1932

Abstract

Genetic skin fragility manifests with diminished resistance of the skin and mucous membranes to external mechanical forces and with skin blistering, erosions, and painful wounds as clinical features. Skin fragility disorders, collectively called epidermolysis bullosa, are caused by mutations in 18 distinct genes that encode proteins involved in epidermal integrity and dermal–epidermal adhesion. The genetic spectrum, along with environmental and genetic modifiers, creates a large number of clinical phenotypes, spanning from minor localized lesions to severe generalized blistering, secondary skin cancer, or early demise resulting from extensive loss of the epidermis. Laboratory investigations of skin fragility have greatly augmented our understanding of genotype–phenotype correlations in epidermolysis bullosa and have also advanced skin biology in general. Current translational research concentrates on the development of biologically valid treatments with therapeutic genes, cells, proteins, or small-molecule compounds in preclinical settings or human pilot trials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-090413-025540
2014-08-31
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/genom/15/1/annurev-genom-090413-025540.html?itemId=/content/journals/10.1146/annurev-genom-090413-025540&mimeType=html&fmt=ahah

Literature Cited

  1. Almaani N, Liu L, Dopping-Hepenstal PJ, Lai-Cheong JE, Wong A. 1.  et al. 2011. Identical glycine substitution mutations in type VII collagen may underlie both dominant and recessive forms of dystrophic epidermolysis bullosa. Acta Derm. Venereol. 91:262–66 [Google Scholar]
  2. Almaani N, Liu L, Harrison N, Tanaka A, Lai-Cheong J. 2.  et al. 2009. New glycine substitution mutations in type VII collagen underlying epidermolysis bullosa pruriginosa but the phenotype is not explained by a common polymorphism in the matrix metalloproteinase-1 gene promoter. Acta Derm. Venereol. 89:6–11 [Google Scholar]
  3. Atkinson SD, McGilligan VE, Liao H, Szeverenyi I, Smith FJ. 3.  et al. 2011. Development of allele-specific therapeutic siRNA for keratin 5 mutations in epidermolysis bullosa simplex. J. Investig. Dermatol. 131:2079–86 [Google Scholar]
  4. Aumailley M, Has C, Tunggal L, Bruckner-Tuderman L. 4.  2006. Molecular basis of inherited skin-blistering disorders, and therapeutic implications. Expert Rev. Mol. Med. 8:1–21 [Google Scholar]
  5. Bass-Zubek AE, Godsel LM, Delmar M, Green KJ. 5.  2009. Plakophilins: multifunctional scaffolds for adhesion and signaling. Curr. Opin. Cell Biol. 21:708–16 [Google Scholar]
  6. Behrens DT, Villone D, Koch M, Brunner G, Sorokin L. 6.  et al. 2012. The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens. J. Biol. Chem. 287:18700–9 [Google Scholar]
  7. Bolling MC, Jongbloed JD, Boven LG, Diercks GF, Smith FJ. 7.  et al. 2014. Plectin mutations underlie epidermolysis bullosa simplex in 8% of patients. J. Investig. Dermatol. 234:273–76 [Google Scholar]
  8. Bolling MC, Jonkman MF. 8.  2009. Skin and heart: une liaison dangereuse. Exp. Dermatol. 18:658–68 [Google Scholar]
  9. Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz HC III. 9.  2008. Angiotensin II blockade and aortic-root dilation in Marfan's syndrome. N. Engl. J. Med. 358:2787–95 [Google Scholar]
  10. Bruckner-Tuderman L. 10.  2010. Dystrophic epidermolysis bullosa: pathogenesis and clinical features. Dermatol. Clin. 28:107–14 [Google Scholar]
  11. Bruckner-Tuderman L, Has C. 11.  2012. Molecular heterogeneity of blistering disorders: the paradigm of epidermolysis bullosa. J. Investig. Dermatol. 132:E2–5 [Google Scholar]
  12. Bruckner-Tuderman L, Has C. 12.  2014. Disorders of the cutaneous basement membrane zone—the paradigm of epidermolysis bullosa. Matrix Biol. 33:29–34 [Google Scholar]
  13. Bruckner-Tuderman L, McGrath JA, Robinson EC, Uitto J. 13.  2010. Animal models of epidermolysis bullosa: update 2010. J. Investig. Dermatol. 130:1485–88 [Google Scholar]
