1932

Abstract

The Joubert syndrome (JS), Meckel syndrome (MKS), and nephronophthisis (NPH) ciliopathy spectrum could be the poster child for advances and challenges in Mendelian human genetics over the past half century. Progress in understanding these conditions illustrates many core concepts of human genetics. The JS phenotype alone is caused by pathogenic variants in more than 40 genes; remarkably, all of the associated proteins function in and around the primary cilium. Primary cilia are near-ubiquitous, microtubule-based organelles that play crucial roles in development and homeostasis. Protruding from the cell, these cellular antennae sense diverse signals and mediate Hedgehog and other critical signaling pathways. Ciliary dysfunction causes many human conditions termed ciliopathies, which range from multiple congenital malformations to adult-onset single-organ failure. Research on the genetics of the JS-MKS-NPH spectrum has spurred extensive functional work exploring the broadly important role of primary cilia in health and disease. This functional work promises to illuminate the mechanisms underlying JS-MKS-NPH in humans, identify therapeutic targets across genetic causes, and generate future precision treatments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-121321-093528
2022-08-31
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/genom/23/1/annurev-genom-121321-093528.html?itemId=/content/journals/10.1146/annurev-genom-121321-093528&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdelhamed ZA, Abdelmottaleb DI, El-Asrag ME, Natarajan S, Wheway G et al. 2019. The ciliary Frizzled-like receptor Tmem67 regulates canonical Wnt/β-catenin signalling in the developing cerebellum via Hoxb5. Sci. Rep. 9:5446
    [Google Scholar]
  2. 2.
    Abdelhamed ZA, Natarajan S, Wheway G, Inglehearn CF, Toomes C et al. 2015. The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway. Dis. Models Mech. 8:527–41
    [Google Scholar]
  3. 3.
    Abdelhamed ZA, Wheway G, Szymanska K, Natarajan S, Toomes C et al. 2013. Variable expressivity of ciliopathy neurological phenotypes that encompass Meckel-Gruber syndrome and Joubert syndrome is caused by complex de-regulated ciliogenesis, Shh and Wnt signalling defects. Hum. Mol. Genet. 22:1358–72
    [Google Scholar]
  4. 4.
    Alazami AM, Alshammari MJ, Baig M, Salih MA, Hassan HH, Alkuraya FS. 2014. NPHP4 mutation is linked to cerebello-oculo-renal syndrome and male infertility. Clin. Genet. 85:371–75
    [Google Scholar]
  5. 5.
    Alkanderi S, Molinari E, Shaheen R, Elmaghloob Y, Stephen LA et al. 2018. ARL3 mutations cause Joubert syndrome by disrupting ciliary protein composition. Am. J. Hum. Genet. 103:612–20
    [Google Scholar]
  6. 6.
    Arts HH, Doherty D, van Beersum SE, Parisi MA, Letteboer SJ et al. 2007. Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat. Genet. 39:882–88
    [Google Scholar]
  7. 7.
    Attanasio M, Uhlenhaut NH, Sousa VH, O'Toole JF, Otto E et al. 2007. Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nat. Genet. 39:1018–24
    [Google Scholar]
  8. 8.
    Baala L, Romano S, Khaddour R, Saunier S, Smith UM et al. 2007. The Meckel-Gruber syndrome gene, MKS3, is mutated in Joubert syndrome. Am. J. Hum. Genet. 80:186–94
    [Google Scholar]
  9. 9.
    Bachmann-Gagescu R, Dempsey JC, Bulgheroni S, Chen ML, D'Arrigo S et al. 2020. Healthcare recommendations for Joubert syndrome. Am. J. Med. Genet. A 182:229–49
    [Google Scholar]
  10. 10.
    Bachmann-Gagescu R, Dempsey JC, Phelps IG, O'Roak BJ, Knutzen DM et al. 2015. Joubert syndrome: a model for untangling recessive disorders with extreme genetic heterogeneity. J. Med. Genet. 52:514–22
    [Google Scholar]
  11. 11.
    Bachmann-Gagescu R, Phelps IG, Dempsey JC, Sharma VA, Ishak GE et al. 2015. KIAA0586 is mutated in Joubert syndrome. Hum. Mutat 36:831–35
    [Google Scholar]
  12. 12.
