1932

Abstract

Nucleosomes wrap DNA and impede access for the machinery of transcription. The core histones that constitute nucleosomes are subject to a diversity of posttranslational modifications, or marks, that impact the transcription of genes. Their functions have sometimes been difficult to infer because the enzymes that write and read them are complex, multifunctional proteins. Here, we examine the evidence for the functions of marks and argue that the major marks perform a fairly small number of roles in either promoting transcription or preventing it. Acetylations and phosphorylations on the histone core disrupt histone–DNA contacts and/or destabilize nucleosomes to promote transcription. Ubiquitylations stimulate methylations that provide a scaffold for either the formation of silencing complexes or resistance to those complexes, and carry a memory of the transcriptional state. Tail phosphorylations deconstruct silencing complexes in particular contexts. We speculate that these fairly simple roles form the basis of transcriptional regulation by histone marks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-120220-085159
2021-08-31
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/genom/22/1/annurev-genom-120220-085159.html?itemId=/content/journals/10.1146/annurev-genom-120220-085159&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ali M, Yan K, Lalonde ME, Degerny C, Rothbart SB et al. 2012. Tandem PHD fingers of MORF/MOZ acetyltransferases display selectivity for acetylated histone H3 and are required for the association with chromatin. J. Mol. Biol. 424:328–38
    [Google Scholar]
  2. 2. 
    Armache A, Yang S, Martínez de Paz A, Robbins LE, Durmaz C et al. 2020. Histone H3.3 phosphorylation amplifies stimulation-induced transcription. Nature 583:852–57
    [Google Scholar]
  3. 3. 
    Bilokapic S, Halic M. 2019. Nucleosome and ubiquitin position Set2 to methylate H3K36. Nat. Commun. 10:3795
    [Google Scholar]
  4. 4. 
    Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ et al. 2016. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–22
    [Google Scholar]
  5. 5. 
    Boija A, Mahat DB, Zare A, Holmqvist PH, Philip P et al. 2017. CBP regulates recruitment and release of promoter-proximal RNA polymerase II. Mol. Cell 68:491–503.e5
    [Google Scholar]
  6. 6. 
    Brown CE, Howe L, Sousa K, Alley SC, Carrozza MJ et al. 2001. Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science 292:2333–37
    [Google Scholar]
  7. 7. 
    Cao K, Ugarenko M, Ozark PA, Wang J, Marshall SA et al. 2020. DOT1L-controlled cell-fate determination and transcription elongation are independent of H3K79 methylation. PNAS 117:27365–73
    [Google Scholar]
  8. 8. 
    Carlone DL, Lee JH, Young SR, Dobrota E, Butler JS et al. 2005. Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein. Mol. Cell. Biol. 25:4881–91
    [Google Scholar]
  9. 9. 
    Carlone DL, Skalnik DG. 2001. CpG binding protein is crucial for early embryonic development. Mol. Cell. Biol. 21:7601–6
    [Google Scholar]
  10. 10. 
    Carranza PG, Gargantini PR, Prucca CG, Torri A, Saura A et al. 2016. Specific histone modifications play critical roles in the control of encystation and antigenic variation in the early-branching eukaryote Giardia lamblia. Int. J. Biochem. Cell Biol. 81:32–43
    [Google Scholar]
  11. 11. 
    Chang FT, Chan FL, McGhie JDR, Udugama M, Mayne L et al. 2015. CHK1-driven histone H3.3 serine 31 phosphorylation is important for chromatin maintenance and cell survival in human ALT cancer cells. Nucleic Acids Res. 43:2603–14
    [Google Scholar]
  12. 12. 
    Chen CW, Koche RP, Sinha AU, Deshpande AJ, Zhu N et al. 2015. DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat. Med. 21:335–43
    [Google Scholar]
  13. 13. 
    Choy JS, Acuña R, Au WC, Basrai MA. 2011. A role for histone H4K16 hypoacetylation in Saccharomyces cerevisiae kinetochore function. Genetics 189:11–21
    [Google Scholar]
  14. 14. 
    Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF. 1997. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277:1996–2000
    [Google Scholar]
  15. 15. 
    Clouaire T, Webb S, Bird A 2014. Cfp1 is required for gene expression-dependent H3K4 trimethylation and H3K9 acetylation in embryonic stem cells. Genome Biol 15:451
    [Google Scholar]
  16. 16. 
