1932

Abstract

Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are common heart muscle disorders that are caused by pathogenic variants in sarcomere protein genes. HCM is characterized by unexplained cardiac hypertrophy (increased chamber wall thickness) that is accompanied by enhanced cardiac contractility and impaired relaxation. DCM is defined as increased ventricular chamber volume with contractile impairment. In this review, we discuss recent analyses that provide new insights into the molecular mechanisms that cause these conditions. HCM studies have uncovered the critical importance of conformational changes that occur during relaxation and enable energy conservation, which are frequently disturbed by HCM mutations. DCM studies have demonstrated the considerable prevalence of truncating variants in titin and have discerned that these variants reduce contractile function by impairing sarcomerogenesis. These new pathophysiologic mechanisms open exciting opportunities to identify new pharmacological targets and develop future cardioprotective strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083118-015306
2019-08-31
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/genom/20/1/annurev-genom-083118-015306.html?itemId=/content/journals/10.1146/annurev-genom-083118-015306&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adalsteinsdottir B, Teekakirikul P, Maron BJ, Burke MA, Gudbjartsson DF et al. 2014. Nationwide study on hypertrophic cardiomyopathy in Iceland: evidence of a MYBPC3 founder mutation. Circulation 130:1158–67
    [Google Scholar]
  2. 2.
    Akinrinade O, Alastalo TP, Koskenvuo JW 2016. Relevance of truncating titin mutations in dilated cardiomyopathy. Clin. Genet. 90:49–54
    [Google Scholar]
  3. 3.
    Alamo L, Koubassova N, Pinto A, Gillilan R, Tsaturyan A, Padron R 2017. Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function. Biophys. Rev. 9:461–80
    [Google Scholar]
  4. 4.
    Alamo L, Qi D, Wriggers W, Pinto A, Zhu J et al. 2016. Conserved intramolecular interactions maintain myosin interacting-heads motifs explaining tarantula muscle super-relaxed state structural basis. J. Mol. Biol. 428:1142–64
    [Google Scholar]
  5. 5.
    Alamo L, Ware JS, Pinto A, Gillilan RE, Seidman JG et al. 2017. Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes. eLife 6:e24634
    [Google Scholar]
  6. 6.
    Alamo L, Wriggers W, Pinto A, Bartoli F, Salazar L et al. 2008. Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity. J. Mol. Biol. 384:780–97
    [Google Scholar]
  7. 7.
    Alfares AA, Kelly MA, McDermott G, Funke BH, Lebo MS et al. 2015. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet. Med. 17:880–88
    [Google Scholar]
  8. 8.
    Anderson RL, Trivedi DV, Sarkar SS, Henze M, Ma W et al. 2018. Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. PNAS 115:E8143–52
    [Google Scholar]
  9. 9.
    Andrews RE, Fenton MJ, Ridout DA, Burch M (Br. Congenit. Card. Assoc.). 2008. New-onset heart failure due to heart muscle disease in childhood: a prospective study in the United Kingdom and Ireland. Circulation 117:79–84
    [Google Scholar]
  10. 10.
    Ashrafian H, McKenna WJ, Watkins H 2011. Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ. Res. 109:86–96
    [Google Scholar]
  11. 11.
    Ashrafian H, Redwood C, Blair E, Watkins H 2003. Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends Genet 19:263–68
    [Google Scholar]
  12. 12.
    Barefield D, Sadayappan S. 2010. Phosphorylation and function of cardiac myosin binding protein-C in health and disease. J. Mol. Cell. Cardiol. 48:866–75
    [Google Scholar]
  13. 13.
    Beraldi R, Li X, Martinez Fernandez A, Reyes S, Secreto F et al. 2014. Rbm20-deficient cardiogenesis reveals early disruption of RNA processing and sarcomere remodeling establishing a developmental etiology for dilated cardiomyopathy. Hum. Mol. Genet. 23:3779–91
    [Google Scholar]
  14. 14.
    Biagini E, Spirito P, Leone O, Picchio FM, Coccolo F et al. 2008. Heart transplantation in hypertrophic cardiomyopathy. Am. J. Cardiol. 101:387–92
    [Google Scholar]
  15. 15.
    Captur G, Arbustini E, Bonne G, Syrris P, Mills K et al. 2018. Lamin and the heart. Heart 104:468–79
    [Google Scholar]
  16. 16.
