1932

Abstract

Human survival is dependent upon the continuous delivery of O to each cell in the body in sufficient amounts to meet metabolic requirements, primarily for ATP generation by oxidative phosphorylation. Hypoxia-inducible factors (HIFs) regulate the transcription of thousands of genes to balance O supply and demand. The HIFs are negatively regulated by O-dependent hydrox-ylation and ubiquitination by prolyl hydroxylase domain (PHD) proteins and the von Hippel–Lindau (VHL) protein. Germline mutations in the genes encoding VHL, HIF-2α, and PHD2 cause hereditary erythrocytosis, which is characterized by polycythemia and pulmonary hypertension and is caused by increased HIF activity. Evolutionary adaptation to life at high altitude is associated with unique genetic variants in the genes encoding HIF-2α and PHD2 that blunt the erythropoietic and pulmonary vascular responses to hypoxia.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-111119-073356
2020-08-31
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/genom/21/1/annurev-genom-111119-073356.html?itemId=/content/journals/10.1146/annurev-genom-111119-073356&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Allen BL, Taatjes DJ. 2015. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16:155–66
    [Google Scholar]
  2. 2. 
    Ang SO, Chen H, Hirota K, Gordeuk VR, Jelinek J et al. 2002. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat. Genet. 32:614–21
    [Google Scholar]
  3. 3. 
    Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, et al. 1996. An essential role for p300/CBP in the cellular response to hypoxia. PNAS 93:12969–73
    [Google Scholar]
  4. 4. 
    Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y et al. 2010. Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. PNAS 107:11459–64
    [Google Scholar]
  5. 5. 
    Beck I, Ramirez S, Weinmann R, Caro J 1991. Enhancer element at the 3′-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J. Biol. Chem. 266:15563–66
    [Google Scholar]
  6. 6. 
    Bigham A, Bauchet M, Pinto D, Mao X, Akey JM et al. 2010. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLOS Genet 6:e1001116
    [Google Scholar]
  7. 7. 
    Bjornsson HT, Benjamin JS, Zhang L, Weissman J, Gerber EE et al. 2014. Histone deacetylase inhibition rescues structural and functional brain deficits in a mouse model of Kabuki syndrome. Sci. Transl. Med. 6:256ra135
    [Google Scholar]
  8. 8. 
    Bohuslavova R, Cerychova R, Papousek F, Olejnickova V, Bartos M et al. 2019. HIF-1α is required for development of the sympathetic nervous system. PNAS 116:13414–23
    [Google Scholar]
  9. 9. 
    Bond J, Gale DP, Connor T, Adams S, de Boer J et al. 2011. Dysregulation of the HIF pathway due to VHL mutation causing severe erythrocytosis and pulmonary hypertension. Blood 117:3699–701
    [Google Scholar]
  10. 10. 
    Bruick RK, McKnight SL. 2001. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–40
    [Google Scholar]
  11. 11. 
    Carosso GA, Boukas L, Augustin JJ, Nguyen HN, Winer BL et al. 2019. Precocious neuronal differentiation and disrupted oxygen responses in Kabuki syndrome. JCI Insight 4:e129375
    [Google Scholar]
  12. 12. 
    Cavadas MA, Mesnieres M, Crifo B, Manresa MC, Selfridge AC et al. 2015. REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia. Sci. Rep. 5:17851
    [Google Scholar]
  13. 13. 
    Cavadas MA, Mesnieres M, Crifo B, Manresa MC, Selfridge AC et al. 2016. REST is a hypoxia-responsive transcriptional repressor. Sci. Rep. 6:31355
    [Google Scholar]
  14. 14. 
    Chen F, Welker F, Shen C, Bailey SE, Bergmann I et al. 2019. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569:409–12
    [Google Scholar]
  15. 15. 
    Cho JI, Basnyat B, Jeong C, Di Rienzo A, Childs G et al. 2017. Ethnically Tibetan women in Nepal with low hemoglobin concentration have better reproductive outcomes. Evol. Med. Public Health 2017:82–96
    [Google Scholar]
  16. 16. 
    Chowdhury R, Leung IK, Tian YM, Abboud MI, Ge W et al. 2016. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nat. Commun. 7:12673
    [Google Scholar]
  17. 17. 