    Clouaire T, Webb S, Skene P, Illingworth R, Kerr A et al. 2012. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev 26:1714–28
    [Google Scholar]
  17. 17. 
    Copur Ö, Gorchakov A, Finkl K, Kuroda MI, Müller J 2018. Sex-specific phenotypes of histone H4 point mutants establish dosage compensation as the critical function of H4K16 acetylation in Drosophila. PNAS 115:13336–41
    [Google Scholar]
  18. 18. 
    Crosio C, Fimia GM, Loury R, Kimura M, Okano Y et al. 2002. Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol. Cell. Biol. 22:874–85
    [Google Scholar]
  19. 19. 
    Crump NT, Hazzalin CA, Bowers EM, Alani RM, Cole PA, Mahadevan LC 2011. Dynamic acetylation of all lysine-4 trimethylated histone H3 is evolutionarily conserved and mediated by p300/CBP. PNAS 108:7814–19
    [Google Scholar]
  20. 20. 
    Crump NT, Milne TA. 2019. Why are so many MLL lysine methyltransferases required for normal mammalian development?. Cell. Mol. Life Sci. 76:2885–98
    [Google Scholar]
  21. 21. 
    Delaney K, Mailler J, Wenda JM, Gabus C, Steiner FA. 2018. Differential expression of histone H3.3 genes and their role in modulating temperature stress response in Caenorhabditis elegans. Genetics 209:551–65
    [Google Scholar]
  22. 22. 
    Deng ZH, Ai HS, Lu CP, Li JB. 2020. The Bre1/Rad6 machinery: writing the central histone ubiquitin mark on H2B and beyond. Chromosome Res 28:247–58
    [Google Scholar]
  23. 23. 
    Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. 1999. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–96
    [Google Scholar]
  24. 24. 
    Di Cerbo V, Mohn F, Ryan DP, Montellier E, Kacem S et al. 2014. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. eLife 3:e01632
    [Google Scholar]
  25. 25. 
    Dumesic PA, Homer CM, Moresco JJ, Pack LR, Shanle EK et al. 2015. Product binding enforces the genomic specificity of a yeast Polycomb repressive complex. Cell 160:204–18
    [Google Scholar]
  26. 26. 
    Durant M, Pugh BF. 2006. Genome-wide relationships between TAF1 and histone acetyltransferases in Saccharomyces cerevisiae. Mol. Cell. Biol. 26:2791–802
    [Google Scholar]
  27. 27. 
    Elsasser SJ, Noh KM, Diaz N, Allis CD, Banaszynski LA. 2015. Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522:240–44
    [Google Scholar]
  28. 28. 
    Etchegaray JP, Zhong L, Li C, Henriques T, Ablondi E et al. 2019. The histone deacetylase SIRT6 restrains transcription elongation via promoter-proximal pausing. Mol. Cell 75:683–99.e7
    [Google Scholar]
  29. 29. 
    Finogenova K, Bonnet J, Poepsel S, Schäfer IB, Finkl K et al. 2020. Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3. eLife 9:e61964
    [Google Scholar]
  30. 30. 
    Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA et al. 2005. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–22
    [Google Scholar]
  31. 31. 
    Fujisawa T, Filippakopoulos P. 2017. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat. Rev. Mol. Cell Biol. 18:246–62
    [Google Scholar]
  32. 32. 
    Furuyama S, Biggins S 2007. Centromere identity is specified by a single centromeric nucleosome in budding yeast. PNAS 104:14706–11
    [Google Scholar]
  33. 33. 
    Gaiti F, Jindrich K, Fernandez-Valverde SL, Roper KE, Degnan BM, Tanurdžić M. 2017. Landscape of histone modifications in a sponge reveals the origin of animal cis-regulatory complexity. eLife 6:e22194
    [Google Scholar]
  34. 34. 
    Gao Z, Zhang J, Bonasio R, Strino F, Sawai A et al. 2012. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45:344–56
    [Google Scholar]
  35. 35. 
    Gates LA, Shi J, Rohira AD, Feng Q, Zhu B et al. 2017. Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation. J. Biol. Chem. 292:14456–72
    [Google Scholar]
  36. 36. 
