
    [Google Scholar]
  102. 102.
    Mukherjee S, Berger MF, Jona G, Wang XS, Muzzey D et al. 2004. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat. Genet. 36:1331–39
    [Google Scholar]
  103. 103.
    Mullis MN, Matsui T, Schell R, Foree R, Ehrenreich IM 2018. The complex underpinnings of genetic background effects. Nat. Commun. 9:3548
    [Google Scholar]
  104. 104.
    Nijman SMB, Friend SH. 2013. Potential of the synthetic lethality principle. Science 342:809–11
    [Google Scholar]
  105. 105.
    Olson CA, Wu NC, Sun R 2014. A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. Curr. Biol. 24:2643–51
    [Google Scholar]
  106. 106.
    Ortlund EA, Bridgham JT, Redinbo MR, Thornton JW 2007. Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317:1544–48
    [Google Scholar]
  107. 107.
    Otwinowski J. 2018. Biophysical inference of epistasis and the effects of mutations on protein stability and function. Mol. Biol. Evol. 35:2345–54
    [Google Scholar]
  108. 108.
    Otwinowski J, McCandlish DM, Plotkin JB 2018. Inferring the shape of global epistasis. PNAS 115:E7550–58
    [Google Scholar]
  109. 109.
    Otwinowski J, Nemenman I. 2013. Genotype to phenotype mapping and the fitness landscape of the E. coli lac promoter. PLOS ONE 8:e61570
    [Google Scholar]
  110. 110.
    Otwinowski J, Plotkin JB. 2014. Inferring fitness landscapes by regression produces biased estimates of epistasis. PNAS 111:E2301–9
    [Google Scholar]
  111. 111.
    Palmer AC, Toprak E, Baym M, Kim S, Veres A et al. 2015. Delayed commitment to evolutionary fate in antibiotic resistance fitness landscapes. Nat. Commun. 6:7385
    [Google Scholar]
  112. 112.
    Park S, Lehner B. 2015. Cancer type-dependent genetic interactions between cancer driver alterations indicate plasticity of epistasis across cell types. Mol. Syst. Biol. 11:824
    [Google Scholar]
  113. 113.
    Patwardhan RP, Hiatt JB, Witten DM, Kim MJ, Smith RP et al. 2012. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30:265–70
    [Google Scholar]
  114. 114.
    Phillips PC. 2008. Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9:855–67
    [Google Scholar]
  115. 115.
    Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ 2007. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445:383–86
    [Google Scholar]
  116. 116.
    Poelwijk FJ, Socolich M, Ranganathan R 2017. Learning the pattern of epistasis linking genotype and phenotype in a protein. bioRxiv 213835. https://doi.org/10.1101/213835
    [Crossref]
  117. 117.
    Pokusaeva V, Usmanova D, Putintseva E, Espinar L, Sarkisyan K et al. 2019. An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLOS Genet15:e1008079
  118. 118.
    Poon A, Chao L. 2005. The rate of compensatory mutation in the DNA bacteriophage ϕX174. Genetics 170:989–99
    [Google Scholar]
  119. 119.
    Povolotskaya IS, Kondrashov FA. 2010. Sequence space and the ongoing expansion of the protein universe. Nature 465:922–26
    [Google Scholar]
  120. 120.
    Presgraves DC. 2007. Speciation genetics: epistasis, conflict and the origin of species. Curr. Biol. 17:R125–27
    [Google Scholar]
  121. 121.
    Puchta O, Cseke B, Czaja H, Tollervey D, Sanguinetti G, Kudla G 2016. Network of epistatic interactions within a yeast snoRNA. Science 352:840–44
    [Google Scholar]
  122. 122.
    Raj A, van Oudenaarden A 2008. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–26
    [Google Scholar]
  123. 123.
    Raman AS, White KI, Ranganathan R 2016. Origins of allostery and evolvability in proteins: a case study. Cell 166:468–80
    [Google Scholar]
  124. 124.
    Ranganathan S. 1999. A technique for prediction of carbonitride precipitation in high strength low alloy steels. Mater. Sci. Technol. 15:523–26
    [Google Scholar]
  125. 125.
    Rauscher B, Heigwer F, Henkel L, Hielscher T, Voloshanenko O, Boutros M 2018. Toward an integrated map of genetic interactions in cancer cells. Mol. Syst. Biol. 14:e7656
    [Google Scholar]
  126. 126.
    Remold SK, Lenski RE. 2004. Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli. Nat. Genet 36:423–26
    [Google Scholar]
  127. 127.
    Rich MS, Payen C, Rubin AF, Ong GT, Sanchez MR et al. 2016. Comprehensive analysis of the SUL1 promoter of Saccharomyces cerevisiae. . Genetics 203:191–202
    [Google Scholar]
  128. 128.
    Roguev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T et al. 2008. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322:405–10
    [Google Scholar]
  129. 129.
    Rollins NJ, Brock KP, Poelwijk FJ, Stiffler MA, Gauthier NP et al. 2019. Inferring protein 3D structure from deep mutation scans. Nat. Genet In press. https://doi.org/10.1038/s41588-019-0432-9
    [Crossref]
  130. 130.
    Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP et al. 2006. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443:45–49
    [Google Scholar]
  131. 131.
    Sackton TB, Hartl DL. 2016. Genotypic context and epistasis in individuals and populations. Cell 166:279–87
    [Google Scholar]
  132. 132.
    Sailer ZR, Harms MJ. 2017. Detecting high-order epistasis in nonlinear genotype-phenotype maps. Genetics 205:1079–88
    [Google Scholar]
  133. 133.