    Colgan SP, Campbell EL, Kominsky DJ 2016. Hypoxia and mucosal inflammation. Annu. Rev. Pathol. Mech. Dis. 11:77–100
    [Google Scholar]
  18. 18. 
    Corn PG, Ricci MS, Scata KA, Arsham AM, Simon MC et al. 2005. Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Myc-induced apoptosis. Cancer Biol. Ther. 4:1285–94
    [Google Scholar]
  19. 19. 
    Courtney KD, Infante JR, Lam ET, Figlin RA, Rini BI et al. 2018. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor 2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36:867–74
    [Google Scholar]
  20. 20. 
    Couvé S, Ladroue C, Laine E, Mahtouk K, Guégan J et al. 2014. Genetic evidence of a precisely tuned dysregulation in the hypoxia signaling pathway during oncogenesis. Cancer Res 74:6554–64
    [Google Scholar]
  21. 21. 
    Duan C. 2016. Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am. J. Physiol. Cell Physiol. 310:C260–69
    [Google Scholar]
  22. 22. 
    Duran J, Gotzens V, Carballo J, Martin E, Petit M et al. 2012. The HIF1A C85T polymorphism influences the number of branches of the human coronary tree. Am. Heart J. 154:1035–42
    [Google Scholar]
  23. 23. 
    Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J et al. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54
    [Google Scholar]
  24. 24. 
    Erslev A. 1953. Humoral regulation of red cell production. Blood 8:347–57
    [Google Scholar]
  25. 25. 
    Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW 1987. Correction of the anemia of endstage renal disease with recombinant human erythropoietin. N. Engl. J. Med. 316:73–78
    [Google Scholar]
  26. 26. 
    Formenti F, Beer PA, Croft QP, Dorrington KL, Gale DP et al. 2011. Cardiopulmonary function in two human disorders of the hypoxia-inducible factor (HIF) pathway: von Hippel-Lindau disease and HIF-2α gain-of-function mutation. FASEB J 25:2001–11
    [Google Scholar]
  27. 27. 
    Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW et al. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16:4604–13
    [Google Scholar]
  28. 28. 
    Fu Y, Dominissini D, Rechavi G, He C 2014. Gene expression regulation through reversible m6A RNA methylation. Nat. Rev. Genet. 15:293–306
    [Google Scholar]
  29. 29. 
    Galbraith MD, Allen MA, Bensard CL, Wang X, Schwinn MK et al. 2013. HIF1A employs CDK8-Mediator to stimulate RNAPII elongation in response to hypoxia. Cell 153:1327–39
    [Google Scholar]
  30. 30. 
    Galbraith MD, Donner AJ, Espinosa JM 2010. CDK8: a positive regulator of transcription. Transcription 1:4–12
    [Google Scholar]
  31. 31. 
    Gale DP, Harten SK, Reid CD, Tuddenham EG, Maxwell PH 2008. Autosomal dominant erythrocytosis and pulmonary arterial hypertension associated with an activating HIF-2α mutation. Blood 112:919–21
    [Google Scholar]
  32. 32. 
    Gardie B, Percy MJ, Hoogewijs D, Chowdhury R, Bento C et al. 2014. The role of PHD2 mutations in the pathogenesis of erythrocytosis. Hypoxia 2:71–90
    [Google Scholar]
  33. 33. 
    Gibbons A. 2019. Ancient jaw gives elusive Denisovans a face. Science 364:418–19
    [Google Scholar]
  34. 34. 
    Graham AM, Presnell JS. 2017. Hypoxia-inducible factor (HIF) transcription factor family expansion, diversification, divergence and selection in eukaryotes. PLOS ONE 12:e0179545
    [Google Scholar]
  35. 35. 
    Greijer AE, van der Groep P, Kemming D, Shvarts A, Semenza GL et al. 2005. Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J. Pathol. 206:291–304
    [Google Scholar]
  36. 36. 
    Gruber M, Hu CJ, Johnson RS, Brown EJ, Keith B et al. 2007. Acute postnatal ablation of Hif-2α results in anemia. PNAS 104:2301–6
    [Google Scholar]
  37. 37. 
    Henry RA, Kuo YM, Andrews AJ 2013. Differences in specificity and selectivity between CBP and p300 acetylation of histone H3 and H3/H4. Biochemistry 52:5746–59
    [Google Scholar]
  38. 38. 