    Chandra M, Tschirgi ML, Tardiff JC 2005. Increase in tension-dependent ATP consumption induced by cardiac troponin T mutation. Am. J. Physiol. Heart Circ. Physiol. 289:H2112–19
    [Google Scholar]
  17. 17.
    Cheng Y, Regnier M. 2016. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Arch. Biochem. Biophys. 601:11–21
    [Google Scholar]
  18. 18.
    Chopra A, Kutys ML, Zhang K, Polacheck WJ, Sheng CC et al. 2018. Force generation via β-cardiac myosin, titin, and α-actinin drives cardiac sarcomere assembly from cell-matrix adhesions. Dev. Cell 44:87–96.e5
    [Google Scholar]
  19. 19.
    Chung JH, Biesiadecki BJ, Ziolo MT, Davis JP, Janssen PM 2016. Myofilament calcium sensitivity: role in regulation of in vivo cardiac contraction and relaxation. Front. Physiol. 7:562
    [Google Scholar]
  20. 20.
    Crilley JG, Boehm EA, Blair E, Rajagopalan B, Blamire AM et al. 2003. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J. Am. Coll. Cardiol. 41:1776–82
    [Google Scholar]
  21. 21.
    Davis J, Davis LC, Correll RN, Makarewich CA, Schwanekamp JA et al. 2016. A tension-based model distinguishes hypertrophic versus dilated cardiomyopathy. Cell 165:1147–59
    [Google Scholar]
  22. 22.
    Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS et al. 2009. A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nat. Genet. 41:187–91
    [Google Scholar]
  23. 23.
    Elkayam U, Jalnapurkar S, Barakat M 2012. Peripartum cardiomyopathy. Cardiol. Clin. 30:435–40
    [Google Scholar]
  24. 24.
    Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F et al. 2014. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 35:2733–79
    [Google Scholar]
  25. 25.
    Elliott PM, Andersson B, Arbustini E, Bilinska Z, Cecchi F et al. 2008. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 29:270–76
    [Google Scholar]
  26. 26.
    Espinoza-Fonseca LM, Alamo L, Pinto A, Thomas DD, Padron R 2015. Sequential myosin phosphorylation activates tarantula thick filament via a disorder-order transition. Mol. Biosyst. 11:2167–79
    [Google Scholar]
  27. 27.
    Fatkin D, Lam L, Herman DS, Benson CC, Felkin LE et al. 2016. Titin truncating mutations: a rare cause of dilated cardiomyopathy in the young. Prog. Pediatr. Cardiol. 40:41–45
    [Google Scholar]
  28. 28.
    Fatkin D, McConnell BK, Mudd JO, Semsarian C, Moskowitz IG et al. 2000. An abnormal Ca2+ response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. J. Clin. Investig. 106:1351–59
    [Google Scholar]
  29. 29.
    Fish M, Shaboodien G, Kraus S, Sliwa K, Seidman CE et al. 2016. Mutation analysis of the phospholamban gene in 315 South Africans with dilated, hypertrophic, peripartum and arrhythmogenic right ventricular cardiomyopathies. Sci. Rep. 6:22235
    [Google Scholar]
  30. 30.
    Fusi L, Brunello E, Yan Z, Irving M 2016. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle. Nat. Commun. 7:13281
    [Google Scholar]
  31. 31.
    Gallego-Delgado M, Delgado JF, Brossa-Loidi V, Palomo J, Marzoa-Rivas R et al. 2016. Idiopathic restrictive cardiomyopathy is primarily a genetic disease. J. Am. Coll. Cardiol. 67:3021–23
    [Google Scholar]
  32. 32.
    Gangadharan B, Sunitha MS, Mukherjee S, Chowdhury RR, Haque F et al. 2017. Molecular mechanisms and structural features of cardiomyopathy-causing troponin T mutants in the tropomyosin overlap region. PNAS 114:11115–20
    [Google Scholar]
  33. 33.
    Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, Lunde IG, Wakimoto H et al. 2019. Genetic variants associated with cancer therapy–induced cardiomyopathy. Circulation 140:31–41
    [Google Scholar]
  34. 34.
    Garfinkel AC, Seidman JG, Seidman CE 2018. Genetic pathogenesis of hypertrophic and dilated cardiomyopathy. Heart Fail. Clin. 14:139–46
    [Google Scholar]
  35. 35.
    Geisterfer-Lowrance AAT, Kass S, Tanigawa G, Vosberg H-P, McKenna W et al. 1990. A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation. Cell 62:999–1006
    [Google Scholar]
  36. 36.
    Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA et al. 2011. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 124:e783–831
    [Google Scholar]
  37. 37.
    Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM et al. 2016. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 351:617–21
    [Google Scholar]
  38. 38.
    Gregorio CC, Trombitas K, Centner T, Kolmerer B, Stier G et al. 1998. The NH2 terminus of titin spans the Z-disc: Its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J. Cell Biol. 143:1013–27
    [Google Scholar]
  39. 39.
    Guclu A, Knaapen P, Harms HJ, Parbhudayal RY, Michels M et al. 2017. Disease stage-dependent changes in cardiac contractile performance and oxygen utilization underlie reduced myocardial efficiency in human inherited hypertrophic cardiomyopathy. Circ. Cardiovasc. Imaging 10:e005604
    [Google Scholar]
  40. 40.
    Helms AS, Alvarado FJ, Yob J, Tang VT, Pagani F et al. 2016. Genotype-dependent and -independent calcium signaling dysregulation in human hypertrophic cardiomyopathy. Circulation 134:1738–48
    [Google Scholar]
  41. 41.
    Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P et al. 2012. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366:619–28
    [Google Scholar]
  42. 42.
    Hershberger RE, Hedges DJ, Morales A 2013. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 10:531–47
    [Google Scholar]
  43. 43.
    Hinojar R, Varma N, Child N, Goodman B, Jabbour A et al. 2015. T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the International T1 Multicenter Cardiovascular Magnetic Resonance Study. Circ. Cardiovasc. Imaging 8:e003285
    [Google Scholar]
  44. 44.
    Hinson JT, Chopra A, Lowe A, Sheng CC, Gupta RM et al. 2016. Integrative analysis of PRKAG2 cardiomyopathy iPS and microtissue models identifies AMPK as a regulator of metabolism, survival, and fibrosis. Cell Rep 17:3292–304
    [Google Scholar]
  45. 45.
    Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC et al. 2015. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349:982–86
    [Google Scholar]
  46. 46.
    Hiremath P, Lawler PR, Ho JE, Correia AW, Abbasi SA et al. 2016. Ultrasonic assessment of myocardial microstructure in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ. Heart Fail. 9:e003026
    [Google Scholar]
  47. 47.
    Ho CY, Abbasi SA, Neilan TG, Shah RV, Chen Y et al. 2013. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ. Cardiovasc. Imaging 6:415–22
    [Google Scholar]
  48. 48.
    Ho CY, Sweitzer NK, McDonough B, Maron BJ, Casey SA et al. 2002. Assessment of diastolic function with doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. Circulation 105:2992–97
    [Google Scholar]
  49. 49.
    Hooijman P, Stewart MA, Cooke R 2011. A new state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys. J. 100:1969–76
    [Google Scholar]
  50. 50.
    Ito K, Patel PN, Gorham JM, McDonough B, DePalma SR et al. 2017. Identification of pathogenic gene mutations in LMNA and MYBPC3 that alter RNA splicing. PNAS 114:7689–94
    [Google Scholar]
  51. 51.
    Jaaskelainen P, Helio T, Aalto-Setala K, Kaartinen M, Ilveskoski E et al. 2013. Two founder mutations in the alpha-tropomyosin and the cardiac myosin-binding protein C genes are common causes of hypertrophic cardiomyopathy in the Finnish population. Ann. Med. 45:85–90
    [Google Scholar]
  52. 52.
    James CA, Calkins H. 2019. Arrhythmogenic right ventricular cardiomyopathy: progress toward personalized management. Annu. Rev. Med. 70:1–18
    [Google Scholar]
  53. 53.
    Jorgenrud B, Jalanko M, Helio T, Jaaskelainen P, Laine M et al. 2015. The metabolome in Finnish carriers of the MYBPC3-Q1061X mutation for hypertrophic cardiomyopathy. PLOS ONE 10:e0134184
    [Google Scholar]
  54. 54.
    Kamisago M, Sharma SD, DePalma SR, Solomon S, Sharma P et al. 2000. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med. 343:1688–96
    [Google Scholar]
  55. 55.
    Kampourakis T, Sun YB, Irving M 2016. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. PNAS 113:E3039–47
    [Google Scholar]
  56. 56.
    Kampourakis T, Zhang X, Sun YB, Irving M 2018. Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament. J. Physiol. 596:31–46
    [Google Scholar]
  57. 57.
