1932

Abstract

Many of the fundamental inventions of genome editing, including meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR, were first made at universities and patented to encourage commercial development. This gave rise to a diversity of technology transfer models but also conflicts among them. Against a broader historical and policy backdrop of university patenting and special challenges concerning research tools, we review the patent estates of genome editing and the diversity of technology transfer models employed to commercialize them, including deposit in the public domain, open access contracts, material transfer agreements, nonexclusive and exclusive licenses, surrogate licenses, and aggregated licenses. Advantages are found in this diversity, allowing experimentation and competition that we characterize as a federalism model of technology transfer. A notable feature of genome editing has been the rise and success of third-party licensing intermediaries. At the same time, the rapid pace of development of genome-editing technology is likely to erode the importance of patent estates and licensing regimes and may mitigate the effect of overly broad patents, giving rise to new substitutes to effectuate commercialization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-121119-100145
2020-08-31
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/genom/21/1/annurev-genom-121119-100145.html?itemId=/content/journals/10.1146/annurev-genom-121119-100145&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–57
    [Google Scholar]
  2. 2. 
    Apple R. 1989. Patenting university research: Harry Steenbock and the Wisconsin Alumni Research Foundation. Isis 80:382–83
    [Google Scholar]
  3. 3. 
    Ariad Pharmaceuticals, Inc. v. Eli Lilly & Co 598 F.3d 1336 (Fed. Cir. 2010) (en banc)
  4. 4. 
    Arnould S, Bruneau S, Cabaniols JP, Chames P, Choulika A et al. 2006. Custom-made meganuclease and use thereof Int. Patent Appl. WO2004067736
  5. 5. 
    Arnould S, Chames P, Perez C, Lacroix E, Duclert A et al. 2006. Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J. Mol. Biol. 355:443–58
    [Google Scholar]
  6. 6. 
    Association for Molecular Pathology v. Myriad Genetics, Inc 569 U.S 576 2013.
  7. 7. 
    Assoc. Univ. Technol. Manag 2007. Nine points to consider in licensing university technology Guidel. Doc., Assoc. Univ. Technol. Manag Oakbrook Terrace, IL: https://autm.net/about-tech-transfer/principles-and-guidelines/nine-points-to-consider-when-licensing-university
  8. 8. 
    Ayres I, Ouellette LL. 2016. A market test for Bayh-Dole patents. Cornell Law Rev 102:271–331
    [Google Scholar]
  9. 9. 
    Barrangou R, Doudna JA. 2016. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 24:933–41
    [Google Scholar]
  10. 10. 
    Benahmed-Miniuk F, Kresz M, Kanaujiya JK, Southgate CD 2017. Genome-editing technologies and patent landscape overview. Pharm. Patent Anal. 6:115–34
    [Google Scholar]
  11. 11. 
    Boettiger S, Chi-Ham C. 2007. Defensive publishing and the public domain. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices, Vol. 1 A Krattiger, RT Mahony, L Nelsen, JA Thomson, AB Bennett, et al 879–95 Oxford, UK/Davis, CA: Cent. Manag. Intellect. Prop. Health Res. Dev./Public Intellect. Prop. Resour. Agric.
    [Google Scholar]
  12. 12. 
    Bogdanove AJ, Voytas DF. 2011. TAL effectors: customizable proteins for DNA targeting. Science 333:1843–46
    [Google Scholar]
  13. 13. 
    Bonas U, Boch J, Schornack S, Lahaye T 2013. Modular DNA-binding domains and methods of use US Patent 8,420,782
  14. 14. 
    Boyle J. 2008. The Public Domain: Enclosing the Commons of the Mind New Haven, CT: Yale Univ. Press
  15. 15. 
    Bubela T, Guebert J, Mishra A 2015. Use and misuse of material transfer agreements: lessons in proportionality from research, repositories, and litigation. PLOS Biol 13:e1002060
    [Google Scholar]
  16. 16. 