    Hlatky MA, Quertermous T, Boothroyd DB, Priest JR, Glassford AJ et al. 2007. Polymorphisms in hypoxia inducible factor 1 and the initial clinical presentation of coronary disease. Am. Heart J. 154:1035–42
    [Google Scholar]
  39. 39. 
    Hoffman EC, Reyes H, Chu FF, Sander F, Conley LH et al. 1991. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252:954–58
    [Google Scholar]
  40. 40. 
    Huang LE, Gu J, Schau M, Bunn HF 1998. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. PNAS 95:7987–92
    [Google Scholar]
  41. 41. 
    Huerta-Sánchez E, Jin X, Asan Bianba Z, Peter BM et al. 2014. Altitude adaptation in Tibetans is caused by introgression of Denisovan-like DNA. Nature 512:194–97
    [Google Scholar]
  42. 42. 
    Islam MS, Leissing TM, Chowdhury R, Hopkinson RJ, Schofield CJ 2018. Annu. Rev. Biochem. 87:585–620
  43. 43. 
    Ivan M, Kondo K, Yang H, Kim W, Valiando J et al. 2001. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–68
    [Google Scholar]
  44. 44. 
    Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J et al. 2001. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–72
    [Google Scholar]
  45. 45. 
    Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ et al. 1985. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313:806–10
    [Google Scholar]
  46. 46. 
    Jacobson LO, Marks E, Gaston E, Goldwasser E 1957. Role of the kidney in erythropoiesis. Nature 179:633–34
    [Google Scholar]
  47. 47. 
    Jiang B-H, Rue E, Wang GL, Roe R, Semenza GL 1996. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271:17771–78
    [Google Scholar]
  48. 48. 
    Jiang B-H, Semenza GL, Bauer C, Marti HH 1996. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. Cell Physiol. 271:C1172–80
    [Google Scholar]
  49. 49. 
    Jiang B-H, Zhang JZ, Leung SW, Roe R, Semenza GL 1997. Transactivation and inhibitory domains of hypoxia-inducible factor 1α: modulation of transcriptional activity by oxygen tension. J. Biol. Chem. 272:19253–60
    [Google Scholar]
  50. 50. 
    Jonkers I, Lis JT. 2015. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16:167–77
    [Google Scholar]
  51. 51. 
    Kaelin WG Jr 2008. The von Hippel-Lindau tumor suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8:865–73
    [Google Scholar]
  52. 52. 
    Key J, Scheuermann TH, Anderson PC, Daggett V, Gardner KH 2009. Principles of ligand binding within a completely buried cavity in HIF-2α PAS-B. J. Am. Chem. Soc. 131:17647–54
    [Google Scholar]
  53. 53. 
    Koury ST, Bondurant MC, Koury MJ 1988. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood 71:524–27
    [Google Scholar]
  54. 54. 
    Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H et al. 2007. A microRNA signature of hypoxia. Mol. Cell. Biol. 27:1859–67
    [Google Scholar]
  55. 55. 
    Ladroue C, Carcenac R, Leporrier M, Gad S, Le Hello C et al. 2008. PHD2 mutation and congenital erythrocytosis with paraganglioma. N. Engl. J. Med. 359:2685–92
    [Google Scholar]
  56. 56. 
    Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y et al. 2018. The human transcription factors. Cell 172:650–65
    [Google Scholar]
  57. 57. 
    Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML et al. 2002. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16:1466–71
    [Google Scholar]
  58. 58. 
    Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML 2002. Asparagine hydroxylation of HIF transactivation domain: a hypoxic switch. Science 295:858–61
    [Google Scholar]
  59. 59. 
    Lanikova L, Lorenzo F, Yang C, Vankayalapati H, Drachtman R et al. 2013. Novel homozygous VHL mutation in exon 2 is associated with congenital polycythemia but not with cancer. Blood 121:3918–24
    [Google Scholar]
  60. 60. 
    Latif F, Tory K, Gnarra J, Yao M, Duh FM et al. 1993. Identification of the von Hippel-Lindau disease tumor-suppressor gene. Science 260:1317–20
    [Google Scholar]
  61. 61. 
    Lenglet M, Robriquet F, Schwarz K, Camps C, Couiturier A et al. 2018. Identification of a new VHL exon and complex splicing alterations in familial erythrocytosis or von Hippel-Lindau disease. Blood 132:469–83
    [Google Scholar]
  62. 62. 