    Kawas RF, Anderson RL, Ingle SRB, Song Y, Sran AS, Rodriguez HM 2017. A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle. J. Biol. Chem. 292:16571–77
    [Google Scholar]
  58. 58.
    Kensler RW, Shaffer JF, Harris SP 2011. Binding of the N-terminal fragment C0–C2 of cardiac MyBP-C to cardiac F-actin. J. Struct. Biol 174:44–51
    [Google Scholar]
  59. 59.
    Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ 2009. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol. Rev. 89:1217–67
    [Google Scholar]
  60. 60.
    Kubo T, Kitaoka H, Okawa M, Matsumura Y, Hitomi N et al. 2005. Lifelong left ventricular remodeling of hypertrophic cardiomyopathy caused by a founder frameshift deletion mutation in the cardiac Myosin-binding protein C gene among Japanese. J. Am. Coll. Cardiol. 46:1737–43
    [Google Scholar]
  61. 61.
    Kumar M, Govindan S, Zhang M, Khairallah RJ, Martin JL et al. 2015. Cardiac myosin-binding protein C and troponin-I phosphorylation independently modulate myofilament length-dependent activation. J. Biol. Chem. 290:29241–49
    [Google Scholar]
  62. 62.
    Lakdawala NK, Thune JJ, Colan SD, Cirino AL, Farrohi F et al. 2012. Subtle abnormalities in contractile function are an early manifestation of sarcomere mutations in dilated cardiomyopathy. Circ. Cardiovasc. Genet. 5:503–10
    [Google Scholar]
  63. 63.
    Lee KH, Sulbaran G, Yang S, Mun JY, Alamo L et al. 2018. Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals. PNAS 115:E1991–2000
    [Google Scholar]
  64. 64.
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–91
    [Google Scholar]
  65. 65.
    Linke WA, Granzier H. 1998. A spring tale: new facts on titin elasticity. Biophys. J. 75:2613–14
    [Google Scholar]
  66. 66.
    Linschoten M, Teske AJ, Baas AF, Vink A, Dooijes D et al. 2017. Truncating titin (TTN) variants in chemotherapy-induced cardiomyopathy. J. Card. Fail. 23:476–79
    [Google Scholar]
  67. 67.
    Liu GS, Morales A, Vafiadaki E, Lam CK, Cai WF et al. 2015. A novel human R25C-phospholamban mutation is associated with super-inhibition of calcium cycling and ventricular arrhythmia. Cardiovasc. Res. 107:164–74
    [Google Scholar]
  68. 68.
    Lopez-Ayala JM, Boven L, van den Wijngaard A, Penafiel-Verdu P, van Tintelen JP, Gimeno JR 2015. Phospholamban p.Arg14del mutation in a Spanish family with arrhythmogenic cardiomyopathy: evidence for a European founder mutation. Rev. Esp. Cardiol. (Engl. Ed.) 68:346–49
    [Google Scholar]
  69. 69.
    Lucas DT, Aryal P, Szweda LI, Koch WJ, Leinwand LA 2003. Alterations in mitochondrial function in a mouse model of hypertrophic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 284:H575–83
    [Google Scholar]
  70. 70.
    Luedde M, Flogel U, Knorr M, Grundt C, Hippe HJ et al. 2009. Decreased contractility due to energy deprivation in a transgenic rat model of hypertrophic cardiomyopathy. J. Mol. Med. 87:411–22
    [Google Scholar]
  71. 71.
    Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O'Rourke B 2006. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ. Res. 99:172–82
    [Google Scholar]
  72. 72.
    Mademont-Soler I, Mates J, Yotti R, Espinosa MA, Perez-Serra A et al. 2017. Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy. PLOS ONE 12:e0181465
    [Google Scholar]
  73. 73.
    Magida JA, Leinwand LA. 2014. Metabolic crosstalk between the heart and liver impacts familial hypertrophic cardiomyopathy. EMBO Mol. Med. 6:482–95
    [Google Scholar]
  74. 74.
    Malik FI, Hartman JJ, Elias KA, Morgan BP, Rodriguez H et al. 2011. Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science 331:1439–43
    [Google Scholar]
  75. 75.
    Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D et al. 2006. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113:1807–16
    [Google Scholar]
  76. 76.
    Marston S, Copeland O, Jacques A, Livesey K, Tsang V et al. 2009. Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circ. Res. 105:219–22
    [Google Scholar]
  77. 77.