    Gatta R, Dolfini D, Zambelli F, Imbriano C, Pavesi G, Mantovani R. 2011. An acetylation-mono-ubiquitination switch on lysine 120 of H2B. Epigenetics 6:630–37
    [Google Scholar]
  37. 37. 
    Gehani SS, Agrawal-Singh S, Dietrich N, Christophersen NS, Helin K, Hansen K 2010. Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol. Cell 39:886–900
    [Google Scholar]
  38. 38. 
    Gehre M, Bunina D, Sidoli S, Lübke MJ, Diaz N et al. 2020. Lysine 4 of histone H3.3 is required for embryonic stem cell differentiation, histone enrichment at regulatory regions and transcription accuracy. Nat. Genet. 52:273–82
    [Google Scholar]
  39. 39. 
    Godfrey L, Crump NT, Thorne R, Lau IJ, Repapi E et al. 2019. DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation. Nat. Commun. 10:2803
    [Google Scholar]
  40. 40. 
    Graves HK, Wang P, Lagarde M, Chen Z, Tyler JK 2016. Mutations that prevent or mimic persistent post-translational modifications of the histone H3 globular domain cause lethality and growth defects in Drosophila. Epigenet. Chromatin 9:9
    [Google Scholar]
  41. 41. 
    Grossniklaus U, Paro R. 2014. Transcriptional silencing by Polycomb-group proteins. Cold Spring Harb. Perspect. Biol. 6:a019331
    [Google Scholar]
  42. 42. 
    Hake SB, Garcia BA, Kauer M, Baker SP, Shabanowitz J et al. 2005. Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. PNAS 102:6344–49
    [Google Scholar]
  43. 43. 
    Heyn P, Logan CV, Fluteau A, Challis RC, Auchynnikava T et al. 2019. Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions. Nat. Genet. 51:96–105
    [Google Scholar]
  44. 44. 
    Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE et al. 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33:510–17
    [Google Scholar]
  45. 45. 
    Hodl M, Basler K. 2012. Transcription in the absence of histone H3.2 and H3K4 methylation. Curr. Biol. 22:2253–57
    [Google Scholar]
  46. 46. 
    Hsu CC, Zhao D, Shi J, Peng D, Guan H et al. 2018. Gas41 links histone acetylation to H2A.Z deposition and maintenance of embryonic stem cell identity. Cell Discov 4:28
    [Google Scholar]
  47. 47. 
    Hu D, Gao X, Cao K, Morgan MA, Mas G et al. 2017. Not all H3K4 methylations are created equal: Mll2/COMPASS dependency in primordial germ cell specification. Mol. Cell 65:460–75.e6
    [Google Scholar]
  48. 48. 
    Hu D, Garruss AS, Gao X, Morgan MA, Cook M et al. 2013. The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 20:1093–97
    [Google Scholar]
  49. 49. 
    Huang C, Zhu B. 2018. Roles of H3K36-specific histone methyltransferases in transcription: antagonizing silencing and safeguarding transcription fidelity. Biophys. Rep. 4:170–77
    [Google Scholar]
  50. 50. 
    Huang H, Weng H, Zhou K, Wu T, Zhao BS et al. 2019. Histone H3 trimethylation at lysine 36 guides m6A modification co-transcriptionally. Nature 567:414–19
    [Google Scholar]
  51. 51. 
    Imagawa E, Higashimoto K, Sakai Y, Nakamura C, Okamoto N et al. 2017. Mutations in genes encoding polycomb repressive complex 2 subunits cause Weaver syndrome. Hum. Mutat. 38:637–48
    [Google Scholar]
  52. 52. 
    Imai S, Armstrong CM, Kaeberlein M, Guarente L. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800
    [Google Scholar]
  53. 53. 
    Iyer LM, Anantharaman V, Wolf MY, Aravind L. 2008. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int. J. Parasitol. 38:1–31
    [Google Scholar]
  54. 54. 
    Jain SU, Khazaei S, Marchione DM, Lundgren SM, Wand X et al. 2020. Histone H3.3 G34 mutations promote aberrant PRC2 activity and drive tumor progression. PNAS 117:27354–64
    [Google Scholar]
  55. 55. 
    Jamieson K, McNaught KJ, Ormsby T, Leggett NA, Honda S, Selker EU. 2018. Telomere repeats induce domains of H3K27 methylation in Neurospora. eLife 7:e31216
    [Google Scholar]
  56. 56. 
    Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH et al. 2011. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 30:249–62
    [Google Scholar]
  57. 57. 
    Jørgensen S, Schotta G, Sørensen CS. 2013. Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res 41:2797–806
    [Google Scholar]
  58. 58. 
    Jung HR, Sidoli S, Haldbo S, Sprenger RR, Schwämmle V et al. 2013. Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD-MS/MS. Anal. Chem. 85:8232–39
    [Google Scholar]
  59. 59. 
    Kalashnikova AA, Porter-Goff ME, Muthurajan UM, Luger K, Hansen JC. 2013. The role of the nucleosome acidic patch in modulating higher order chromatin structure. J. R. Soc. Interface 10:20121022
    [Google Scholar]
  60. 60. 
    Kalb R, Latwiel S, Baymaz HI, Jansen PW, Müller CW et al. 2014. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat. Struct. Mol. Biol. 21:569–71
    [Google Scholar]
  61. 61. 
    Kebede AF, Schneider R, Daujat S. 2015. Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J 282:1658–74
    [Google Scholar]
  62. 62. 
    Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V et al. 2005. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123:593–605
    [Google Scholar]
  63. 63. 
    Kim J, Guermah M, McGinty RK, Lee JS, Tang Z et al. 2009. RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137:459–71
    [Google Scholar]
  64. 64. 
    Kim SK, Jung I, Lee H, Kang K, Kim M et al. 2012. Human histone H3K79 methyltransferase DOT1L protein binds actively transcribing RNA polymerase II to regulate gene expression. J. Biol. Chem. 287:39698–709
    [Google Scholar]
  65. 65. 
    Klein BJ, Ahmad S, Vann KR, Andrews FH, Mayo ZA et al. 2018. Yaf9 subunit of the NuA4 and SWR1 complexes targets histone H3K27ac through its YEATS domain. Nucleic Acids Res 46:421–30
    [Google Scholar]
  66. 66. 
    Klein BJ, Simithy J, Wang X, Ahn J, Andrews FH et al. 2017. Recognition of histone H3K14 acylation by MORF. Structure 25:650–54.e2
    [Google Scholar]
  67. 67. 
    Kornberg RD, Lorch Y. 2020. Primary role of the nucleosome. Mol. Cell 79:371–75
    [Google Scholar]
  68. 68. 
    Krouwels IM, Wiesmeijer K, Abraham TE, Molenaar C, Verwoerd NP et al. 2005. A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J. Cell Biol. 170:537–49
    [Google Scholar]
  69. 69. 
    Kundu S, Ji F, Sunwoo H, Jain G, Lee JT et al. 2017. Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation. Mol. Cell 65:432–46.e5
    [Google Scholar]
  70. 70. 
    Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. 2002. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16:2893–905
    [Google Scholar]
  71. 71. 
    Lai B, Lee JE, Jang Y, Wang L, Peng W, Ge K. 2017. MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipogenesis. Nucleic Acids Res 45:6388–403
    [Google Scholar]
  72. 72. 
    Lau PN, Cheung P 2011. Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes Polycomb silencing. PNAS 108:2801–6
    [Google Scholar]
  73. 73. 
    Lauberth SM, Nakayama T, Wu X, Ferris AL, Tang Z et al. 2013. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152:1021–36
    [Google Scholar]
  74. 74. 
    Li C, He X, Huang Z, Han L, Wu X et al. 2020. Melatonin ameliorates the advanced maternal age-associated meiotic defects in oocytes through the SIRT2-dependent H4K16 deacetylation pathway. Aging 12:1610–23
    [Google Scholar]
  75. 75. 
    Li H, Liefke R, Jiang J, Kurland JV, Tian W et al. 2017. Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549:287–91
    [Google Scholar]
  76. 76. 
    Li M, Dong Q, Zhu B. 2017. Aurora kinase B phosphorylates histone H3.3 at serine 31 during mitosis in mammalian cells. J. Mol. Biol. 429:2042–45
    [Google Scholar]
  77. 77. 
    Li Q, Zhou H, Wurtele H, Davies B, Horazdovsky B et al. 2008. Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134:244–55
    [Google Scholar]
  78. 78. 