    Bamshad MJ, Nickerson DA, Chong JX. 2019. Mendelian gene discovery: fast and furious with no end in sight. Am. J. Hum. Genet. 105:448–55
    [Google Scholar]
  13. 13.
    Bangs F, Anderson KV. 2017. Primary cilia and mammalian Hedgehog signaling. Cold Spring Harb. Perspect. Biol. 9:a028175
    [Google Scholar]
  14. 14.
    Barisic I, Boban L, Loane M, Garne E, Wellesley D et al. 2015. Meckel-Gruber syndrome: a population-based study on prevalence, prenatal diagnosis, clinical features, and survival in Europe. Eur. J. Hum. Genet. 23:746–52
    [Google Scholar]
  15. 15.
    Barr MM, Sternberg PW. 1999. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401:386–89
    [Google Scholar]
  16. 16.
    Bashford AL, Subramanian V. 2019. Mice with a conditional deletion of Talpid3 (KIAA0586) – a model for Joubert syndrome. J. Pathol. 248:396–408
    [Google Scholar]
  17. 17.
    Berbari NF, Sharma N, Malarkey EB, Pieczynski JN, Boddu R et al. 2013. Microtubule modifications and stability are altered by cilia perturbation and in cystic kidney disease. Cytoskeleton 70:24–31
    [Google Scholar]
  18. 18.
    Bielas SL, Silhavy JL, Brancati F, Kisseleva MV, Al-Gazali L et al. 2009. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet. 41:1032–36
    [Google Scholar]
  19. 19.
    Braddock SR, Henley KM, Maria BL. 2007. The face of Joubert syndrome: a study of dysmorphology and anthropometry. Am. J. Med. Genet. A 143A:3235–42
    [Google Scholar]
  20. 20.
    Breslow DK, Hoogendoorn S, Kopp AR, Morgens DW, Vu BK et al. 2018. A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nat. Genet. 50:460–71
    [Google Scholar]
  21. 21.
    Brunner HG, van Driel MA. 2004. From syndrome families to functional genomics. Nat. Rev. Genet. 5:545–51
    [Google Scholar]
  22. 22.
    Cantagrel V, Silhavy JL, Bielas SL, Swistun D, Marsh SE et al. 2008. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am. J. Hum. Genet. 83:170–79
    [Google Scholar]
  23. 23.
    Chaki M, Airik R, Ghosh AK, Giles RH, Chen R et al. 2012. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 150:533–48
    [Google Scholar]
  24. 24.
    Chavez M, Ena S, Van Sande J, de Kerchove d'Exaerde A, Schurmans S, Schiffmann SN 2015. Modulation of ciliary phosphoinositide content regulates trafficking and Sonic Hedgehog signaling output. Dev. Cell 34:338–50
    [Google Scholar]
  25. 25.
    Chevrier V, Bruel AL, Van Dam TJ, Franco B, Lo Scalzo M et al. 2016. OFIP/KIAA0753 forms a complex with OFD1 and FOR20 at pericentriolar satellites and centrosomes and is mutated in one individual with oral-facial-digital syndrome. Hum. Mol. Genet. 25:497–513
    [Google Scholar]
  26. 26.
    Choi YJ, Halbritter J, Braun DA, Schueler M, Schapiro D et al. 2019. Mutations of ADAMTS9 cause nephronophthisis-related ciliopathy. Am. J. Hum. Genet. 104:45–54
    [Google Scholar]
  27. 27.
    Coene KL, Roepman R, Doherty D, Afroze B, Kroes HY et al. 2009. OFD1 is mutated in X-linked Joubert syndrome and interacts with LCA5-encoded lebercilin. Am. J. Hum. Genet. 85:465–81
    [Google Scholar]
  28. 28.
    Coppieters F, Casteels I, Meire F, De Jaegere S, Hooghe S et al. 2010. Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. Hum. Mutat. 31:E1709–66
    [Google Scholar]
  29. 29.
    Dafinger C, Liebau MC, Elsayed SM, Hellenbroich Y, Boltshauser E et al. 2011. Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics. J. Clin. Investig. 121:2662–67
    [Google Scholar]
  30. 30.