    Masarone D, Kaski JP, Pacileo G, Elliott PM, Bossone E et al. 2018. Epidemiology and clinical aspects of genetic cardiomyopathies. Heart Fail. Clin. 14:119–28
    [Google Scholar]
  78. 78.
    McNally EM, Golbus JR, Puckelwartz MJ 2013. Genetic mutations and mechanisms in dilated cardiomyopathy. J. Clin. Investig. 123:19–26
    [Google Scholar]
  79. 79.
    McNamara JW, Li A, Dos Remedios CG, Cooke R 2015. The role of super-relaxed myosin in skeletal and cardiac muscle. Biophys. Rev. 7:5–14
    [Google Scholar]
  80. 80.
    McNamara JW, Li A, Lal S, Bos JM, Harris SP et al. 2017. MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy. PLOS ONE 12:e0180064
    [Google Scholar]
  81. 81.
    McNamara JW, Li A, Smith NJ, Lal S, Graham RM et al. 2016. Ablation of cardiac myosin binding protein-C disrupts the super-relaxed state of myosin in murine cardiomyocytes. J. Mol. Cell. Cardiol. 94:65–71
    [Google Scholar]
  82. 82.
    Minoche AE, Horvat C, Johnson R, Gayevskiy V, Morton SU et al. 2018. Genome sequencing as a first-line genetic test in familial dilated cardiomyopathy. Genet. Med. 21:650–62
    [Google Scholar]
  83. 83.
    Mirza M, Marston S, Willott R, Ashley C, Mogensen J et al. 2005. Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype. J. Biol. Chem. 280:28498–506
    [Google Scholar]
  84. 84.
    Molkentin JD. 2013. Parsing good versus bad signaling pathways in the heart: role of calcineurin-nuclear factor of activated T-cells. Circ. Res. 113:16–19
    [Google Scholar]
  85. 85.
    Moore JR, Leinwand L, Warshaw DM 2012. Understanding cardiomyopathy phenotypes based on the functional impact of mutations in the myosin motor. Circ. Res. 111:375–85
    [Google Scholar]
  86. 86.
    Morgan BP, Muci A, Lu PP, Qian X, Tochimoto T et al. 2010. Discovery of omecamtiv mecarbil the first, selective, small molecule activator of cardiac myosin. ACS Med. Chem. Lett. 1:472–77
    [Google Scholar]
  87. 87.
    Morita H, Rehm HL, Menesses A, McDonough B, Roberts AE et al. 2008. Shared genetic causes of cardiac hypertrophy in children and adults. N. Engl. J. Med. 358:1899–908
    [Google Scholar]
  88. 88.
    Musa H, Meek S, Gautel M, Peddie D, Smith AJ, Peckham M 2006. Targeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation. J. Cell Sci. 119:4322–31
    [Google Scholar]
  89. 89.
    Myers VD, McClung JM, Wang J, Tahrir FG, Gupta MK et al. 2018. The multifunctional protein BAG3: a novel therapeutic target in cardiovascular disease. JACC Basic Transl. Sci. 3:122–31
    [Google Scholar]
  90. 90.
    Naber N, Cooke R, Pate E 2011. Slow myosin ATP turnover in the super-relaxed state in tarantula muscle. J. Mol. Biol. 411:943–50
    [Google Scholar]
  91. 91.
    Nagueh SF, McFalls J, Meyer D, Hill R, Zoghbi WA et al. 2003. Tissue Doppler imaging predicts the development of hypertrophic cardiomyopathy in subjects with subclinical disease. Circulation 108:395–98
    [Google Scholar]
  92. 92.
    Nugent AW, Daubeney PE, Chondros P, Carlin JB, Cheung M et al. 2003. The epidemiology of childhood cardiomyopathy in Australia. N. Engl. J. Med. 348:1639–46
    [Google Scholar]
  93. 93.
    Oliva-Sandoval MJ, Ruiz-Espejo F, Monserrat L, Hermida-Prieto M, Sabater M et al. 2010. Insights into genotype-phenotype correlation in hypertrophic cardiomyopathy. Findings from 18 Spanish families with a single mutation in MYBPC3. . Heart 96:1980–84
    [Google Scholar]
  94. 94.
    Pandey P, Hawkes W, Hu J, Megone WV, Gautrot J et al. 2018. Cardiomyocytes sense matrix rigidity through a combination of muscle and non-muscle myosin contractions. Dev. Cell 44:326–36.e3
    [Google Scholar]
  95. 95.