    Li Y, Sabari BR, Panchenko T, Wen H, Zhao D et al. 2016. Molecular coupling of histone crotonylation and active transcription by AF9 YEATS domain. Mol. Cell 62:181–93
    [Google Scholar]
  79. 79. 
    Li Y, Zhao D, Chen Z, Li H. 2017. YEATS domain: linking histone crotonylation to gene regulation. Transcription 8:9–14
    [Google Scholar]
  80. 80. 
    Lu C, Jain SU, Hoelper D, Bechet D, Molden RC et al. 2016. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352:844–49
    [Google Scholar]
  81. 81. 
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–60
    [Google Scholar]
  82. 82. 
    Ma P, Schultz RM. 2013. Histone deacetylase 2 (HDAC2) regulates chromosome segregation and kinetochore function via H4K16 deacetylation during oocyte maturation in mouse. PLOS Genet 9:e1003377
    [Google Scholar]
  83. 83. 
    Malik HS, Henikoff S. 2003. Phylogenomics of the nucleosome. Nat. Struct. Biol. 10:882–91
    [Google Scholar]
  84. 84. 
    Martire S, Gogate AA, Whitmill A, Tafessu A, Nguyen J et al. 2019. Phosphorylation of histone H3.3 at serine 31 promotes p300 activity and enhancer acetylation. Nat. Genet. 51:941–46
    [Google Scholar]
  85. 85. 
    McKay DJ, Klusza S, Penke TJR, Meers MP, Curry KP et al. 2015. Interrogating the function of metazoan histones using engineered gene clusters. Dev. Cell 32:373–86
    [Google Scholar]
  86. 86. 
    Meers MP, Henriques T, Lavender CA, McKay DJ, Strahl BD et al. 2017. Histone gene replacement reveals a post-transcriptional role for H3K36 in maintaining metazoan transcriptome fidelity. eLife 6:e23249
    [Google Scholar]
  87. 87. 
    Miller SA, Damle M, Kingston RE. 2020. H3K27me3 is dispensable for early differentiation but required to maintain differentiated cell identity. bioRxiv 2020.06.27.175612. https://doi.org/10.1101/2020.06.27.175612
    [Crossref]
  88. 88. 
    Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D et al. 2002. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10:1107–17
    [Google Scholar]
  89. 89. 
    Morgan MAJ, Rickels RA, Collings CK, He X, Cao K et al. 2017. A cryptic Tudor domain links BRWD2/PHIP to COMPASS-mediated histone H3K4 methylation. Genes Dev 31:2003–14
    [Google Scholar]
  90. 90. 
    Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A et al. 2002. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111:197–208
    [Google Scholar]
  91. 91. 
    Musselman CA, Lalonde ME, Côté J, Kutateladze TG. 2012. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19:1218–27
    [Google Scholar]
  92. 92. 
    Narita T, Weinert BT, Choudhary C. 2019. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20:156–74
    [Google Scholar]
  93. 93. 
    Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C et al. 2017. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543:72–77
    [Google Scholar]
  94. 94. 
    North JA, Shimko JC, Javaid S, Mooney AM, Shoffner MA et al. 2012. Regulation of the nucleosome unwrapping rate controls DNA accessibility. Nucleic Acids Res 40:10215–27
    [Google Scholar]
  95. 95. 
    Oda H, Okamoto I, Murphy N, Chu J, Price SM et al. 2009. Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol. Cell. Biol. 29:2278–95
    [Google Scholar]
  96. 96. 
    Otani J, Nankumo T, Arita K, Inamoto S, Ariyoshi M, Shirakawa M. 2009. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep 10:1235–41
    [Google Scholar]
  97. 97. 
    Park EC, Szostak JW. 1990. Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML. Mol. Cell. Biol. 10:4932–34
    [Google Scholar]
  98. 98. 
    Pavri R, Zhu B, Li G, Trojer P, Mandal S et al. 2006. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125:703–17
    [Google Scholar]
  99. 99. 
    Peng Y, Li S, Onufriev A, Landsman D, Panchenko A. 2020. Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails. bioRxiv 2020.10.30.360990. https://doi.org/10.1101/2020.10.30.360990
    [Crossref]
  100. 100. 
    Pengelly AR, Kalb R, Finkl K, Muller J. 2015. Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation. Genes Dev 29:1487–92
    [Google Scholar]
  101. 101. 