    Daly OM, Gaboriau D, Karakaya K, King S, Dantas TJ et al. 2016. CEP164-null cells generated by genome editing show a ciliation defect with intact DNA repair capacity. J. Cell Sci. 129:1769–74
    [Google Scholar]
  31. 31.
    Davey MG, Paton IR, Yin Y, Schmidt M, Bangs FK et al. 2006. The chicken talpid3 gene encodes a novel protein essential for Hedgehog signaling. Genes Dev 20:1365–77
    [Google Scholar]
  32. 32.
    Davis EE, Zhang Q, Liu Q, Diplas BH, Davey LM et al. 2011. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat. Genet. 43:189–96 Corrigendum 2011. Nat. Genet. 43:499
    [Google Scholar]
  33. 33.
    De Mori R, Romani M, D'Arrigo S, Zaki MS, Lorefice E et al. 2017. Hypomorphic recessive variants in SUFU impair the Sonic Hedgehog pathway and cause Joubert syndrome with cranio-facial and skeletal defects. Am. J. Hum. Genet. 101:552–63
    [Google Scholar]
  34. 34.
    Delous M, Baala L, Salomon R, Laclef C, Vierkotten J et al. 2007. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat. Genet. 39:875–81
    [Google Scholar]
  35. 35.
    Dixon-Salazar T, Silhavy JL, Marsh SE, Louie CM, Scott LC et al. 2004. Mutations in the AHI1 gene, encoding jouberin, cause Joubert syndrome with cortical polymicrogyria. Am. J. Hum. Genet. 75:979–87
    [Google Scholar]
  36. 36.
    Doherty D. 2009. Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin. Pediatr. Neurol. 16:143–54
    [Google Scholar]
  37. 37.
    Doherty D, Parisi MA, Finn LS, Gunay-Aygun M, Al-Mateen M et al. 2010. Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J. Med. Genet. 47:8–21
    [Google Scholar]
  38. 38.
    Dowdle WE, Robinson JF, Kneist A, Sirerol-Piquer MS, Frints SG et al. 2011. Disruption of a ciliary B9 protein complex causes Meckel syndrome. Am. J. Hum. Genet. 89:94–110
    [Google Scholar]
  39. 39.
    Dyson JM, Conduit SE, Feeney SJ, Hakim S, DiTommaso T et al. 2017. INPP5E regulates phosphoinositide-dependent cilia transition zone function. J. Cell Biol. 216:247–63
    [Google Scholar]
  40. 40.
    Eintracht J, Forsythe E, May-Simera H, Moosajee M. 2021. Translational readthrough of ciliopathy genes BBS2 and ALMS1 restores protein, ciliogenesis and function in patient fibroblasts. EBioMedicine 70:103515
    [Google Scholar]
  41. 41.
    Emond MJ, Louie T, Emerson J, Zhao W, Mathias RA et al. 2012. Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Nat. Genet. 44:886–89
    [Google Scholar]
  42. 42.
    Failler M, Gee HY, Krug P, Joo K, Halbritter J et al. 2014. Mutations of CEP83 cause infantile nephronophthisis and intellectual disability. Am. J. Hum. Genet. 94:905–14
    [Google Scholar]
  43. 43.
    Ferland RJ, Eyaid W, Collura RV, Tully LD, Hill RS et al. 2004. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat. Genet. 36:1008–13
    [Google Scholar]
  44. 44.
    Forsyth R, Gunay-Aygun M 2020. Bardet-Biedl syndrome overview. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean, et al Seattle: Univ. Wash. https://www.ncbi.nlm.nih.gov/books/NBK1363
    [Google Scholar]
  45. 45.
    Frank V, den Hollander AI, Bruchle NO, Zonneveld MN, Nurnberg G et al. 2008. Mutations of the CEP290 gene encoding a centrosomal protein cause Meckel-Gruber syndrome. Hum. Mutat. 29:45–52
    [Google Scholar]
  46. 46.
    Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS, Ramaswami G, Otto EA et al. 2011. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43:776–84
    [Google Scholar]
  47. 47.
    Garcia-Gonzalo FR, Phua SC, Roberson EC, Garcia G III, Abedin M et al. 2015. Phosphoinositides regulate ciliary protein trafficking to modulate Hedgehog signaling. Dev. Cell 34:400–9
    [Google Scholar]
  48. 48.