  14. Bruckner-Tuderman L, McGrath JA, Robinson EC, Uitto J. 14.  2013. Progress in epidermolysis bullosa research: summary of DEBRA International Research Conference 2012. J. Investig. Dermatol. 1332121–26
  15. Bruckner-Tuderman L, Payne AS. 15.  2012. Epidermal and dermal adhesion. Fitzpatrick's Dermatology in General Medicine K Wolff, L Goldsmith, SI Katz, B Gilchrest, AS Paller, DJ Leffell 569–85 New York: McGraw-Hill Med, 8th ed.. [Google Scholar]
  16. Bruckner-Tuderman L, Ruegger S, Odermatt B, Mitsuhashi Y, Schnyder UW. 16.  1988. Lack of type VII collagen in unaffected skin of patients with severe recessive dystrophic epidermolysis bullosa. Dermatologica 176:57–64 [Google Scholar]
  17. Bruckner-Tuderman L, Schnyder UW, Winterhalter KH, Bruckner P. 17.  1987. Tissue form of type VII collagen from human skin and dermal fibroblasts in culture. Eur. J. Biochem. 165:607–11 [Google Scholar]
  18. Bubier JA, Sproule TJ, Alley LM, Webb CM, Fine JD. 18.  et al. 2010. A mouse model of generalized non-Herlitz junctional epidermolysis bullosa. J. Investig. Dermatol. 130:1819–28 [Google Scholar]
  19. Carulli S, Contin R, De Rosa L, Pellegrini G, De Luca M. 19.  2013. The long and winding road that leads to a cure for epidermolysis bullosa. Regen. Med. 8:467–81 [Google Scholar]
  20. Castiglia D, Zambruno G. 20.  2010. Molecular testing in epidermolysis bullosa. Dermatol. Clin. 28:223–29 [Google Scholar]
  21. Chiaverini C, Charlesworth AV, Youssef M, Cuny JF, Rabia SH. 21.  et al. 2010. Inversa dystrophic epidermolysis bullosa is caused by missense mutations at specific positions of the collagenic domain of collagen type VII. J. Investig. Dermatol. 130:2508–11 [Google Scholar]
  22. Cho RJ, Simpson MA, McGrath JA. 22.  2012. Next-generation diagnostics for genodermatoses. J. Investig. Dermatol. 132:E27–28 [Google Scholar]
  23. Christiano AM, Greenspan DS, Hoffman GG, Zhang X, Tamai Y. 23.  et al. 1993. A missense mutation in type VII collagen in two affected siblings with recessive dystrophic epidermolysis bullosa. Nat. Genet. 4:62–66 [Google Scholar]
  24. Conget P, Rodriguez F, Kramer S, Allers C, Simon V. 24.  et al. 2010. Replenishment of type VII collagen and re-epithelialization of chronically ulcerated skin after intradermal administration of allogeneic mesenchymal stromal cells in two patients with recessive dystrophic epidermolysis bullosa. Cytotherapy 12:429–31 [Google Scholar]
  25. Corrado D, Basso C, Pilichou K, Thiene G. 25.  2011. Molecular biology and clinical management of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart 97:530–39 [Google Scholar]
  26. Covaciu C, Grosso F, Pisaneschi E, Zambruno G, Gregersen PA. 26.  et al. 2011. A founder synonymous COL7A1 mutation in three Danish families with dominant dystrophic epidermolysis bullosa pruriginosa identifies exonic regulatory sequences required for exon 87 splicing. Br. J. Dermatol. 165:678–82 [Google Scholar]
  27. Dang N, Klingberg S, Rubin AI, Edwards M, Borelli S. 27.  et al. 2008. Differential expression of pyloric atresia in junctional epidermolysis bullosa with ITGB4 mutations suggests that pyloric atresia is due to factors other than the mutations and not predictive of a poor outcome: three novel mutations and a review of the literature. Acta Derm. Venereol. 88:438–48 [Google Scholar]
  28. Darling TN, Yee C, Bauer JW, Hintner H, Yancey KB. 28.  1999. Revertant mosaicism: partial correction of a germ-line mutation in COL17A1 by a frame-restoring mutation. J. Clin. Investig. 103:1371–77 [Google Scholar]
  29. Davis BR, Candotti F. 29.  2009. Revertant somatic mosaicism in the Wiskott-Aldrich syndrome. Immunol. Res. 44:127–31 [Google Scholar]
  30. Delva E, Tucker DK, Kowalczyk AP. 30.  2009. The desmosome. Cold Spring Harb. Perspect. Biol. 1:a002543 [Google Scholar]