    Lin F-K, Suggs S, Browne JK, Smalling R, Egrie JC et al. 1985. Cloning and expression of the human erythropoietin gene. PNAS 82:7580–84
    [Google Scholar]
  63. 63. 
    Lindau A. 1926. Studien ber kleinbirncysten bau: pathogenese und beziehungen zur angiomatosis rentinae. Acta Radiol. Microbiol. Scand. 1:Suppl.1–128
    [Google Scholar]
  64. 64. 
    Loenarz C, Coleman ML, Boleininger A, Schierwater B, Holland PW et al. 2011. The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal. Trichoplax adherens. EMBO Rep. 12:63–70
    [Google Scholar]
  65. 65. 
    Lorenzo FR, Huff C, Myllymaki M, Olenchock B, Swierczek S et al. 2014. A genetic mechanism for Tibetan high-altitude populations. Nat. Genet. 46:951–56
    [Google Scholar]
  66. 66. 
    Lorenzo FR, Yang C, Lanikova L, Butros L, Zhuang Z et al. 2013. Novel compound VHL heterozygosity (VHL T124A/L188V) associated with congenital polycythemia. Br. J. Hematol. 162:851–53
    [Google Scholar]
  67. 67. 
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–60
    [Google Scholar]
  68. 68. 
    Mahon PC, Hirota K, Semenza GL 2001. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675–86
    [Google Scholar]
  69. 69. 
    Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD et al. 2005. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105:659–69
    [Google Scholar]
  70. 70. 
    Maxwell PH, Wiesener MS, Chang G-W, Clifford SC, Vaux EC et al. 1999. The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–75
    [Google Scholar]
  71. 71. 
    Miyake T, Hung CKH, Goldwasser E 1977. Purification of human erythropoietin. J. Biol. Chem. 252:5558–64
    [Google Scholar]
  72. 72. 
    Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM et al. 2009. Genome-wide association of hypoxia-inducible factor HIF-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J. Biol. Chem. 284:16767–75
    [Google Scholar]
  73. 73. 
    Montagner M, Enzo E, Forcato M, Zanconato F, Parenti A et al. 2012. SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature 487:380–84
    [Google Scholar]
  74. 74. 
    Narravula S, Colgan SP. 2001. Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor α expression during hypoxia. J. Immunol. 166:7543–48
    [Google Scholar]
  75. 75. 
    Newman JH, Holt TN, Cogan JD, Womack B, Phillips JA III et al. 2015. Increased prevalence of EPAS1 variant in cattle with high-altitude pulmonary hypertension. Nat. Commun. 6:6863
    [Google Scholar]
  76. 76. 
    Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–59
    [Google Scholar]
  77. 77. 
    Percy MJ, Chung YJ, Harrison C, Mercieca J, Hoffbrand AV et al. 2012. Two new mutations in the HIF2A gene associated with erythrocytosis. Am. J. Hematol. 87:439–42
    [Google Scholar]
  78. 78. 
    Percy MJ, Furlow PW, Beer PA, Lappin TR, McMullin MF et al. 2007. A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood 110:2193–96
    [Google Scholar]
  79. 79. 
    Percy MJ, Furlow PW, Lucas GS, Li X, Lappin TR et al. 2008. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 358:162–68
    [Google Scholar]
  80. 80. 
    Percy MJ, Zhao Q, Flores A, Harrison C, Lappin TR et al. 2006. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. PNAS 103:654–59
    [Google Scholar]
  81. 81. 
    Prabhakar NR, Semenza GL. 2012. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 92:967–1003
    [Google Scholar]
  82. 82. 
    Pugh CW, O'Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ 1997. Activation of hypoxia-inducible factor 1: definition of regulatory domains within the α subunit. J. Biol. Chem. 272:11205–14
    [Google Scholar]
  83. 83. 
    Pugh CW, Tan CC, Jones RW, Ratcliffe PJ 1991. Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene. PNAS 88:10553–57
    [Google Scholar]
  84. 84. 
    Ramakrishnan SK, Shah YM. 2016. Role of intestinal HIF-2α in health and disease. Annu. Rev. Physiol. 78:301–25
    [Google Scholar]
  85. 85. 
    Reissmann KR. 1950. Studies on the mechanism of erythropoietic stimulation in parabiotic rats during hypoxia. Blood 5:372–80
    [Google Scholar]
  86. 86. 