    Gerdes JM, Liu Y, Zaghloul NA, Leitch CC, Lawson SS et al. 2007. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat. Genet. 39:1350–60
    [Google Scholar]
  49. 49.
    Gigante ED, Taylor MR, Ivanova AA, Kahn RA, Caspary T. 2020. ARL13B regulates Sonic hedgehog signaling from outside primary cilia. eLife 9:e50434
    [Google Scholar]
  50. 50.
    Gorden NT, Arts HH, Parisi MA, Coene KL, Letteboer SJ et al. 2008. CC2D2A is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein CEP290. Am. J. Hum. Genet. 83:559–71
    [Google Scholar]
  51. 51.
    Guo J, Otis JM, Suciu SK, Catalano C, Xing L et al. 2019. Primary cilia signaling promotes axonal tract development and is disrupted in Joubert syndrome-related disorders models. Dev. Cell 51:759–74.e5
    [Google Scholar]
  52. 52.
    Haider NB, Carmi R, Shalev H, Sheffield VC, Landau D. 1998. A Bedouin kindred with infantile nephronophthisis demonstrates linkage to chromosome 9 by homozygosity mapping. Am. J. Hum. Genet. 63:1404–10
    [Google Scholar]
  53. 53.
    Halbritter J, Bizet AA, Schmidts M, Porath JD, Braun DA et al. 2013. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am. J. Hum. Genet. 93:915–25
    [Google Scholar]
  54. 54.
    Halbritter J, Porath JD, Diaz KA, Braun DA, Kohl S et al. 2013. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum. Genet. 132:865–84
    [Google Scholar]
  55. 55.
    He K, Ma X, Xu T, Li Y, Hodge A et al. 2018. Axoneme polyglutamylation regulated by Joubert syndrome protein ARL13B controls ciliary targeting of signaling molecules. Nat. Commun. 9:3310
    [Google Scholar]
  56. 56.
    He M, Subramanian R, Bangs F, Omelchenko T, Liem KF Jr. et al. 2014. The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol. 16:663–72
    [Google Scholar]
  57. 57.
    Hildebrandt F, Otto E, Rensing C, Nothwang HG, Vollmer M et al. 1997. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat. Genet. 17:149–53
    [Google Scholar]
  58. 58.
    Hoefele J, Wolf MT, O'Toole JF, Otto EA, Schultheiss U et al. 2007. Evidence of oligogenic inheritance in nephronophthisis. J. Am. Soc. Nephrol. 18:2789–95
    [Google Scholar]
  59. 59.
    Hoff S, Halbritter J, Epting D, Frank V, Nguyen TM et al. 2013. ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat. Genet. 45:951–56
    [Google Scholar]
  60. 60.
    Hong SR, Wang CL, Huang YS, Chang YC, Chang YC et al. 2018. Spatiotemporal manipulation of ciliary glutamylation reveals its roles in intraciliary trafficking and Hedgehog signaling. Nat. Commun. 9:1732
    [Google Scholar]
  61. 61.
    Hopp K, Heyer CM, Hommerding CJ, Henke SA, Sundsbak JL et al. 2011. B9D1 is revealed as a novel Meckel syndrome (MKS) gene by targeted exon-enriched next-generation sequencing and deletion analysis. Hum. Mol. Genet. 20:2524–34
    [Google Scholar]
  62. 62.
    Huang L, Szymanska K, Jensen VL, Janecke AR, Innes AM et al. 2011. TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am. J. Hum. Genet. 89:713–30
    [Google Scholar]
  63. 63.
    Humbert MC, Weihbrecht K, Searby CC, Li Y, Pope RM et al. 2012. ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. PNAS 109:19691–96
    [Google Scholar]
  64. 64.
    Jensen VL, Li C, Bowie RV, Clarke L, Mohan S et al. 2015. Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J 34:2537–56
    [Google Scholar]
  65. 65.
    Jiang ST, Chiou YY, Wang E, Lin HK, Lee SP et al. 2008. Targeted disruption of Nphp1 causes male infertility due to defects in the later steps of sperm morphogenesis in mice. Hum. Mol. Genet. 17:3368–79
    [Google Scholar]
  66. 66.
    Joubert M, Eisenring JJ, Robb JP, Andermann F. 1969. Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology 9:813–25
    [Google Scholar]
  67. 67.