  31. Di Salvio M, Piccinni E, Di Zenzo G, Orecchia A, Cianfarani F. 31.  et al. 2012. Diverse TGF-beta signalling activation in fibroblasts from phenotypically discordant monozygotic twins with recessive dystrophic epidermolysis bullosa. J. Investig. Dermatol. 132:S91 (Abstr.) [Google Scholar]
  32. DiPersio CM, Hodivala-Dilke KM, Jaenisch R, Kreidberg JA, Hynes RO. 32.  1997. α3β1 integrin is required for normal development of the epidermal basement membrane. J. Cell Biol. 137:729–42 [Google Scholar]
  33. Domogatskaya A, Rodin S, Tryggvason K. 33.  2012. Functional diversity of laminins. Annu. Rev. Cell Dev. Biol. 28:523–53 [Google Scholar]
  34. Drera B, Floriddia G, Forzano F, Barlati S, Zambruno G. 34.  et al. 2009. Branch point and donor splice-site COL7A1 mutations in mild recessive dystrophic epidermolysis bullosa. Br. J. Dermatol. 161:464–67 [Google Scholar]
  35. Duperret EK, Ridky TW. 35.  2013. Focal adhesion complex proteins in epidermis and squamous cell carcinoma. Cell Cycle 12:3272–85 [Google Scholar]
  36. Fine JD. 36.  1987. Altered skin basement membrane antigenicity in epidermolysis bullosa. Curr. Probl. Dermatol. 17:111–26 [Google Scholar]
  37. Fine JD, Bauer EA, Briggaman RA, Carter DM, Eady RA. 37.  et al. 1991. Revised clinical and laboratory criteria for subtypes of inherited epidermolysis bullosa: a consensus report by the Subcommittee on Diagnosis and Classification of the National Epidermolysis Bullosa Registry. J. Am. Acad. Dermatol. 24:119–35 [Google Scholar]
  38. Fine JD, Bruckner-Tuderman L, Eady RA, Eady RA, Bauer EA, Bauer JW. 37a.  et al. 2014. Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification. J. Am. Acad. Dermatol. 70:1103–26 [Google Scholar]
  39. Fine JD, Eady RA, Bauer EA, Bauer JW, Bruckner-Tuderman L. 38.  et al. 2008. The classification of inherited epidermolysis bullosa (EB): report of the Third International Consensus Meeting on Diagnosis and Classification of EB. J. Am. Acad. Dermatol. 58:931–50 [Google Scholar]
  40. Franzke CW, Bruckner P, Bruckner-Tuderman L. 39.  2005. Collagenous transmembrane proteins: recent insights into biology and pathology. J. Biol. Chem. 280:4005–8 [Google Scholar]
  41. Gache Y, Allegra M, Bodemer C, Pisani-Spadafora A, de Prost Y. 40.  et al. 2001. Genetic bases of severe junctional epidermolysis bullosa presenting spontaneous amelioration with aging. Hum. Mol. Genet. 10:2453–61 [Google Scholar]
  42. Gostyński A, Pasmooij AM, Jonkman MF. 41.  2014. Successful therapeutic transplantation of revertant skin in epidermolysis bullosa. J. Am. Acad. Dermatol. 70:98–101 [Google Scholar]
  43. Grada A, Weinbrecht K. 42.  2013. Next-generation sequencing: methodology and application. J. Investig. Dermatol. 133:e11 [Google Scholar]
  44. Green KJ, Getsios S, Troyanovsky S, Godsel LM. 43.  2010. Intercellular junction assembly, dynamics, and homeostasis. Cold Spring Harb. Perspect. Biol. 2:a000125 [Google Scholar]
  45. Groves RW, Liu L, Dopping-Hepenstal PJ, Markus HS, Lovell PA. 44.  et al. 2010. A homozygous nonsense mutation within the dystonin gene coding for the coiled-coil domain of the epithelial isoform of BPAG1 underlies a new subtype of autosomal recessive epidermolysis bullosa simplex. J. Investig. Dermatol. 130:1551–57 [Google Scholar]
  46. Hamilton BA, Yu BD. 45.  2012. Modifier genes and the plasticity of genetic networks in mice. PLoS Genet. 8:e1002644 [Google Scholar]
  47. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R. 46.  et al. 2012. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N. Engl. J. Med. 366:787–98 [Google Scholar]
  48. Has C, Bruckner-Tuderman L, Uitto J. 47.  2013. Epidermolysis bullosa. Emery and Rimoin's Principles and Practice of Medical Genetics DL Rimoin, RE Pyeritz, BR Korf 1–24 Amsterdam: Elsevier, 6th ed.. [Google Scholar]