    Resar JR, Roguin A, Voner J, Nasir K, Hennebry TA et al. 2005. Hypoxia-inducible factor 1α polymorphism and coronary collaterals in patients with ischemic heart disease. Chest 128:787–91
    [Google Scholar]
  87. 87. 
    Salceda S, Caro J. 1997. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. J. Biol. Chem. 272:22642–47
    [Google Scholar]
  88. 88. 
    Samanta D, Semenza GL. 2018. Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors. Biochim. Biophys. Acta Rev. Cancer 1870:15–22
    [Google Scholar]
  89. 89. 
    Sanghani NS, Haase VH. 2019. Hypoxia-inducible factors in renal anemia: current clinical experience. Adv. Chronic Kidney Dis. 26:253–66
    [Google Scholar]
  90. 90. 
    Sarangi S, Lanikova L, Kapralova K, Acharya S, Swierczek S et al. 2014. The homozygous VHLD126N missense mutation is associated with dramatically elevated erythropoietin levels with consequent polycythemia and early onset severe pulmonary hypertension. Pediatr. Blood Cancer 61:2104–6
    [Google Scholar]
  91. 91. 
    Scheuermann TH, Tomchick DR, Machius M, Guo Y, Bruick RK et al. 2009. Artificial ligand binding within the HIF-2α PAS-B domain of the HIF-2 transcription factor. PNAS 106:450–55
    [Google Scholar]
  92. 92. 
    Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ et al. 2011. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117:e207–17
    [Google Scholar]
  93. 93. 
    Schuster SJ, Badiavas EV, Costa-Giomi P, Weinmann R, Erslev AJ et al. 1989. Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure. Blood 73:13–16
    [Google Scholar]
  94. 94. 
    Semenza GL. 2014. Hypoxia-inducible factor 1 and cardiovascular disease. Annu. Rev. Physiol. 76:39–56
    [Google Scholar]
  95. 95. 
    Semenza GL. 2014. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol. Mech. Dis. 9:47–71
    [Google Scholar]
  96. 96. 
    Semenza GL. 2017. A compendium of proteins that interact with HIF-1α. Exp. Cell Res. 356:128–35
    [Google Scholar]
  97. 97. 
    Semenza GL. 2019. Pharmacologic targeting of hypoxia-inducible factors. Annu. Rev. Pharmacol. Toxicol. 59:379–403
    [Google Scholar]
  98. 98. 
    Semenza GL, Jiang B-H, Leung SW, Passantino R, Concordet JP et al. 1996. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271:32529–37
    [Google Scholar]
  99. 99. 
    Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE 1991. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. PNAS 88:5680–84
    [Google Scholar]
  100. 100. 
    Semenza GL, Wang GL. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12:5447–54
    [Google Scholar]
  101. 101. 
    Sergeyeva A, Gordeuk VR, Tokarev YN, Sokol L, Prchal JF et al. 1997. Congenital polycythemia in Chuvashia. Blood 89:2148–54
    [Google Scholar]
  102. 102. 
    Shimoda LA, Yun X, Sikka G 2019. Revising the role of hypoxia-inducible factors in pulmonary hypertension. Curr. Opin. Physiol. 7:33–40
    [Google Scholar]
  103. 103. 
    Simonson TS, Yang Y, Huff CD, Yun H, Qin G et al. 2010. Genetic evidence for high-altitude adaptation in Tibet. Science 329:72–74
    [Google Scholar]
  104. 104. 
    Sinnema M, Song D, Guan W, Janssen JW, van Wijk R et al. 2018. Loss-of-function zinc finger mutation in the EGLN1 gene associated with erythrocytosis. Blood 132:1455–58
    [Google Scholar]
  105. 105. 
    Smith TG, Brooks JT, Balanos GM, Lappin TR, Layton DM et al. 2006. Mutation of von Hippel-Lindau tumor suppressor and human cardiopulmonary physiology. PLOS Med 3:e290
    [Google Scholar]
  106. 106. 
    Song D, Li LS, Heaton-Johnson KJ, Arsenault PR, Master SR et al. 2013. Prolyl hydroxylase domain protein 2 (PHD2) binds a Pro-Xaa-Leu-Glu motif, linking it to the heat shock protein 90 pathway. J. Biol. Chem. 288:9662–74
    [Google Scholar]
  107. 107. 