    Penke TJR, McKay DJ, Strahl BD, Matera AG, Duronio RJ. 2016. Direct interrogation of the role of H3K9 in metazoan heterochromatin function. Genes Dev 30:1866–80
    [Google Scholar]
  102. 102. 
    Penke TJR, McKay DJ, Strahl BD, Matera AG, Duronio RJ. 2018. Functional redundancy of variant and canonical histone H3 lysine 9 modification in Drosophila. Genetics 208:229–44
    [Google Scholar]
  103. 103. 
    Poepsel S, Kasinath V, Nogales E. 2018. Cryo-EM structures of PRC2 simultaneously engaged with two functionally distinct nucleosomes. Nat. Struct. Mol. Biol. 25:154–62
    [Google Scholar]
  104. 104. 
    Postberg J, Jönsson F, Weil PP, Bulic A, Juranek SA, Lipps HJ. 2018. 27nt-RNAs guide histone variant deposition via ‘RNA-induced DNA replication interference’ and thus transmit parental genome partitioning in Stylonychia. Epigenet. Chromatin 11:31
    [Google Scholar]
  105. 105. 
    Pradeepa MM, Grimes GR, Kumar Y, Olley G, Taylor GC et al. 2016. Histone H3 globular domain acetylation identifies a new class of enhancers. Nat. Genet. 48:681–86
    [Google Scholar]
  106. 106. 
    Protacio RU, Li G, Lowary PT, Widom J. 2000. Effects of histone tail domains on the rate of transcriptional elongation through a nucleosome. Mol. Cell. Biol. 20:8866–78
    [Google Scholar]
  107. 107. 
    Rajagopal N, Ernst J, Ray P, Wu J, Zhang M et al. 2014. Distinct and predictive histone lysine acetylation patterns at promoters, enhancers, and gene bodies. G3 4:2051–63
    [Google Scholar]
  108. 108. 
    Robbins AR, Jablonski SA, Yen TJ, Yoda K, Robey R et al. 2005. Inhibitors of histone deacetylases alter kinetochore assembly by disrupting pericentromeric heterochromatin. Cell Cycle 4:717–26
    [Google Scholar]
  109. 109. 
    Robinson AK, Leal BZ, Chadwell LV, Wang R, Ilangovan U et al. 2012. The growth-suppressive function of the Polycomb group protein polyhomeotic is mediated by polymerization of its sterile alpha motif (SAM) domain. J. Biol. Chem. 287:8702–13
    [Google Scholar]
  110. 110. 
    Rondelet G, Dal Maso T, Willems L, Wouters J. 2016. Structural basis for recognition of histone H3K36me3 nucleosome by human de novo DNA methyltransferases 3A and 3B. J. Struct. Biol. 194:357–67
    [Google Scholar]
  111. 111. 
    Rottach A, Frauer C, Pichler G, Bonapace IM, Spada F et al. 2009. The multidomain protein Np95 connects DNA methylation and histone modification. Nucleic Acids Res. 38:1796–804
    [Google Scholar]
  112. 112. 
    Ruthenburg AJ, CD Allis, Wysocka J. 2007. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25:15–30
    [Google Scholar]
  113. 113. 
    Sabari BR, Zhang D, Allis CD, Zhao Y. 2017. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 18:90–101
    [Google Scholar]
  114. 114. 
    Saha S. 2020. Histone modifications and other facets of epigenetic regulation in trypanosomatids: leaving their mark. mBio 11:e01079–20
    [Google Scholar]
  115. 115. 
    Sakai A, Schwartz BE, Goldstein S, Ahmad K 2009. Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Curr. Biol. 19:1816–20
    [Google Scholar]
  116. 116. 
    Sarraf SA, Stancheva I. 2004. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell 15:595–605
    [Google Scholar]
  117. 117. 
    Sarthy JF, Meers MP, Janssens DH, Henikoff JG, Feldman H et al. 2020. Histone deposition pathways determine the chromatin landscapes of H3.1 and H3.3 K27M oncohistones. eLife 9:e61090
    [Google Scholar]
  118. 118. 
    Sato Y, Hilbert L, Oda H, Wan Y, Heddleston JM et al. 2019. Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis. Development 146:dev179127
    [Google Scholar]
  119. 119. 