    Juric-Sekhar G, Adkins J, Doherty D, Hevner RF. 2012. Joubert syndrome: brain and spinal cord malformations in genotyped cases and implications for neurodevelopmental functions of primary cilia. Acta Neuropathol 123:695–709
    [Google Scholar]
  68. 68.
    Katsanis N, Ansley SJ, Badano JL, Eichers ER, Lewis RA et al. 2001. Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 293:2256–59
    [Google Scholar]
  69. 69.
    Khanna H, Davis EE, Murga-Zamalloa CA, Estrada-Cuzcano A, Lopez I et al. 2009. A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat. Genet. 41:739–45
    [Google Scholar]
  70. 70.
    Kyttala M, Tallila J, Salonen R, Kopra O, Kohlschmidt N et al. 2006. MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat. Genet. 38:155–57
    [Google Scholar]
  71. 71.
    Lambacher NJ, Bruel AL, van Dam TJ, Szymanska K, Slaats GG et al. 2016. TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat. Cell Biol. 18:122–31
    [Google Scholar]
  72. 72.
    Lancaster MA, Gopal DJ, Kim J, Saleem SN, Silhavy JL et al. 2011. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat. Med. 17:726–31
    [Google Scholar]
  73. 73.
    Latour BL, Van De Weghe JC, Rusterholz TD, Letteboer SJ, Gomez A et al. 2020. Dysfunction of the ciliary ARMC9/TOGARAM1 protein module causes Joubert syndrome. J. Clin. Investig. 130:4423–39
    [Google Scholar]
  74. 74.
    Lee JE, Silhavy JL, Zaki MS, Schroth J, Bielas SL et al. 2012. CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nat. Genet. 44:193–99
    [Google Scholar]
  75. 75.
    Lee JH, Silhavy JL, Lee JE, Al-Gazali L, Thomas S et al. 2012. Evolutionarily assembled cis-regulatory module at a human ciliopathy locus. Science 335:966–69
    [Google Scholar]
  76. 76.
    Leightner AC, Hommerding CJ, Peng Y, Salisbury JL, Gainullin VG et al. 2013. The Meckel syndrome protein meckelin (TMEM67) is a key regulator of cilia function but is not required for tissue planar polarity. Hum. Mol. Genet. 22:2024–40
    [Google Scholar]
  77. 77.
    Lessieur EM, Fogerty J, Gaivin RJ, Song P, Perkins BD. 2017. The ciliopathy gene ahi1 is required for zebrafish cone photoreceptor outer segment morphogenesis and survival. Investig. Ophthalmol. Vis. Sci. 58:448–60
    [Google Scholar]
  78. 78.
    Li C, Jensen VL, Park K, Kennedy J, Garcia-Gonzalo FR et al. 2016. MKS5 and CEP290 dependent assembly pathway of the ciliary transition zone. PLOS Biol 14:e1002416
    [Google Scholar]
  79. 79.
    Li D, Hu M, Chen H, Wu X, Wei X et al. 2022. An Nphp1 knockout mouse model targeting exon 2–20 demonstrates characteristic phenotypes of human nephronophthisis. Hum. Mol. Genet. 31:232–43
    [Google Scholar]
  80. 80.
    Li X, Zhang R, Patena W, Gang SS, Blum SR et al. 2016. An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell 28:367–87
    [Google Scholar]
  81. 81.
    Lienkamp S, Ganner A, Walz G. 2012. Inversin, Wnt signaling and primary cilia. Differentiation 83:S49–55
    [Google Scholar]
  82. 82.
    Lopez E, Thauvin-Robinet C, Reversade B, Khartoufi NE, Devisme L et al. 2014. C5orf42 is the major gene responsible for OFD syndrome type VI. Hum. Genet. 133:367–77
    [Google Scholar]
  83. 83.
    Louie CM, Caridi G, Lopes VS, Brancati F, Kispert A et al. 2010. AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat. Genet. 42:175–80
    [Google Scholar]
  84. 84.
    Luo M, Lin Z, Zhu T, Jin M, Meng D et al. 2021. Disrupted intraflagellar transport due to IFT74 variants causes Joubert syndrome. Genet. Med. 23:1041–49
    [Google Scholar]
  85. 85.