    Bulut H, Moschini G. 2009. US universities’ net returns from patenting and licensing: a quantile regression analysis. Econ. Innov. New Technol. 18:123–37
    [Google Scholar]
  17. 17. 
    Cameron D. 2017. DuPont Pioneer and Broad Institute join forces to enable democratic CRISPR licensing in agriculture News Release, Broad Inst. MIT Harv Cambridge, MA: https://www.broadinstitute.org/news/dupont-pioneer-and-broad-institute-join-forces-enable-democratic-crispr-licensing-agriculture
  18. 18. 
    Cellectis S.A. v. Precision BioSciences, Inc 5:08-CV00119-H2 (E.D.N.C. 2008)
  19. 19. 
    Chandrasekharan S, Kumar S, Valley CM, Rai A 2009. Proprietary science, open science and the role of patent disclosure: the case of zinc-finger proteins. Nat. Biotechnol. 27:140–44
    [Google Scholar]
  20. 20. 
    Chapman AR, Scala CC. 2012. Evaluating the first-in-human clinical trial of a human embryonic stem cell-based therapy. Kennedy Inst. Ethics J. 22:243–61
    [Google Scholar]
  21. 21. 
    Charles D. 2001. Lords of the Harvest: Biotech, Big Money, and the Future of Food Cambridge, MA: Perseus
  22. 22. 
    Chen F. 2019. Using programmable DNA binding proteins to enhance targeted genome modification US Patent 10:266851
  23. 23. 
    Chevalier BS, Stoddard BL. 2001. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29:3757–74
    [Google Scholar]
  24. 24. 
    Chi-Ham CL, Clark KL Bennett AB 2010. The intellectual property landscape for gene suppression technologies in plants. Nat. Biotechnol. 28:32–36
    [Google Scholar]
  25. 25. 
    Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–61
    [Google Scholar]
  26. 26. 
    Cloney R. 2016. Patent law and genome engineering: a short guide to a rapidly changing landscape. Mol. Ther. 24:419–21
    [Google Scholar]
  27. 27. 
    Cong L, Ran FA, Cox D, Lin S, Barretto R et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23
    [Google Scholar]
  28. 28. 
    Contreras JL, Sherkow JS. 2017. CRISPR, surrogate licensing, and scientific discovery. Science 355:698–700
    [Google Scholar]
  29. 29. 
    Cottrell FG, Miller HE. 1907. Apparatus for separating sulfuric acid US Patent 866:844
  30. 30. 
    Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ et al. 2017. RNA editing with CRISPR-Cas13. Science 358:1019–27
    [Google Scholar]
  31. 31. 
    David PA. 1998. Common agency contracting and the emergence of “open science” institutions. Am. Econ. Rev. 88:15–21
    [Google Scholar]
  32. 32. 
    Dev. Stud. Hybridoma Bank 2019. The DSHB mission statement. Developmental Studies Hybridoma Bank https://dshb.biology.uiowa.edu/mission-statement
    [Google Scholar]
  33. 33. 
    Dujon B, Choulika A, Colleaux L, Fairhead C, Perrin A et al. 2003. Nucleotide sequence encoding the enzyme I-SceI and the uses thereof US Patent 6:610545
  34. 34. 
    Egelie KJ, Graff GD, Strand SP, Johansen B 2016. The emerging patent landscape of CRISPR-Cas gene editing technology. Nat. Biotechnol. 34:1025–31
    [Google Scholar]
  35. 35. 
    Eisenberg RS. 2003. Patents, product exclusivity, and information dissemination: how law directs biopharmaceutical research and development. Fordham Law Rev 72:477–91
    [Google Scholar]
  36. 36. 
    Eisenberg RS, Cook-Deegan R. 2018. Universities: fallen angels of Bayh-Dole. Daedalus 147:76–89
    [Google Scholar]
  37. 37. 
    Eisenberg RS, Merges RP. 1995. Opinion letter as to the patentability of certain inventions associated with the identification of partial cDNA sequences. AIPLA Q. J. 23:1–52
    [Google Scholar]
  38. 38. 