  49. Has C, Castiglia D, del Rio M, Diez MG, Piccinni E. 48.  et al. 2011. Kindler syndrome: extension of FERMT1 mutational spectrum and natural history. Hum. Mutat. 32:1204–12 [Google Scholar]
  50. Has C, Kern JS. 49.  2010. Collagen XVII. Dermatol. Clin. 28:61–66 [Google Scholar]
  51. Has C, Kiritsi D, Mellerio JE, Franzke CW, Wedgeworth E. 50.  et al. 2014. The missense mutation p.R1303Q in type XVII collagen underlies junctional epidermolysis bullosa resembling Kindler syndrome. J. Investig. Dermatol. 134:845–49 [Google Scholar]
  52. Has C, Sparta G, Kiritsi D, Weibel L, Moeller A. 51.  et al. 2012. Integrin α3 mutations with kidney, lung, and skin disease. N. Engl. J. Med. 366:1508–14 [Google Scholar]
  53. Hashimoto I, Anton-Lamprecht I, Gedde-Dahl T Jr, Schnyder UW. 52.  1975. Ultrastructural studies in epidermolysis bullosa heriditaria. I. Dominant dystrophic type of Pasini. Arch. Dermatol. Forsch. 252:167–78 [Google Scholar]
  54. Hilal L, Rochat A, Duquesnoy P, Blanchet-Bardon C, Wechsler J. 53.  et al. 1993. A homozygous insertion-deletion in the type VII collagen gene (COL7A1) in Hallopeau-Siemens dystrophic epidermolysis bullosa. Nat. Genet. 5:287–93 [Google Scholar]
  55. Hintner H, Stingl G, Schuler G, Fritsch P, Stanley J. 54.  et al. 1981. Immunofluorescence mapping of antigenic determinants within the dermal-epidermal junction in the mechanobullous diseases. J. Investig. Dermatol. 76:113–18 [Google Scholar]
  56. Hohenester E, Yurchenco PD. 55.  2013. Laminins in basement membrane assembly. Cell Adhes. Migr. 7:56–63 [Google Scholar]
  57. Hovnanian A, Duquesnoy P, Blanchet-Bardon C, Knowlton RG, Amselem S. 56.  et al. 1992. Genetic linkage of recessive dystrophic epidermolysis bullosa to the type VII collagen gene. J. Clin. Investig. 90:1032–36 [Google Scholar]
  58. Itoh M, Kiuru M, Cairo MS, Christiano AM. 57.  2011. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 108:8797–802 [Google Scholar]
  59. Itoh M, Umegaki-Arao N, Guo Z, Liu L, Higgins CA, Christiano AM. 58.  2013. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS ONE 8:e77673 [Google Scholar]
  60. Jobard F, Bouadjar B, Caux F, Hadj-Rabia S, Has C. 59.  et al. 2003. Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome. Hum. Mol. Genet. 12:925–35 [Google Scholar]
  61. Jonkman MF, Pasmooij AM. 60.  2009. Revertant mosaicism—patchwork in the skin. N. Engl. J. Med. 360:1680–82 [Google Scholar]
  62. Jonkman MF, Pasmooij AM, Pasmans SG, van den Berg MP, Ter Horst HJ. 61.  et al. 2005. Loss of desmoplakin tail causes lethal acantholytic epidermolysis bullosa. Am. J. Hum. Genet. 77:653–60 [Google Scholar]
  63. Jonkman MF, Scheffer H, Stulp R, Pas HH, Nijenhuis M. 62.  et al. 1997. Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. Cell 88:543–51 [Google Scholar]
  64. Kern JS, Gruninger G, Imsak R, Muller ML, Schumann H. 63.  et al. 2009. Forty-two novel COL7A1 mutations and the role of a frequent single nucleotide polymorphism in the MMP1 promoter in modulation of disease severity in a large European dystrophic epidermolysis bullosa cohort. Br. J. Dermatol. 161:1089–97 [Google Scholar]
  65. Kern JS, Loeckermann S, Fritsch A, Hausser I, Roth W. 64.  et al. 2009. Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: high stability of collagen VII favors long-term skin integrity. Mol. Ther. 17:1605–15 [Google Scholar]
  66. Kiritsi D, Cosgarea I, Franzke CW, Schumann H, Oji V. 65.  et al. 2010. Acral peeling skin syndrome with TGM5 gene mutations may resemble epidermolysis bullosa simplex in young individuals. J. Investig. Dermatol. 130:1741–46 [Google Scholar]
  67. Kiritsi D, He Y, Pasmooij AM, Onder M, Happle R. 66.  et al. 2012. Revertant mosaicism in a human skin fragility disorder results from slipped mispairing and mitotic recombination. J. Clin. Investig. 122:1742–46 [Google Scholar]
  68. Kiritsi D, Kern JS, Schumann H, Kohlhase J, Has C, Bruckner-Tuderman L. 67.  2011. Molecular mechanisms of phenotypic variability in junctional epidermolysis bullosa. J. Med. Genet. 48:450–57 [Google Scholar]