    Pfuhl M, Gautel M. 2012. Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): Who does what, with what, and to whom. ? J. Muscle Res. Cell Motil. 33:83–94
    [Google Scholar]
  96. 96.
    Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A et al. 2016. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 37:1850–58
    [Google Scholar]
  97. 97.
    Planelles-Herrero VJ, Hartman JJ, Robert-Paganin J, Malik FI, Houdusse A 2017. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat. Commun. 8:190
    [Google Scholar]
  98. 98.
    Previs MJ, Mun JY, Michalek AJ, Previs SB, Gulick J et al. 2016. Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function. PNAS 113:3239–44
    [Google Scholar]
  99. 99.
    Puchner EM, Alexandrovich A, Kho AL, Hensen U, Schafer LV et al. 2008. Mechanoenzymatics of titin kinase. PNAS 105:13385–90
    [Google Scholar]
  100. 100.
    Rajan S, Ahmed RP, Jagatheesan G, Petrashevskaya N, Boivin GP et al. 2007. Dilated cardiomyopathy mutant tropomyosin mice develop cardiac dysfunction with significantly decreased fractional shortening and myofilament calcium sensitivity. Circ. Res. 101:205–14
    [Google Scholar]
  101. 101.
    Rampersaud E, Siegfried JD, Norton N, Li D, Martin E, Hershberger RE 2011. Rare variant mutations identified in pediatric patients with dilated cardiomyopathy. Prog. Pediatr. Cardiol. 31:39–47
    [Google Scholar]
  102. 102.
    Reconditi M, Caremani M, Pinzauti F, Powers JD, Narayanan T et al. 2017. Myosin filament activation in the heart is tuned to the mechanical task. PNAS 114:3240–45
    [Google Scholar]
  103. 103.
    Richards S, Aziz N, Bale S, Bick D, Das S et al. 2015. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17:405–24
    [Google Scholar]
  104. 104.
    Risi C, Belknap B, Forgacs-Lonart E, Harris SP, Schroder GF et al. 2018. N-terminal domains of cardiac myosin binding protein c cooperatively activate the thin filament. Structure 26:1604–11
    [Google Scholar]
  105. 105.
    Roberts AM, Ware JS, Herman DS, Schafer S, Baksi J et al. 2015. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl. Med. 7:270ra6
    [Google Scholar]
  106. 106.
    Robinson P, Griffiths PJ, Watkins H, Redwood CS 2007. Dilated and hypertrophic cardiomyopathy mutations in troponin and α-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circ. Res. 101:1266–73
    [Google Scholar]
  107. 107.
    Robinson P, Liu X, Sparrow A, Patel S, Zhang YH et al. 2018. Hypertrophic cardiomyopathy mutations increase myofilament Ca2+ buffering, alter intracellular Ca2+ handling, and stimulate Ca2+-dependent signaling. J. Biol. Chem. 293:10487–99
    [Google Scholar]
  108. 108.
    Rosenzweig A, Watkins H, Hwang DS, Miri M, McKenna W et al. 1991. Preclinical diagnosis of familial hypertrophic cardiomyopathy by genetic analysis of blood lymphocytes. N. Engl. J. Med. 325:1753–60
    [Google Scholar]
  109. 109.
    Ruwhof C, van Wamel AE, Egas JM, van der Laarse A 2000. Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts. Mol. Cell. Biochem. 208:89–98
    [Google Scholar]
  110. 110.
    Saltzman AJ, Mancini-DiNardo D, Li C, Chung WK, Ho CY et al. 2010. Short communication: the cardiac myosin binding protein C Arg502Trp mutation: a common cause of hypertrophic cardiomyopathy. Circ. Res. 106:1549–52
    [Google Scholar]
  111. 111.
    Santana LF, Kranias EG, Lederer WJ 1997. Calcium sparks and excitation-contraction coupling in phospholamban-deficient mouse ventricular myocytes. J. Physiol. 503:21–29
    [Google Scholar]
  112. 112.
    Schafer S, de Marvao A, Adami E, Fiedler LR, Ng B et al. 2017. Titin-truncating variants affect heart function in disease cohorts and the general population. Nat. Genet. 49:46–53
    [Google Scholar]
  113. 113.
    Schmitt JP, Debold EP, Ahmad F, Armstrong A, Frederico A et al. 2006. Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function. PNAS 103:14525–30
    [Google Scholar]
  114. 114.
    Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F et al. 2003. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299:1410–13
    [Google Scholar]
  115. 115.