    Enserink M. 1999. NIH proposes rules for materials exchange. Science 284:1445
    [Google Scholar]
  39. 39. 
    Eur. Patent Off. Boards Appeal 2020. Decision in case T 844/18 on the CRISPR gene editing technology Commun., Jan. 17, Eur. Patent Off. Boards Appeal Haar, Ger: https://www.epo.org/law-practice/case-law-appeals/communications/2020/20200117.html
  40. 40. 
    Feldman MP, Colaianni A, Liu C 2007. Lessons from the commercialization of the Cohen-Boyer patents: the Stanford University licensing program. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices 2 A Krattiger, RT Mahony, L Nelsen, JA Thomson, AB Bennett, et al 1797–807 Oxford, UK/Davis, CA: Cent. Manag. Intellect. Prop. Health Res. Dev./Public Intellect. Prop. Resour. Agric.
    [Google Scholar]
  41. 41. 
    Garber K. 2006. Patently absurd. Nat. Biotechnol. 24:737–39
    [Google Scholar]
  42. 42. 
    Gasiunas G, Barrangou R, Horvath P, Siksnys V 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579–86
    [Google Scholar]
  43. 43. 
    Gasiunas G, Siksnys V. 2013. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing. Trends Microbiol 21:562–67
    [Google Scholar]
  44. 44. 
    Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH et al. 2017. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551:464–71
    [Google Scholar]
  45. 45. 
    Gold ER. 2000. Finding common cause in the patent debate. Nat. Biotechnol. 18:1217–18
    [Google Scholar]
  46. 46. 
    Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ et al. 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–42
    [Google Scholar]
  47. 47. 
    Graff GD, Heiman A, Zilberman D 2002. University research and offices of technology transfer. Calif. Manag. Rev. 49:88–115
    [Google Scholar]
  48. 48. 
    Graff GD, Phillips D, Lei Z, Oh S, Nottenburg C, Pardey PG 2013. Not quite a myriad of gene patents. Nat. Biotechnol. 31:404
    [Google Scholar]
  49. 49. 
    Graff GD, Rausser GC, Small AA 2003. Agricultural biotechnology's complementary intellectual assets. Rev. Econ. Stat. 85:349–63
    [Google Scholar]
  50. 50. 
    Graff GD, Wright BD, Bennett AB, Zilberman D 2004. Access to intellectual property is a major obstacle to developing transgenic horticultural crops. Calif. Agric. 58:120–26
    [Google Scholar]
  51. 51. 
    Graff GD, Zilberman D. 2001. An intellectual property clearinghouse for agricultural biotechnology. Nat. Biotechnol. 19:1179–80
    [Google Scholar]
  52. 52. 
    Grewal DS. 2017. Before peer production: infrastructure gaps and the architecture of openness in synthetic biology. Stanford Technol. Law Rev. 20:143–211
    [Google Scholar]
  53. 53. 
    Gulbrandsen C. 2007. WARF's licensing policy for ES cell lines. Nat. Biotechnol. 25:387–88
    [Google Scholar]
  54. 54. 
    Haber F, Le Rossignol R 1910. Production of ammonia US Patent 971:501
  55. 55. 
    Hagiu A, Yoffie DB. 2013. The new patent intermediaries: platforms, defensive aggregators, and super-aggregators. J. Econ. Perspect. 27:45–66
    [Google Scholar]
  56. 56. 
    Haussecker D. 2008. The business of RNAi therapeutics. Hum. Gene Therapy 19:451–62
    [Google Scholar]
  57. 57. 
    Haussecker D. 2012. The business of RNAi therapeutics in 2012. Mol. Ther. Nucleic Acids 1:e8
    [Google Scholar]
  58. 58. 
    Heller MA, Eisenberg RS. 1998. Can patents deter innovation? The anticommons in biomedical research. Science 280:698–701
    [Google Scholar]
  59. 59. 