  69. Kiritsi D, Pigors M, Tantcheva-Poor I, Wessel C, Arin MJ. 68.  et al. 2013. Epidermolysis bullosa simplex Ogna revisited. J. Investig. Dermatol. 133:270–73 [Google Scholar]
  70. Koebner H. 69.  1886. Hereditäre Anlage zur Blasenbildung (epidermolysis bullosa hereditare). Dtsch. Med. Wochenschr. 12:21–22 [Google Scholar]
  71. Koga H, Hamada T, Ishii N, Fukuda S, Sakaguchi S. 70.  et al. 2011. Exon 87 skipping of the COL7A1 gene in dominant dystrophic epidermolysis bullosa. J. Dermatol. 38:489–92 [Google Scholar]
  72. Koss-Harnes D, Hoyheim B, Anton-Lamprecht I, Gjesti A, Jorgensen RS. 71.  et al. 2002. A site-specific plectin mutation causes dominant epidermolysis bullosa simplex Ogna: two identical de novo mutations. J. Investig. Dermatol. 118:87–93 [Google Scholar]
  73. Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K. 72.  et al. 1996. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122:3537–47 [Google Scholar]
  74. Krunic AL, Stone KL, Simpson MA, McGrath JA. 73.  2013. Acral peeling skin syndrome resulting from a homozygous nonsense mutation in the CSTA gene encoding cystatin A. Pediatr. Dermatol. 30:e87–88 [Google Scholar]
  75. Kuschal C, DiGiovanna JJ, Khan SG, Gatti RA, Kraemer KH. 74.  2014. Repair of UV photolesions in xeroderma pigmentosum group C cells induced by translational readthrough of premature termination codons. Proc. Natl. Acad. Sci. USA 110:19483–88 [Google Scholar]
  76. Laimer M, Lanschuetzer CM, Diem A, Bauer JW. 75.  2010. Herlitz junctional epidermolysis bullosa. Dermatol. Clin. 28:55–60 [Google Scholar]
  77. Leachman SA, Hickerson RP, Schwartz ME, Bullough EE, Hutcherson SL. 76.  et al. 2010. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol. Ther. 18:442–46 [Google Scholar]
  78. Liu L, Dopping-Hepenstal PJ, Lovell PA, Michael M, Horn H. 77.  et al. 2012. Autosomal recessive epidermolysis bullosa simplex due to loss of BPAG1-e expression. J. Investig. Dermatol. 132:742–44 [Google Scholar]
  79. Margadant C, Charafeddine RA, Sonnenberg A. 78.  2010. Unique and redundant functions of integrins in the epidermis. FASEB J. 24:4133–52 [Google Scholar]
  80. Marinkovich MP, Lunstrum GP, Keene DR, Burgeson RE. 79.  1992. The dermal-epidermal junction of human skin contains a novel laminin variant. J. Cell Biol. 119:695–703 [Google Scholar]
  81. Marinkovich MP, Verrando P, Keene DR, Meneguzzi G, Lunstrum GP. 80.  et al. 1993. Basement membrane proteins kalinin and nicein are structurally and immunologically identical. Lab. Investig. 69:295–99 [Google Scholar]
  82. Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E. 81.  et al. 2006. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat. Med. 12:1397–402 [Google Scholar]
  83. McGrath JA, Bolling MC, Jonkman MF. 82.  2010. Lethal acantholytic epidermolysis bullosa. Dermatol. Clin. 28:131–35 [Google Scholar]
  84. McGrath JA, Gatalica B, Christiano AM, Li K, Owaribe K. 83.  et al. 1995. Mutations in the 180-kD bullous pemphigoid antigen (BPAG2), a hemidesmosomal transmembrane collagen (COL17A1), in generalized atrophic benign epidermolysis bullosa. Nat. Genet. 11:83–86 [Google Scholar]
  85. McGrath JA, McMillan JR, Shemanko CS, Runswick SK, Leigh IM. 84.  et al. 1997. Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. Nat. Genet. 17:240–44 [Google Scholar]
  86. McGrath JA, Stone KL, Begum R, Simpson MA, Dopping-Hepenstal PJ. 85.  et al. 2012. Germline mutation in EXPH5 implicates the Rab27B effector protein Slac2-b in inherited skin fragility. Am. J. Hum. Genet. 91:1115–21 [Google Scholar]
  87. Nekrasova O, Green KJ. 86.  2013. Desmosome assembly and dynamics. Trends Cell Biol. 23:537–46 [Google Scholar]
  88. Nicolaou N, Margadant C, Kevelam SH, Lilien MR, Oosterveld MJ. 87.  et al. 2012. Gain of glycosylation in integrin α3 causes lung disease and nephrotic syndrome. J. Clin. Investig. 122:4375–87 [Google Scholar]