    Sebé-Pedrós A, Ballaré C, Parra-Acero H, Chiva C, Tena JJ et al. 2016. The dynamic regulatory genome of Capsaspora and the origin of animal multicellularity. Cell 165:1224–37
    [Google Scholar]
  120. 120. 
    Shaver S, Casas-Mollano JA, Cerny RL, Cerutti H. 2010. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics 5:301–12
    [Google Scholar]
  121. 121. 
    Sitbon D, Boyarchuk E, Dingli F, Loew D, Almouzni G. 2020. Histone variant H3.3 residue S31 is essential for Xenopus gastrulation regardless of the deposition pathway. Nat. Commun. 11:1256
    [Google Scholar]
  122. 122. 
    Song MJ, Kim M, Choi Y, Yi MH, Kim J et al. 2017. Epigenome mapping highlights chromatin-mediated gene regulation in the protozoan parasite Trichomonas vaginalis. Sci. Rep. 7:45365
    [Google Scholar]
  123. 123. 
    Souza PP, Volkel P, Trinel D, Vandamme J, Rosnoblet C et al. 2009. The histone methyltransferase SUV420H2 and Heterochromatin Proteins HP1 interact but show different dynamic behaviours. BMC Cell Biol 10:41
    [Google Scholar]
  124. 124. 
    Stafford JM, Lee C-H, Voigt P, Descostes N, Saldana-Meyer R et al. 2018. Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric gliomas. Sci. Adv. 4:eaau5935
    [Google Scholar]
  125. 125. 
    Stejskal S, Stepka K, Tesarova L, Stejskal K, Matejkova M et al. 2015. Cell cycle-dependent changes in H3K56ac in human cells. Cell Cycle 14:3851–63
    [Google Scholar]
  126. 126. 
    Strahl BD, Allis CD. 2000. The language of covalent histone modifications. Nature 403:41–45
    [Google Scholar]
  127. 127. 
    Streubel G, Watson A, Jammula SG, Scelfo A, Fitzpatrick DJ et al. 2018. The H3K36me2 methyltransferase Nsd1 demarcates PRC2-mediated H3K27me2 and H3K27me3 domains in embryonic stem cells. Mol. Cell 70:371–79.e5
    [Google Scholar]
  128. 128. 
    Struhl K. 1999. Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell 98:1–4
    [Google Scholar]
  129. 129. 
    Su L, Xia W, Shen T, Liang Q, Wang W et al. 2018. H2A.Z.1 crosstalk with H3K56-acetylation controls gliogenesis through the transcription of folate receptor. Nucleic Acids Res 46:8817–31
    [Google Scholar]
  130. 130. 
    Taipale M, Rea S, Richter K, Vilar A, Lichter P et al. 2005. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol. Cell. Biol. 25:6798–810
    [Google Scholar]
  131. 131. 
    Talbert PB, Henikoff S. 2017. Histone variants on the move: substrates for chromatin dynamics. Nat. Rev. Mol. Cell Biol. 18:115–26
    [Google Scholar]
  132. 132. 
    Talbert PB, Meers MP, Henikoff S. 2019. Old cogs, new tricks: the evolution of gene expression in a chromatin context. Nat. Rev. Genet. 20:283–97
    [Google Scholar]
  133. 133. 
    Tamburri S, Lavarone E, Fernández-Pérez D, Conway E, Zanotti M et al. 2020. Histone H2AK119 mono-ubiquitination is essential for Polycomb-mediated transcriptional repression. Mol. Cell 77:840–56.e5
    [Google Scholar]
  134. 134. 
    Tan M, Luo H, Lee S, Jin F, Yang JS et al. 2011. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–28
    [Google Scholar]
  135. 135. 
    Tatton-Brown K, Douglas J, Coleman K, Baujat G, Cole TRP et al. 2005. Genotype-phenotype associations in Sotos syndrome: an analysis of 266 individuals with NSD1 aberrations. Am. J. Hum. Genet. 77:193–204
    [Google Scholar]
  136. 136. 
    Tatton-Brown K, Seal S, Ruark E, Harmer J, Ramsay E et al. 2014. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46:385–88
    [Google Scholar]
  137. 137. 
    Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. 2007. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14:1025–40
    [Google Scholar]
  138. 138. 