    Takahashi H, Parmely TJ, Sato S, Tomomori-Sato C, Banks CA et al. 2011. Human Mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 146:92–104
    [Google Scholar]
  108. 108. 
    Tashi T, Reading ST, Wuren T, Zhang X, Moore LG et al. 2017. Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders. J. Mol. Med. 95:665–70
    [Google Scholar]
  109. 109. 
    Tashi T, Song J, Prchal JT 2019. Congenital and evolutionary modulations of hypoxia sensing and their erythroid phenotype. Curr. Opin. Physiol. 7:27–32
    [Google Scholar]
  110. 110. 
    Thalhammer A, Bencokova Z, Poole R, Loenarz C, Adam J et al. 2011. Human AlkB homologue 5 is a nuclear 2-oxoglutarate dependent oxygenase and a direct target of hypoxia-inducible factor 1α (HIF-1α). 2011. PLOS ONE 6:e16210
    [Google Scholar]
  111. 111. 
    Tian H, McKnight SL, Russell DW 1997. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82
    [Google Scholar]
  112. 112. 
    Tomasic NL, Piterkova L, Huff C, Bilic E, Yoon D et al. 2013. The phenotype of polycythemia due to Croatian homozygous VHL (571C>G;H191D) mutation is different from that of Chuvash polycythemia (VHL 598CS>T;R200W). Haematologica 98:560–67
    [Google Scholar]
  113. 113. 
    von Hippel E. 1904. Uber eine sehr self seltene erkrankung der netzhaut. Klin. Beob. Arch. Ophthalmol. 59:83–106
    [Google Scholar]
  114. 114. 
    Wall JD, Yoshihara Caldeira Brandt D 2016. Archaic admixture in human history. Curr. Opin. Genet. Dev. 41:93–97
    [Google Scholar]
  115. 115. 
    Wallace EM, Rizzi JP, Han G, Wehn PM, Cao Z et al. 2016. A small-molecule antagonist of HIF-2α is efficacious in preclinical models of renal cell carcinoma. Cancer Res 76:5491–500
    [Google Scholar]
  116. 116. 
    Wang GD, Fan RX, Zhai W, Liu F, Wang L et al. 2014. Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the Tibetan plateau. Genome Biol. Evol. 6:2122–28
    [Google Scholar]
  117. 117. 
    Wang GL, Jiang B-H, Rue EA, Semenza GL 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. PNAS 92:5510–14
    [Google Scholar]
  118. 118. 
    Wang GL, Semenza GL. 1993. General involvement of hypoxia-inducible factor 1 in transcriptional responses to hypoxia. PNAS 90:4304–8
    [Google Scholar]
  119. 119. 
    Wang GL, Semenza GL. 1995. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270:1230–37
    [Google Scholar]
  120. 120. 
    Wiener CM, Booth G, Semenza GL 1996. In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun. 225:485–88
    [Google Scholar]
  121. 121. 
    Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH et al. 2003. Widespread hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs. FASEB J 17:271–73
    [Google Scholar]
  122. 122. 
    Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU et al. 1998. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor 1α. Blood 92:2260–68
    [Google Scholar]
  123. 123. 
    Wu D, Rastinejad F. 2017. Structural characterization of mammalian bHLH-PAS transcription factors. Curr. Opin. Struct. Biol. 43:1–9
    [Google Scholar]
  124. 124. 
    Xia X, Lemieux ME, Li W, Carroll JS, Brown M et al. 2009. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. PNAS 106:4260–65
    [Google Scholar]
  125. 125. 
    Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX et al. 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329:75–78
    [Google Scholar]
  126. 126. 
    Yu F, White SB, Zhao Q, Lee FS 2001. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. PNAS 98:9630–35
    [Google Scholar]
  127. 127. 
    Yun Z, Maecker HL, Johnson RS, Giaccia AJ 2002. Inhibition of PPARγ2 expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev. Cell 2:331–341
    [Google Scholar]
  128. 128. 
    Zhang C, Samanta D, Lu H, Bullen JW, Zhang H et al. 2016. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. PNAS 113:E2047–56
    [Google Scholar]
  129. 129. 
    Zhang C, Zhi WI, Lu H, Samanta D, Chen I et al. 2016. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget 7:64527–42
    [Google Scholar]
/content/journals/10.1146/annurev-genom-111119-073356
Loading
/content/journals/10.1146/annurev-genom-111119-073356
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error