    Sailer ZR, Harms MJ. 2017. High-order epistasis shapes evolutionary trajectories. PLOS Comput. Biol. 13:e1005541
    [Google Scholar]
  134. 134.
    Salignon J, Richard M, Fulcrand E, Duplus-Bottin H, Yvert G 2018. Genomics of cellular proliferation in periodic environmental fluctuations. Mol. Syst. Biol. 14:e7823
    [Google Scholar]
  135. 135.
    Salinas VH, Ranganathan R. 2018. Coevolution-based inference of amino acid interactions underlying protein function. eLife 7:e34300
    [Google Scholar]
  136. 136.
    Sarkisyan KS, Bolotin DA, Meer MV, Usmanova DR, Mishin AS et al. 2016. Local fitness landscape of the green fluorescent protein. Nature 533:397–401
    [Google Scholar]
  137. 137.
    Schmiedel JM, Lehner B. 2019. Determining protein structures using deep mutagenesis. Nat. Genet In press. https://doi.org/10.1038/s41588-019-0431-x
    [Crossref]
  138. 138.
    Segrè D, Deluna A, Church GM, Kishony R 2005. Modular epistasis in yeast metabolism. Nat. Genet. 37:77–83
    [Google Scholar]
  139. 139.
    Shah P, McCandlish DM, Plotkin JB 2015. Contingency and entrenchment in protein evolution under purifying selection. PNAS 112:E3226–35
    [Google Scholar]
  140. 140.
    Shendure J, Akey JM. 2015. The origins, determinants, and consequences of human mutations. Science 349:1478–83
    [Google Scholar]
  141. 141.
    Sieper J, Rudwaleit M, Khan MA, Braun J 2006. Concepts and epidemiology of spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 20:401–17
    [Google Scholar]
  142. 142.
    Sorrells TR, Booth LN, Tuch BB, Johnson AD 2015. Intersecting transcription networks constrain gene regulatory evolution. Nature 523:361–65
    [Google Scholar]
  143. 143.
    Starr TN, Flynn JM, Mishra P, Bolon DNA, Thornton JW 2018. Pervasive contingency and entrenchment in a billion years of Hsp90 evolution. PNAS 115:4453–58
    [Google Scholar]
  144. 144.
    Starr TN, Picton LK, Thornton JW 2017. Alternative evolutionary histories in the sequence space of an ancient protein. Nature 549:409–13
    [Google Scholar]
  145. 145.
    Sternberg PW, Robert Horvitz H 1989. The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans. . Cell 58:679–93
    [Google Scholar]
  146. 146.
    Stiffler MA, Hekstra DR, Ranganathan R 2015. Evolvability as a function of purifying selection in TEM-1 β-lactamase. Cell 160:882–92
    [Google Scholar]
  147. 147.
    Storz JF. 2018. Compensatory mutations and epistasis for protein function. Curr. Opin. Struct. Biol. 50:18–25
    [Google Scholar]
  148. 148.
    Thomas JH, Birnby DA, Vowels JJ 1993. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. . Genetics 134:1105–17
    [Google Scholar]
  149. 149.
    Tischler J, Lehner B, Fraser AG 2008. Evolutionary plasticity of genetic interaction networks. Nat. Genet. 40:390–91
    [Google Scholar]
  150. 150.
    Tokuriki N, Tawfik DS. 2009. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19:596–604
    [Google Scholar]
  151. 151.
    Toprak E, Veres A, Michel J-B, Chait R, Hartl DL, Kishony R 2011. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat. Genet. 44:101–5
    [Google Scholar]
  152. 152.
    Weigt M, White RA, Szurmant H, Hoch JA, Hwa T 2009. Identification of direct residue contacts in protein-protein interaction by message passing. PNAS 106:67–72
    [Google Scholar]
  153. 153.
    Weinreb C, Riesselman AJ, Ingraham JB, Gross T, Sander C, Marks DS 2016. 3D RNA and functional interactions from evolutionary couplings. Cell 165:963–75
    [Google Scholar]
  154. 154.
    Weinreich DM. 2006. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312:111–14
    [Google Scholar]
  155. 155.
    Weinreich DM, Lan Y, Wylie CS, Heckendorn RB 2013. Should evolutionary geneticists worry about higher-order epistasis?. Curr. Opin. Genet. Dev. 23:700–7
    [Google Scholar]
  156. 156.
    Weinreich DM, Watson RA, Chao L 2005. Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59:1165–74
    [Google Scholar]
  157. 157.
    Wu NC, Dai L, Anders Olson C, Lloyd-Smith JO, Sun R 2016. Adaptation in protein fitness landscapes is facilitated by indirect paths. eLife 5:e16965
    [Google Scholar]
  158. 158.
    Wylie CS, Shakhnovich EI. 2011. A biophysical protein folding model accounts for most mutational fitness effects in viruses. PNAS 108:9916–21
    [Google Scholar]
  159. 159.
    You L, Yin J. 2002. Dependence of epistasis on environment and mutation severity as revealed by in silico mutagenesis of phage t7. Genetics 160:1273–81
    [Google Scholar]
  160. 160.
    Zhu C-T, Ingelmo P, Rand DM 2014. G×G×E for lifespan in Drosophila: mitochondrial, nuclear, and dietary interactions that modify longevity. PLOS Genet 10:e1004354
    [Google Scholar]
  161. 161.
    Zuo Z, Roy B, Chang YK, Granas D, Stormo GD 2017. Measuring quantitative effects of methylation on transcription factor-DNA binding affinity. Sci Adv 3:eaao1799
    [Google Scholar]
/content/journals/10.1146/annurev-genom-083118-014857
Loading
/content/journals/10.1146/annurev-genom-083118-014857
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error