  89. Nystrom A, Velati D, Mittapalli VR, Fritsch A, Kern JS, Bruckner-Tuderman L. 88.  2013. Collagen VII plays a dual role in wound healing. J. Clin. Investig. 123:3498–509 [Google Scholar]
  90. Odorisio T, Di Salvio M, Orecchia A, Di Zenzo G, Piccinni E. 89.  et al. 2014. Monozygotic twins discordant for recessive dystrophic epidermolysis bullosa phenotype highlight the role of TGF-β signalling in modifying disease severity. Hum. Mol. Genet. In press. doi: 10.1093/hmg/ddu102
  91. Pacho F, Zambruno G, Calabresi V, Kiritsi D, Schneider H. 90.  2011. Efficiency of translation termination in humans is highly dependent upon nucleotides in the neighbourhood of a (premature) termination codon. J. Med. Genet. 48:640–44 [Google Scholar]
  92. Pasmooij AM, Garcia M, Escamez MJ, Nijenhuis AM, Azon A. 91.  et al. 2010. Revertant mosaicism due to a second-site mutation in COL7A1 in a patient with recessive dystrophic epidermolysis bullosa. J. Investig. Dermatol. 130:2407–11 [Google Scholar]
  93. Pasmooij AM, Jonkman MF. 92.  2013. Analysis of cutaneous somatic mosaicism. Methods Mol. Biol. 961:165–77 [Google Scholar]
  94. Pasmooij AM, Jonkman MF, Uitto J. 93.  2012. Revertant mosaicism in heritable skin diseases—mechanisms of natural gene therapy. Discov. Med. 14:167–79 [Google Scholar]
  95. Pasmooij AM, Nijenhuis M, Brander R, Jonkman MF. 94.  2012. Natural gene therapy may occur in all patients with generalized non-Herlitz junctional epidermolysis bullosa with COL17A1 mutations. J. Investig. Dermatol. 132:1374–83 [Google Scholar]
  96. Pasmooij AM, Pas HH, Deviaene FC, Nijenhuis M, Jonkman MF. 95.  2005. Multiple correcting COL17A1 mutations in patients with revertant mosaicism of epidermolysis bullosa. Am. J. Hum. Genet. 77:727–40 [Google Scholar]
  97. Pearson RW. 96.  1962. Studies on the pathogenesis of epidermolysis bullosa. J. Investig. Dermatol. 39:551–75 [Google Scholar]
  98. Petrof G, Martinez-Queipo M, Mellerio JE, Kemp P, McGrath JA. 97.  2013. Fibroblast cell therapy enhances initial healing in recessive dystrophic epidermolysis bullosa wounds: results of a randomized, vehicle-controlled trial. Br. J. Dermatol. 169:1025–33 [Google Scholar]
  99. Petrof G, Mellerio JE, McGrath JA. 98.  2012. Desmosomal genodermatoses. Br. J. Dermatol. 166:36–45 [Google Scholar]
  100. Pigors M, Kiritsi D, Cobzaru C, Schwieger-Briel A, Suarez J. 99.  et al. 2012. TGM5 mutations impact epidermal differentiation in acral peeling skin syndrome. J. Investig. Dermatol. 132:2422–29 [Google Scholar]
  101. Pigors M, Kiritsi D, Krumpelmann S, Wagner N, He Y. 100.  et al. 2011. Lack of plakoglobin leads to lethal congenital epidermolysis bullosa: a novel clinico-genetic entity. Hum. Mol. Genet. 20:1811–19 [Google Scholar]
  102. Pigors M, Schwieger-Briel A, Leppert J, Kiritsi D, Kohlhase J. 101.  et al. 2014. Molecular heterogeneity of epidermolysis bullosa simplex: contribution of EXPH5 mutations. J. Investig. Dermatol. 134:842–45 [Google Scholar]
  103. Pohla-Gubo G, Cepeda-Valdes R, Hintner H. 102.  2010. Immunofluorescence mapping for the diagnosis of epidermolysis bullosa. Dermatol. Clin. 28:201–10 [Google Scholar]
  104. Pruneddu S, Castiglia D, Floriddia G, Cottoni F, Zambruno G. 103.  2011. COL7A1 recessive mutations in two siblings with distinct subtypes of dystrophic epidermolysis bullosa: pruriginosa versus nails only. Dermatology 222:10–14 [Google Scholar]
  105. Remington J, Wang X, Hou Y, Zhou H, Burnett J. 104.  et al. 2009. Injection of recombinant human type VII collagen corrects the disease phenotype in a murine model of dystrophic epidermolysis bullosa. Mol. Ther. 17:26–33 [Google Scholar]
  106. Rodeck CH, Eady RA, Gosden CM. 105.  1980. Prenatal diagnosis of epidermolysis bullosa letalis. Lancet 315:949–52 [Google Scholar]