    Herscovitch M, Perkins E, Baltus A, Fan M 2012. Addgene provides an open forum for plasmid sharing. Nat. Biotechnol. 30:316
    [Google Scholar]
  60. 60. 
    Holkers M, Maggio I, Henriques SF, Janssen JM, Cathomen T, Gonçalves MA 2014. Adenoviral vector DNA for accurate genome editing with engineered nucleases. Nat. Methods 11:1051–57
    [Google Scholar]
  61. 61. 
    Holman CM. 2008. Trends in human gene patent litigation. Science 322:198–99
    [Google Scholar]
  62. 62. 
    Hsu PD, Lander ES, Zhang F 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78
    [Google Scholar]
  63. 63. 
    Hughes S. 2001. Making dollars out of DNA: the first major patent in biotechnology and the commercialization of molecular biology, 1974–1980. Isis 92:541–75
    [Google Scholar]
  64. 64. 
    Int. Rice Res. Inst 2018. IRRI licenses CRISPR technology from Broad Institute and Corteva Agriscience News Release, Int. Rice Res. Inst Los Baños, Philipp: https://www.irri.org/irri-licenses-crispr-technology-broad-institute-and-corteva-agriscience
  65. 65. 
    Jarosz J, Heider R, Bazelon C, Bieri C, Hess P 2010. Patent auctions: How far have we come. Nouvelles 21:11–30
    [Google Scholar]
  66. 66. 
    Jefferson DJ, Graff GD, Chi-Ham CL, Bennett AB 2015. The emergence of agbiogenerics. Nat. Biotechnol. 33:819–23
    [Google Scholar]
  67. 67. 
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  68. 68. 
    Kahl L, Molloy J, Patron N, Matthewman C, Haseloff J et al. 2018. Opening options for material transfer. Nat. Biotechnol. 36:923–27
    [Google Scholar]
  69. 69. 
    Kamens J. 2014. Addgene: making materials sharing “science as usual. .” PLOS Biol 12:e1001991
    [Google Scholar]
  70. 70. 
    Kapczynski A. 2017. Order without intellectual property law: open science in influenza. Cornell Law Rev 102:1539–648
    [Google Scholar]
  71. 71. 
    Kendall EC. 1921. Thyroid product and process of preparing the same US Patent 1:392767
  72. 72. 
    Kilger C, Bartenbach K. 2002. New rules for German professors. Science 298:1173–75
    [Google Scholar]
  73. 73. 
    Kim JS, Cho SW, Kim S, Kim JM, Seokjoong K 2015. Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof Eur. Patent 2:912175
  74. 74. 
    Köhler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–97
    [Google Scholar]
  75. 75. 
    Lee P. 2013. Patents and the university. Duke Law J 63:1–87
    [Google Scholar]
  76. 76. 
    Lemley MA. 2008. Are universities patent trolls. Fordham Intellect. Prop. Media Entertain. Law J. 18:611–31
    [Google Scholar]
  77. 77. 
    Lerner K. 2014. Precision BioSciences, Cellectis settle longtime patent feud. Law360 Jan. 31. https://www.law360.com/articles/505712/precision-biosciences-cellectis-settle-longtime-patent-feud
    [Google Scholar]
  78. 78. 
    Li T, Huang S, Jiang WZ, Wright D, Spalding MH et al. 2010. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–72
    [Google Scholar]
  79. 79. 
    Lundin P. 2011. Is silence still golden? Mapping the RNAi patent landscape. Nat. Biotechnol. 29:493–97
    [Google Scholar]
  80. 80. 
    MacKenzie M, Cambrosio A, Keating P 1988. The commercial application of a scientific discovery: the case of the hybridoma technique. Res. Policy 17:155–70
    [Google Scholar]
  81. 81. 
    MacKenzie M, Keating P, Cambrosio A 1990. Patents and free scientific information in biotechnology: making monoclonal antibodies proprietary. Sci. Technol. Hum. Values 15:65–83
    [Google Scholar]
  82. 82. 
    Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM et al. 2008. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31:294–301
    [Google Scholar]
  83. 83. 
    Magee CL, Kleyn PW, Monks BM, Betz U, Basnet S 2018. Pre-existing technological core and roots for the CRISPR breakthrough. PLOS ONE 13:e0198541
    [Google Scholar]
  84. 84. 
    Malackowski JE. 2006. The intellectual property marketplace: past, present and future. John Marshall Rev. Intellect. Prop. Law 5:605–16
    [Google Scholar]
  85. 85. 
    Martin-Laffron J, Kuntz M, Ricroch AE 2019. Worldwide CRISPR patent landscape shows strong geographical biases. Nat. Biotechnol. 37:601–21
    [Google Scholar]
  86. 86. 
    Mathews DJ, Cook-Deegan R, Bubela T 2013. Patents and misplaced angst: lessons for translational stem cell research from genomics. Cell Stem Cell 12:508–12
    [Google Scholar]
  87. 87. 
    Max-Planck-Gesellschaft v. Whitehead Institute 650 F. Supp. 2d 114 (D. Mass 2009.
  88. 88. 
    Mishra A, Schofield PN, Bubela TM 2016. Sustaining large-scale infrastructure to promote pre-competitive biomedical research: lessons from mouse genomics. New Biotechnol 33:280–94
    [Google Scholar]
  89. 89. 
    Mollins J. 2017. Smallholder farmers to gain from targeted CRISPR-Cas9 crop breeding News Feat., Int Maize Wheat Improv. Cent., Oct. 31. https://www.cimmyt.org/news/smallholder-farmers-to-gain-from-targeted-crispr-cas9-breeding
  90. 90. 
    Moscou MJ, Bogdanove AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:1501
    [Google Scholar]
  91. 91. 
    Mowery D, Nelson R, Sampat B, Ziedonis A 2004. Ivory Tower and Industrial Innovation: University-Industry Technology Transfer Before and After the Bayh-Dole Act in the United States Stanford, CA: Stanford Bus. Books
  92. 92. 
    Mowery D, Sampat B. 2001. University patents and patent policy debates in the USA, 1925–1980. Ind. Corp. Change 10:781–814
    [Google Scholar]
  93. 93. 
    Mueller JM. 2006. Patent controls on GM crop farming. Santa Clara J. Int. Law 4:11
    [Google Scholar]
  94. 94. 
    Mullin E. 2019. Back to the future: Pre-CRISPR systems are driving therapies to the clinic. Genetic Engineering and Biotechnology NewsFeb. 7 https://www.genengnews.com/insights/back-to-the-future-pre-crispr-systems-are-driving-therapies-to-the-clinic
    [Google Scholar]
  95. 95. 
    Natl. Inst. Health 1995. Uniform Biological Material Transfer Agreement: discussion of public comments received; publication of the final format of the agreement. Fed. Reg 60:12771–75
    [Google Scholar]
  96. 96. 
    Natl. Inst. Health 1999. Principles and guidelines for recipients of NIH research grants and contracts on obtaining and disseminating biomedical research resources: final notice. Fed. Reg 64:72090–96
    [Google Scholar]
  97. 97. 
    Natl. Inst. Health 2005. Best practices for the licensing of genomic inventions: final notice. Fed. Reg 70:18413–15
    [Google Scholar]
  98. 98. 
    New State Ice Co. v. Liebmann 285 U.S. 262 1932.
  99. 99. 
    Nottenburg C, Rodríguez CR. 2008. Agrobacterium-mediated gene transfer: a lawyer's perspective. Agrobacterium: From Biology to Biotechnology T Tzfira, V Citovsky 699–735 New York: Springer
    [Google Scholar]
  100. 100. 
    Nuffield Counc. Bioeth 2012. Commercialisation. Emerging Biotechnologies: Technology, Choice and the Public Good152–72 London: Nuffield Counc. Bioeth.
    [Google Scholar]
  101. 101. 