    Tropberger P, Pott S, Keller C, Kamieniarz-Gdula K, Caron M et al. 2013. Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152:859–72
    [Google Scholar]
  139. 139. 
    Udugama M, Chang FTM, Chan FL, Tang MC, Pickett HA et al. 2015. Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Res 43:10227–37
    [Google Scholar]
  140. 140. 
    Valencia-Sánchez MI, De Ioannes P, Wang M, Vasilyev N, Chen R et al. 2019. Structural basis of Dot1L stimulation by histone H2B lysine 120 ubiquitination. Mol. Cell 74:1010–19.e6
    [Google Scholar]
  141. 141. 
    van Mierlo G, Veenstra GJC, Vermeulen M, Marks H. 2019. The complexity of PRC2 subcomplexes. Trends Cell Biol 29:660–71
    [Google Scholar]
  142. 142. 
    Verdin E, Ott M. 2015. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16:258–64
    [Google Scholar]
  143. 143. 
    Voss AK, Collin C, Dixon MP, Thomas T. 2009. Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity. Dev. Cell 17:674–86
    [Google Scholar]
  144. 144. 
    Wang AY, Schulze JM, Skordalakes E, Gin JW, Berger JM et al. 2009. Asf1-like structure of the conserved Yaf9 YEATS domain and role in H2A.Z deposition and acetylation. PNAS 106:21573–78
    [Google Scholar]
  145. 145. 
    Wang C, Cai W, Li Y, Deng H, Bao X et al. 2011. The epigenetic H3S10 phosphorylation mark is required for counteracting heterochromatic spreading and gene silencing in Drosophila melanogaster. J. Cell Sci. 124:4309–17
    [Google Scholar]
  146. 146. 
    Wang Z, Zang C, Cui K, Schones DE, Barski A et al. 2009. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–31
    [Google Scholar]
  147. 147. 
    Waterborg JH, Robertson AJ. 1996. Common features of analogous replacement histone H3 genes in animals and plants. J. Mol. Evol. 43:194–206
    [Google Scholar]
  148. 148. 
    Williams SK, Truong D, Tyler JK 2008. Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. PNAS 105:9000–5
    [Google Scholar]
  149. 149. 
    Wong LH, Ren H, Williams E, McGhie J, Ahn S et al. 2009. Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells. Genome Res 19:404–14
    [Google Scholar]
  150. 150. 
    Worden EJ, Wolberger C. 2019. Activation and regulation of H2B-ubiquitin-dependent histone methyltransferases. Curr. Opin. Struct. Biol. 59:98–106
    [Google Scholar]
  151. 151. 
    Xu L, Cheng A, Huang M, Zhang J, Jiang Y et al. 2017. Structural insight into the recognition of acetylated histone H3K56ac mediated by the bromodomain of CREB-binding protein. FEBS J 284:3422–36
    [Google Scholar]
  152. 152. 
    Xue H, Yao T, Cao M, Zhu G, Li Y et al. 2019. Structural basis of nucleosome recognition and modification by MLL methyltransferases. Nature 573:445–49
    [Google Scholar]
  153. 153. 
    Yan J, Chen SA, Local A, Liu T, Qiu Y et al. 2018. Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res 28:204–20
    [Google Scholar]
  154. 154. 
    Yoh SM, Lucas JS, Jones KA. 2008. The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes Dev 22:3422–34
    [Google Scholar]
  155. 155. 
    Yuan G, Ma B, Yuan W, Zhang Z, Chen P et al. 2013. Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases. J. Biol. Chem. 288:30832–42
    [Google Scholar]
  156. 156. 
    Yuan W, Xie J, Long C, Erdjument-Bromage H, Ding X et al. 2009. Heterogeneous nuclear ribonucleoprotein L is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo. J. Biol. Chem. 284:15701–7
    [Google Scholar]
  157. 157. 
    Yuan W, Xu M, Huang C, Liu N, Chen S, Zhu B 2011. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 286:7983–89
    [Google Scholar]
  158. 158. 
    Yuen BT, Bush KM, Barrilleaux BL, Cotterman R, Knoepfler PS. 2014. Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development 141:3483–94
    [Google Scholar]
/content/journals/10.1146/annurev-genom-120220-085159
Loading
/content/journals/10.1146/annurev-genom-120220-085159
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error