  107. Ruzzi L, Pas H, Posteraro P, Mazzanti C, Didona B. 106.  et al. 2001. A homozygous nonsense mutation in type XVII collagen gene (COL17A1) uncovers an alternatively spliced mRNA accounting for an unusually mild form of non-Herlitz junctional epidermolysis bullosa. J. Investig. Dermatol. 116:182–87 [Google Scholar]
  108. Ryynanen M, Knowlton RG, Parente MG, Chung LC, Chu ML, Uitto J. 107.  1991. Human type VII collagen: genetic linkage of the gene (COL7A1) on chromosome 3 to dominant dystrophic epidermolysis bullosa. Am. J. Hum. Genet. 49:797–803 [Google Scholar]
  109. Ryynanen M, Knowlton RG, Uitto J. 108.  1991. Mapping of epidermolysis bullosa simplex mutation to chromosome 12. Am. J. Hum. Genet. 49:978–84 [Google Scholar]
  110. Ryynanen M, Ryynanen J, Sollberg S, Iozzo RV, Knowlton RG, Uitto J. 109.  1992. Genetic linkage of type VII collagen (COL7A1) to dominant dystrophic epidermolysis bullosa in families with abnormal anchoring fibrils. J. Clin. Investig. 89:974–80 [Google Scholar]
  111. Sakai LY, Keene DR, Morris NP, Burgeson RE. 110.  1986. Type VII collagen is a major structural component of anchoring fibrils. J. Cell Biol. 103:1577–86 [Google Scholar]
  112. Salam A, Simpson MA, Stone KL, Takeichi T, Nanda A. 111.  et al. 2014. Next generation diagnostics of heritable connective tissue disorders. Matrix Biol. 33:35–40 [Google Scholar]
  113. Schuilenga-Hut PH, Scheffer H, Pas HH, Nijenhuis M, Buys CH, Jonkman MF. 112.  2002. Partial revertant mosaicism of keratin 14 in a patient with recessive epidermolysis bullosa simplex. J. Investig. Dermatol. 118:626–30 [Google Scholar]
  114. Schumann H, Kiritsi D, Pigors M, Hausser I, Kohlhase J. 113.  et al. 2013. Phenotypic spectrum of epidermolysis bullosa associated with α6β4 integrin mutations. Br. J. Dermatol. 169:115–24 [Google Scholar]
  115. Scott CA, Plagnol V, Nitoiu D, Bland PJ, Blaydon DC. 114.  et al. 2013. Targeted sequence capture and high-throughput sequencing in the molecular diagnosis of ichthyosis and other skin diseases. J. Investig. Dermatol. 133:573–76 [Google Scholar]
  116. Smith FJ, Morley SM, McLean WH. 115.  2004. Novel mechanism of revertant mosaicism in Dowling-Meara epidermolysis bullosa simplex. J. Investig. Dermatol. 122:73–77 [Google Scholar]
  117. Sproule TJ, Bubier JA, Grandi FC, Sun VZ, Philip VM. 116.  et al. 2014. Molecular identification of collagen 17α1 as a major genetic modifier of laminin gamma 2 mutation-induced junctional epidermolysis bullosa in mice. PLoS Genet. 10:e1004068 [Google Scholar]
  118. Tamai K, Yamazaki T, Chino T, Ishii M, Otsuru S. 117.  et al. 2011. PDGFRα-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia. Proc. Natl. Acad. Sci. USA 108:6609–14 [Google Scholar]
  119. Titeux M, Pendaries V, Tonasso L, Decha A, Bodemer C, Hovnanian A. 118.  2008. A frequent functional SNP in the MMP1 promoter is associated with higher disease severity in recessive dystrophic epidermolysis bullosa. Hum. Mutat. 29:267–76 [Google Scholar]
  120. Tolar J, Ishida-Yamamoto A, Riddle M, McElmurry RT, Osborn M. 119.  et al. 2009. Amelioration of epidermolysis bullosa by transfer of wild-type bone marrow cells. Blood 113:1167–74 [Google Scholar]
  121. Tolar J, Wagner JE. 120.  2013. Allogeneic blood and bone marrow cells for the treatment of severe epidermolysis bullosa: repair of the extracellular matrix. Lancet 382:1214–23 [Google Scholar]
  122. Tolar J, Xia L, Lees CJ, Riddle M, McElroy A. 121.  et al. 2013. Keratinocytes from induced pluripotent stem cells in junctional epidermolysis bullosa. J. Investig. Dermatol. 133:562–65 [Google Scholar]
  123. Uitto J. 122.  2012. Milestones in genetics of structural skin disorders. J. Investig. Dermatol. 132:E1 [Google Scholar]
  124. Van Agtmael T, Bruckner-Tuderman L. 123.  2010. Basement membranes and human disease. Cell Tissue Res. 339:167–88 [Google Scholar]