    Macia MS, Halbritter J, Delous M, Bredrup C, Gutter A et al. 2017. Mutations in MAPKBP1 cause juvenile or late-onset cilia-independent nephronophthisis. Am. J. Hum. Genet. 100:323–33
    [Google Scholar]
  86. 86.
    Magiera MM, Singh P, Gadadhar S, Janke C. 2018. Tubulin posttranslational modifications and emerging links to human disease. Cell 173:1323–27
    [Google Scholar]
  87. 87.
    Maglic D, Stephen J, Malicdan MC, Guo J, Fischer R et al. 2016. TMEM231 gene conversion associated with Joubert and Meckel-Gruber syndromes in the same family. Hum. Mutat. 37:1144–48
    [Google Scholar]
  88. 88.
    Maria BL, Hoang KB, Tusa RJ, Mancuso AA, Hamed LM et al. 1997.. “ Joubert syndrome” revisited: key ocular motor signs with magnetic resonance imaging correlation. J. Child Neurol. 12:423–30
    [Google Scholar]
  89. 89.
    Mattulat M. 2007. Medizinethik in historischer Perspektive: Zum Wandel arztlicher Moralkonzepte im Werk von Georg Benno Gruber (18841977) Stuttgart, Ger.: Steiner
    [Google Scholar]
  90. 90.
    Meckel JF. 1822. Beschreibung zweier durch sehr ähnliche Bildungsabweichungen entstellter Geschwister. Dtsch. Arch. Physiol. 7:99–172
    [Google Scholar]
  91. 91.
    Molinari E, Ramsbottom SA, Srivastava S, Booth P, Alkanderi S et al. 2019. Targeted exon skipping rescues ciliary protein composition defects in Joubert syndrome patient fibroblasts. Sci. Rep. 9:10828
    [Google Scholar]
  92. 92.
    Mollet G, Salomon R, Gribouval O, Silbermann F, Bacq D et al. 2002. The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nat. Genet. 32:300–5
    [Google Scholar]
  93. 93.
    Mougou-Zerelli S, Thomas S, Szenker E, Audollent S, Elkhartoufi N et al. 2009. CC2D2A mutations in Meckel and Joubert syndromes indicate a genotype-phenotype correlation. Hum. Mutat. 30:1574–82
    [Google Scholar]
  94. 94.
    Nguyen TT, Hull S, Roepman R, van den Born LI, Oud MM et al. 2017. Missense mutations in the WD40 domain of AHI1 cause non-syndromic retinitis pigmentosa. J. Med. Genet. 54:624–32
    [Google Scholar]
  95. 95.
    Nuovo S, Bacigalupo I, Ginevrino M, Battini R, Bertini E et al. 2020. Age and sex prevalence estimate of Joubert syndrome in Italy. Neurology 94:e797–801
    [Google Scholar]
  96. 96.
    Oka M, Shimojima K, Yamamoto T, Hanaoka Y, Sato S et al. 2016. A novel HYLS1 homozygous mutation in living siblings with Joubert syndrome. Clin. Genet. 89:739–43
    [Google Scholar]
  97. 97.
    Olbrich H, Fliegauf M, Hoefele J, Kispert A, Otto E et al. 2003. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat. Genet. 34:455–59
    [Google Scholar]
  98. 98.
    Otto EA, Hurd TW, Airik R, Chaki M, Zhou W et al. 2010. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat. Genet. 42:840–50
    [Google Scholar]
  99. 99.
    Otto EA, Tory K, Attanasio M, Zhou W, Chaki M et al. 2009. Hypomorphic mutations in meckelin (MKS3/TMEM67) cause nephronophthisis with liver fibrosis (NPHP11). J. Med. Genet. 46:663–70
    [Google Scholar]
  100. 100.
    Otto EA, Trapp ML, Schultheiss UT, Helou J, Quarmby LM, Hildebrandt F. 2008. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. J. Am. Soc. Nephrol. 19:587–92
    [Google Scholar]
  101. 101.
    Parisi MA, Bennett CL, Eckert ML, Dobyns WB, Gleeson JG et al. 2004. The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. Am. J. Hum. Genet. 75:82–91
    [Google Scholar]
  102. 102.