    O'Connor S, Graff GD, Winickoff DE 2010. Legal context of university intellectual property and technology transfer Rep., Natl. Res. Counc. Washington, DC: http://sites.nationalacademies.org/cs/groups/pgasite/documents/webpage/pga_058897.pdf
  102. 102. 
    Organ. Econ. Co-op. Dev 2011. Collaborative Mechanisms for Intellectual Property Management in the Life Sciences Rep., Organ. Econ. Co-op. Dev Paris: http://www.oecd.org/sti/emerging-tech/48665248.pdf
  103. 103. 
    Palmer A. 1948. Survey of University Patent Policies Washington, DC: Natl. Acad. Press
  104. 104. 
    Parker DD, Zilberman D. 1993. University technology transfer: impacts on local and US economies. Contemp. Econ. Policy 11:87–99
    [Google Scholar]
  105. 105. 
    Poupon V, Seyller A, Rouleau GA 2017. The Tanenbaum Open Science Institute: leading a paradigm shift at the Montreal Neurological Institute. Neuron 95:1002–6
    [Google Scholar]
  106. 106. 
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–83
    [Google Scholar]
  107. 107. 
    Rai AK, Eisenberg RS. 2003. Bayh-Dole reform and the progress of medicine. Law Contemp. Probl. 66:289–314
    [Google Scholar]
  108. 108. 
    Ramlogan-Steel CA, Murali A, Andrzejewski S, Dhungel B, Steel JC, Layton CJ 2019. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: trials, future directions and safety considerations. Clin. Exp. Ophthalmol. 47:521–36
    [Google Scholar]
  109. 109. 
    Reichman JH, Uhlir PF, Dedeurwaerdere T 2016. Governing Digitally Integrated Genetic Resources, Data, and Literature Cambridge, UK: Cambridge Univ. Press
  110. 110. 
    Reimers N. 1987. Tiger by the tail. Chemtech 17:464–71
    [Google Scholar]
  111. 111. 
    Robertson TB. 1917. Growth-controlling substance derived from the anterior lobe of the pituitary gland and process for producing the same US Patent 1:218472
  112. 112. 
    Rosenberg N, Nelson R. 1994. American universities and technical advance in industry. Res. Policy 23:323–48
    [Google Scholar]
  113. 113. 
    Ryerson KA. 1933. History and significance of the foreign plant introduction work of the United States Department of Agriculture. Agric. Hist. 7:110–28
    [Google Scholar]
  114. 114. 
    Scherer FM, Harhoff D. 2000. Technology policy for a world of skew-distributed outcomes. Res. Policy 29:559–66
    [Google Scholar]
  115. 115. 
    Schinkel H, Schillberg S. 2016. Genome editing: intellectual property and product development in plant biotechnology. Plant Cell Rep 35:1487–91
    [Google Scholar]
  116. 116. 
    Schmidt C. 2007. Negotiating the RNAi patent thicket. Nat. Biotechnol. 25:273–75
    [Google Scholar]
  117. 117. 
    Scott CT. 2005. The zinc finger nuclease monopoly. Nat. Biotechnol. 23:915–18
    [Google Scholar]
  118. 118. 
    Sherkow JS. 2017. Patent law's reproducibility paradox. Duke Law J 66:845–911
    [Google Scholar]
  119. 119. 
    Sherkow JS. 2018. The CRISPR patent landscape: past, present, and future. CRISPR J 1:5–9
    [Google Scholar]
  120. 120. 
    Sherkow JS, Greely HT. 2015. The history of patenting genetic material. Annu. Rev. Genet. 49:161–82
    [Google Scholar]
  121. 121. 
    Sherkow JS, Scott CT. 2019. The pick-and-shovel play: bioethics for gene-editing vector patents. N.C. Law Rev. 97:1497–552
    [Google Scholar]
  122. 122. 
    Sigma-Aldrich 2019. CRISPR use license agreement. Sigma-Aldrich https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/1/crisprbul.pdf
    [Google Scholar]
  123. 123. 