    Seidman CE, Seidman JG. 2011. Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history. Circ. Res. 108:743–50
    [Google Scholar]
  116. 116.
    Shen YT, Malik FI, Zhao X, Depre C, Dhar SK et al. 2010. Improvement of cardiac function by a cardiac Myosin activator in conscious dogs with systolic heart failure. Circ. Heart Fail. 3:522–27
    [Google Scholar]
  117. 117.
    Sivaramakrishnan S, Ashley E, Leinwand L, Spudich JA 2009. Insights into human β-cardiac myosin function from single molecule and single cell studies. J. Cardiovasc. Transl. Res. 2:426–40
    [Google Scholar]
  118. 118.
    Smyrnias I, Goodwin N, Wachten D, Skogestad J, Aronsen JM et al. 2018. Contractile responses to endothelin-1 are regulated by PKC phosphorylation of cardiac myosin binding protein-C in rat ventricular myocytes. J. Mol. Cell. Cardiol. 117:1–18
    [Google Scholar]
  119. 119.
    Sommese RF, Nag S, Sutton S, Miller SM, Spudich JA, Ruppel KM 2013. Effects of troponin T cardiomyopathy mutations on the calcium sensitivity of the regulated thin filament and the actomyosin cross-bridge kinetics of human β-cardiac myosin. PLOS ONE 8:e83403
    [Google Scholar]
  120. 120.
    Spindler M, Saupe KW, Christe ME, Sweeney HL, Seidman CE et al. 1998. Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J. Clin. Investig. 101:1775–83
    [Google Scholar]
  121. 121.
    Spudich JA. 2014. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys. J. 106:1236–49
    [Google Scholar]
  122. 122.
    Spudich JA. 2015. The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy. Biochem. Soc. Trans. 43:64–72
    [Google Scholar]
  123. 123.
    Stern JA, Markova S, Ueda Y, Kim JB, Pascoe PJ et al. 2016. A small molecule inhibitor of sarcomere contractility acutely relieves left ventricular outflow tract obstruction in feline hypertrophic cardiomyopathy. PLOS ONE 11:e0168407
    [Google Scholar]
  124. 124.
    Tanaka T, Sohmiya K, Kawamura K 1997. Is CD36 deficiency an etiology of hereditary hypertrophic cardiomyopathy?. J. Mol. Cell. Cardiol. 29:121–27
    [Google Scholar]
  125. 125.
    Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L et al. 2010. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J. Clin. Investig. 120:3520–29
    [Google Scholar]
  126. 126.
    Teerlink JR, Felker GM, McMurray JJV, Ponikowski P, Metra M et al. 2016. Acute treatment with omecamtiv mecarbil to increase contractility in acute heart failure: the ATOMIC-AHF study. J. Am. Coll. Cardiol. 67:1444–55
    [Google Scholar]
  127. 127.
    Teerlink JR, Felker GM, McMurray JJV, Solomon SD, Adams KF Jr et al. 2016. Chronic Oral Study of Myosin Activation to Increase Contractility in Heart Failure (COSMIC-HF): a phase 2, pharmacokinetic, randomised, placebo-controlled trial. Lancet 388:2895–903
    [Google Scholar]
  128. 128.
    Timmer SA, Germans T, Brouwer WP, Lubberink M, van der Velden J et al. 2011. Carriers of the hypertrophic cardiomyopathy MYBPC3 mutation are characterized by reduced myocardial efficiency in the absence of hypertrophy and microvascular dysfunction. Eur. J. Heart Fail. 13:1283–89
    [Google Scholar]
  129. 129.
    Toepfer CN, Wakimoto H, Garfinkel AC, McDonough B, Liao D et al. 2019. Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci. Transl. Med. 11:eaat1199
    [Google Scholar]
  130. 130.
    Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ et al. 2006. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 296:1867–76
    [Google Scholar]
  131. 131.
    Trivedi DV, Adhikari AS, Sarkar SS, Ruppel KM, Spudich JA 2018. Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light. Biophys. Rev. 10:27–48
    [Google Scholar]
  132. 132.
    Truszkowska GT, Bilinska ZT, Kosinska J, Sleszycka J, Rydzanicz M et al. 2015. A study in Polish patients with cardiomyopathy emphasizes pathogenicity of phospholamban (PLN) mutations at amino acid position 9 and low penetrance of heterozygous null PLN mutations. BMC Med. Genet. 16:21
    [Google Scholar]
  133. 133.