    Parisi MA, Glass I 2017. Joubert syndrome. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean et al. Seattle: Univ. Wash. https://www.ncbi.nlm.nih.gov/books/NBK1325
    [Google Scholar]
  103. 103.
    Parisi MA, Pinter JD, Glass IA, Field K, Maria BL et al. 2004. Cerebral and cerebellar motor activation abnormalities in a subject with Joubert syndrome: functional magnetic resonance imaging (MRI) study. J. Child Neurol. 19:214–18
    [Google Scholar]
  104. 104.
    Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL et al. 2000. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151:709–18
    [Google Scholar]
  105. 105.
    Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB. 2002. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 12:R378–80
    [Google Scholar]
  106. 106.
    Phelps IG, Dempsey JC, Grout ME, Isabella CR, Tully HM et al. 2018. Interpreting the clinical significance of combined variants in multiple recessive disease genes: systematic investigation of Joubert syndrome yields little support for oligogenicity. Genet. Med. 20:223–33
    [Google Scholar]
  107. 107.
    Poretti A, Snow J, Summers AC, Tekes A, Huisman T et al. 2017. Joubert syndrome: neuroimaging findings in 110 patients in correlation with cognitive function and genetic cause. J. Med. Genet. 54:521–29
    [Google Scholar]
  108. 108.
    Qiu H, Fujisawa S, Nozaki S, Katoh Y, Nakayama K. 2021. Interaction of INPP5E with ARL13B is essential for its ciliary membrane retention but dispensable for its ciliary entry. Biol. Open 10:bio057653
    [Google Scholar]
  109. 109.
    Rachel RA, Yamamoto EA, Dewanjee MK, May-Simera HL, Sergeev YV et al. 2015. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies. Hum. Mol. Genet. 24:3775–91
    [Google Scholar]
  110. 110.
    Reiter JF, Leroux MR. 2017. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18:533–47
    [Google Scholar]
  111. 111.
    Romani M, Micalizzi A, Kraoua I, Dotti MT, Cavallin M et al. 2014. Mutations in B9D1 and MKS1 cause mild Joubert syndrome: expanding the genetic overlap with the lethal ciliopathy Meckel syndrome. Orphanet J. Rare Dis. 9:72
    [Google Scholar]
  112. 112.
    Romani M, Micalizzi A, Valente EM. 2013. Joubert syndrome: congenital cerebellar ataxia with the molar tooth. Lancet Neurol 12:894–905
    [Google Scholar]
  113. 113.
    Ross AJ, May-Simera H, Eichers ER, Kai M, Hill J et al. 2005. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat. Genet. 37:1135–40
    [Google Scholar]
  114. 114.
    Sanders AA, de Vrieze E, Alazami AM, Alzahrani F, Malarkey EB et al. 2015. KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome. Genome Biol 16:293
    [Google Scholar]
  115. 115.
    Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ et al. 2011. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145:513–28
    [Google Scholar]
  116. 116.
    Sangermano R, Deitch I, Peter VG, Ba-Abbad R, Place EM et al. 2021. Broadening INPP5E phenotypic spectrum: detection of rare variants in syndromic and non-syndromic IRD. NPJ Genom. Med. 6:53
    [Google Scholar]
  117. 117.
    Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S et al. 2020. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180:568–84.e23
    [Google Scholar]
  118. 118.
    Sayer JA, Otto EA, O'Toole JF, Nurnberg G, Kennedy MA et al. 2006. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet. 38:674–81
    [Google Scholar]
  119. 119.
    Schroder S, Li Y, Yigit G, Altmuller J, Bader I et al. 2021. Heterozygous truncating variants in SUFU cause congenital ocular motor apraxia. Genet. Med. 23:341–51
    [Google Scholar]
  120. 120.
    Schueler M, Braun DA, Chandrasekar G, Gee HY, Klasson TD et al. 2015. DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting Wnt signaling. Am. J. Hum. Genet. 96:81–92
    [Google Scholar]
  121. 121.
    Serpieri V, D'Abrusco F, Dempsey JC, Cheng YH, Arrigoni F et al. 2021. SUFU haploinsufficiency causes a recognisable neurodevelopmental phenotype at the mild end of the Joubert syndrome spectrum. J. Med. Genet. In press. https://doi.org/10.1136/jmedgenet-2021-108114
    [Crossref] [Google Scholar]
  122. 122.