  125. van den Akker PC, Mellerio JE, Martinez AE, Liu L, Meijer R. 124.  et al. 2011. The inversa type of recessive dystrophic epidermolysis bullosa is caused by specific arginine and glycine substitutions in type VII collagen. J. Med. Genet. 48:160–67 [Google Scholar]
  126. van den Akker PC, Nijenhuis M, Meijer G, Hofstra RM, Jonkman MF, Pasmooij AM. 125.  2012. Natural gene therapy in dystrophic epidermolysis bullosa. Arch. Dermatol. 148:213–16 [Google Scholar]
  127. Vanacore RM, Shanmugasundararaj S, Friedman DB, Bondar O, Hudson BG, Sundaramoorthy M. 126.  2004. The α1.α2 network of collagen IV: reinforced stabilization of the noncollagenous domain-1 by noncovalent forces and the absence of Met-Lys cross-links. J. Biol. Chem 279:44723–30 [Google Scholar]
  128. Venugopal SS, Yan W, Frew JW, Cohn HI, Rhodes LM. 127.  et al. 2013. A phase II randomized vehicle-controlled trial of intradermal allogeneic fibroblasts for recessive dystrophic epidermolysis bullosa. J. Am. Acad. Dermatol. 69:898–908 [Google Scholar]
  129. Villone D, Fritsch A, Koch M, Bruckner-Tuderman L, Hansen U, Bruckner P. 128.  2008. Supramolecular interactions in the dermo-epidermal junction zone: anchoring fibril-collagen VII tightly binds to banded collagen fibrils. J. Biol. Chem. 283:24506–13 [Google Scholar]
  130. Wagner JE, Ishida-Yamamoto A, McGrath JA, Hordinsky M, Keene DR. 129.  et al. 2010. Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N. Engl. J. Med. 363:629–39 [Google Scholar]
  131. Walko G, Vukasinovic N, Gross K, Fischer I, Sibitz S. 130.  et al. 2011. Targeted proteolysis of plectin isoform 1a accounts for hemidesmosome dysfunction in mice mimicking the dominant skin blistering disease EBS-Ogna. PLoS Genet. 7:e1002396 [Google Scholar]
  132. Wessagowit V, Kim SC, Woong Oh S, McGrath JA. 131.  2005. Genotype-phenotype correlation in recessive dystrophic epidermolysis bullosa: when missense doesn't make sense. J. Investig. Dermatol. 124:863–66 [Google Scholar]
  133. Wiche G, Winter L. 132.  2011. Plectin isoforms as organizers of intermediate filament cytoarchitecture. Bioarchitecture 1:14–20 [Google Scholar]
  134. Wong T, Gammon L, Liu L, Mellerio JE, Dopping-Hepenstal PJ. 133.  et al. 2008. Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. J. Investig. Dermatol. 128:2179–89 [Google Scholar]
  135. Woodley DT, Krueger GG, Jorgensen CM, Fairley JA, Atha T. 134.  et al. 2003. Normal and gene-corrected dystrophic epidermolysis bullosa fibroblasts alone can produce type VII collagen at the basement membrane zone. J. Investig. Dermatol. 121:1021–28 [Google Scholar]
  136. Woodley DT, Wang X, Amir M, Hwang B, Remington J. 135.  et al. 2013. Intravenously injected recombinant human type VII collagen homes to skin wounds and restores skin integrity of dystrophic epidermolysis bullosa. J. Investig. Dermatol. 133:1910–13 [Google Scholar]
  137. Xu K, Nowak I, Kirchner M, Xu Y. 136.  2008. Recombinant collagen studies link the severe conformational changes induced by osteogenesis imperfecta mutations to the disruption of a set of interchain salt bridges. J. Biol. Chem. 283:34337–44 [Google Scholar]
  138. Yancey KB, Hintner H. 137.  2010. Non-Herlitz junctional epidermolysis bullosa. Dermatol. Clin. 28:67–77 [Google Scholar]
  139. Yang CS, Lu Y, Farhi A, Nelson-Williams C, Kashgarian M. 138.  et al. 2012. An incompletely penetrant novel mutation in COL7A1 causes epidermolysis bullosa pruriginosa and dominant dystrophic epidermolysis bullosa phenotypes in an extended kindred. Pediatr. Dermatol. 29:725–31 [Google Scholar]
  140. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A. 139.  et al. 2013. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N. Engl. J. Med. 369:1502–11 [Google Scholar]
/content/journals/10.1146/annurev-genom-090413-025540
Loading
/content/journals/10.1146/annurev-genom-090413-025540
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error