    Sikšnys V, Gasiunas G, Karvelis T 2017. RNA-directed DNA cleavage by the Cas9-crRNA complex US Patent 9 637:739
  124. 124. 
    Smil V. 2004. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production Cambridge, MA: MIT Press
  125. 125. 
    Smith JJ, Jantz D, Hellinga HW 2011. Rationally-designed meganucleases with altered sequence specificity and DNA-binding affinity US Patent 8 021:867
  126. 126. 
    Spencer R. 1939. University Patent Policies Chicago: Northwest. Univ. Law Sch.
  127. 127. 
    Steenbock H. 1928. Antirachitic product and process US Patent 1,680,818
  128. 128. 
    Stoddard BL 2011. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15
    [Google Scholar]
  129. 129. 
    Storz U. 2018. CRISPR-Cas9—licensing what can't be used. Nouvelles 53:123–31
    [Google Scholar]
  130. 130. 
    Tansey EM, Catterall PP 1997. Technology transfer in Britain: the case of monoclonal antibodies. Wellcome Witnesses to Twentieth Century Medicine EM Tansey , PP Catterall, DA Christie, SV Willhoft, LA Reynolds 1–34 London: Wellcome Trust
    [Google Scholar]
  131. 131. 
    Thomson JA. 1998. Primate embryonic stem cells US Patent No. 5,843,780
  132. 132. 
    Trainer M. 2004. The patents of William Thomson (Lord Kelvin). World Patent Inf 26:311–17
    [Google Scholar]
  133. 133. 
    University of Rochester v. GD Searle 249 F. Supp. 2d 216 (W.D.N.Y. 2003)
  134. 134. 
    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD 2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11:636–46
    [Google Scholar]
  135. 135. 
    US Secur. Exch. Comm 2011. Confidential settlement agreement and mutual release Settl. Agreem., US Secur. Exch. Comm Washington, DC: https://www.sec.gov/Archives/edgar/data/1178670/000095012311045184/b85475exv10w2.htm
  136. 136. 
    van Overwalle G. 2009. Gene Patents and Collaborative Licensing Models: Patent Pools, Clearinghouses, Open Source Models and Liability Regimes Cambridge, UK: Cambridge Univ. Press
  137. 137. 
    Voytas DF. 2013. Plant genome engineering with sequence-specific nucleases. Annu. Rev. Plant Biol. 64:327–50
    [Google Scholar]
  138. 138. 
    Voytas DF, Bogdanove A, Zhang F, Christian M, Cermak T et al. 2013. TAL effector-mediated DNA modification US Patent 8,586,363
  139. 139. 
    Wadman M. 2005. Licensing fees slow advance of stem cells. Nature 435:272–73
    [Google Scholar]
  140. 140. 
    Walsh JP, Arora A, Cohen WM 2003. Effects of research tool patents and licensing on biomedical innovation. Patents in the Knowledge-Based Economy WM Cohen, SA Merrill 285–340 Washington, DC: Natl. Acad. Press
    [Google Scholar]
  141. 141. 
    Wang HX, Li M, Lee CM, Chakraborty S, Kim HW et al. 2017. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chem. Rev. 117:9874–906
    [Google Scholar]
  142. 142. 
    Weiner C. 1987. Patenting and academic research: historical case studies. Sci. Technol. Hum. Values 12:50–62
    [Google Scholar]
  143. 143. 
    Winickoff DE, Winickoff RN. 2003. The charitable trust as a model for genomic biobanks. N. Engl. J. Med. 349:1180–84
    [Google Scholar]
  144. 144. 
    World Intellect. Prop. Organ 2018. International depository authorities under article 7 of the Budapest Treaty World Intellect. Prop Organ., Geneva: https://www.wipo.int/export/sites/www/treaties/en/registration/budapest/pdf/idalist.pdf
  145. 145. 
    Yin H, Kauffman KJ, Anderson DG 2017. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 16:387–99
    [Google Scholar]
/content/journals/10.1146/annurev-genom-121119-100145
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error