    Tyska MJ, Hayes E, Giewat M, Seidman CE, Seidman JG, Warshaw DM 2000. Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circ. Res. 86:737–44
    [Google Scholar]
  134. 134.
    Unno K, Isobe S, Izawa H, Cheng XW, Kobayashi M et al. 2009. Relation of functional and morphological changes in mitochondria to myocardial contractile and relaxation reserves in asymptomatic to mildly symptomatic patients with hypertrophic cardiomyopathy. Eur. Heart J. 30:1853–62
    [Google Scholar]
  135. 135.
    Vakrou S, Abraham MR. 2014. Hypertrophic cardiomyopathy: a heart in need of an energy bar?. Front. Physiol. 5:309
    [Google Scholar]
  136. 136.
    Vakrou S, Fukunaga R, Foster DB, Sorensen L, Liu Y et al. 2018. Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models. JCI Insight 3:94493
    [Google Scholar]
  137. 137.
    van den Wijngaard A, Volders P, Van Tintelen JP, Jongbloed JD, van den Berg MP et al. 2011. Recurrent and founder mutations in the Netherlands: cardiac Troponin I (TNNI3) gene mutations as a cause of severe forms of hypertrophic and restrictive cardiomyopathy. Neth. Heart J. 19:344–51
    [Google Scholar]
  138. 138.
    van der Velden J, Tocchetti CG, Varricchi G, Bianco A, Sequeira V et al. 2018. Metabolic changes in hypertrophic cardiomyopathies: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovasc. Res. 114:1273–80
    [Google Scholar]
  139. 139.
    van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JM et al. 2009. Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation 119:1473–83
    [Google Scholar]
  140. 140.
    Varnava AM, Elliott PM, Sharma S, McKenna WJ, Davies MJ 2000. Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart 84:476–82
    [Google Scholar]
  141. 141.
    Vikhorev PG, Smoktunowicz N, Munster AB, Copeland ON, Kostin S et al. 2017. Abnormal contractility in human heart myofibrils from patients with dilated cardiomyopathy due to mutations in TTN and contractile protein genes. Sci. Rep. 7:14829
    [Google Scholar]
  142. 142.
    Waldmüller S, Sakthivel S, Saadi AV, Selignow C, Rakesh PG et al. 2003. Novel deletions in MYH7 and MYBPC3 identified in Indian families with familial hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 35:623–36
    [Google Scholar]
  143. 143.
    Walsh R, Buchan R, Wilk A, John S, Felkin LE et al. 2017. Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes. Eur. Heart J. 38:3461–68
    [Google Scholar]
  144. 144.
    Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J et al. 2017. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet. Med. 19:192–203
    [Google Scholar]
  145. 145.
    Wang L, Sadayappan S, Kawai M 2014. Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner. PLOS ONE 9:e113417
    [Google Scholar]
  146. 146.
    Ware JS, Amor-Salamanca A, Tayal U, Govind R, Serrano I et al. 2018. Genetic etiology for alcohol-induced cardiac toxicity. J. Am. Coll. Cardiol. 71:2293–302
    [Google Scholar]
  147. 147.
    Ware JS, Li J, Mazaika E, Yasso CM, DeSouza T et al. 2016. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N. Engl. J. Med. 374:233–41
    [Google Scholar]
  148. 148.
    Wilde AAM, Amin AS. 2018. Clinical spectrum of SCN5A mutations: long QT syndrome, Brugada syndrome, and cardiomyopathy. JACC Clin. Electrophysiol. 4:569–79
    [Google Scholar]
  149. 149.
    Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD 2010. Mutations in Troponin that cause HCM, DCM AND RCM: What can we learn about thin filament function?. J. Mol. Cell. Cardiol. 48:882–92
    [Google Scholar]
  150. 150.
    Witjas-Paalberends ER, Guclu A, Germans T, Knaapen P, Harms HJ et al. 2014. Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovasc. Res. 103:248–57
    [Google Scholar]
  151. 151.
    Yuan CC, Kazmierczak K, Liang J, Kanashiro-Takeuchi R, Irving TC et al. 2017. Hypercontractile mutant of ventricular myosin essential light chain leads to disruption of sarcomeric structure and function and results in restrictive cardiomyopathy in mice. Cardiovasc. Res. 113:1124–36
    [Google Scholar]
/content/journals/10.1146/annurev-genom-083118-015306
Loading
/content/journals/10.1146/annurev-genom-083118-015306
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error