    Shaheen R, Almoisheer A, Faqeih E, Babay Z, Monies D et al. 2015. Identification of a novel MKS locus defined by TMEM107 mutation. Hum. Mol. Genet. 24:5211–18
    [Google Scholar]
  123. 123.
    Shaheen R, Ansari S, Mardawi EA, Alshammari MJ, Alkuraya FS. 2013. Mutations in TMEM231 cause Meckel-Gruber syndrome. J. Med. Genet. 50:160–62
    [Google Scholar]
  124. 124.
    Shaheen R, Faqeih E, Seidahmed MZ, Sunker A, Alali FE et al. 2011. A TCTN2 mutation defines a novel Meckel Gruber syndrome locus. Hum. Mutat. 32:573–78
    [Google Scholar]
  125. 125.
    Shaheen R, Jiang N, Alzahrani F, Ewida N, Al-Sheddi T et al. 2019. Bi-allelic mutations in FAM149B1 cause abnormal primary cilium and a range of ciliopathy phenotypes in humans. Am. J. Hum. Genet. 104:731–37
    [Google Scholar]
  126. 126.
    Shaheen R, Schmidts M, Faqeih E, Hashem A, Lausch E et al. 2015. A founder CEP120 mutation in Jeune asphyxiating thoracic dystrophy expands the role of centriolar proteins in skeletal ciliopathies. Hum. Mol. Genet. 24:1410–19
    [Google Scholar]
  127. 127.
    Shaheen R, Shamseldin HE, Loucks CM, Seidahmed MZ, Ansari S et al. 2014. Mutations in CSPP1, encoding a core centrosomal protein, cause a range of ciliopathy phenotypes in humans. Am. J. Hum. Genet. 94:73–79
    [Google Scholar]
  128. 128.
    Shaheen R, Szymanska K, Basu B, Patel N, Ewida N et al. 2016. Characterizing the morbid genome of ciliopathies. Genome Biol 17:242
    [Google Scholar]
  129. 129.
    Shen WC, Shian WJ, Chen CC, Chi CS, Lee SK, Lee KR. 1994. MRI of Joubert's syndrome. Eur. J. Radiol. 18:30–33
    [Google Scholar]
  130. 130.
    Shimada H, Lu Q, Insinna-Kettenhofen C, Nagashima K, English MA et al. 2017. In vitro modeling using ciliopathy-patient-derived cells reveals distinct cilia dysfunctions caused by CEP290 mutations. Cell Rep 20:384–96
    [Google Scholar]
  131. 131.
    Simpson MA, Cross HE, Cross L, Helmuth M, Crosby AH 2009. Lethal cystic kidney disease in Amish neonates associated with homozygous nonsense mutation of NPHP3. Am. J. Kidney Dis. 53:790–95
    [Google Scholar]
  132. 132.
    Smith C, Graham J. 1945. Congenital medullary cysts with severe refractory anemia. Am. J. Dis. Child. 69:369–77
    [Google Scholar]
  133. 133.
    Smith UM, Consugar M, Tee LJ, McKee BM, Maina EN et al. 2006. The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat. Genet. 38:191–96
    [Google Scholar]
  134. 134.
    Srivastava S, Ramsbottom SA, Molinari E, Alkanderi S, Filby A et al. 2017. A human patient-derived cellular model of Joubert syndrome reveals ciliary defects which can be rescued with targeted therapies. Hum. Mol. Genet. 26:4657–67
    [Google Scholar]
  135. 135.
    Srour M, Hamdan FF, McKnight D, Davis E, Mandel H et al. 2015. Joubert syndrome in French Canadians and identification of mutations in CEP104. Am. J. Hum. Genet. 97:744–53
    [Google Scholar]
  136. 136.
    Srour M, Hamdan FF, Schwartzentruber JA, Patry L, Ospina LH et al. 2012. Mutations in TMEM231 cause Joubert syndrome in French Canadians. J. Med. Genet. 49:636–41
    [Google Scholar]
  137. 137.
    Srour M, Schwartzentruber J, Hamdan FF, Ospina LH, Patry L et al. 2012. Mutations in C5ORF42 cause Joubert syndrome in the French Canadian population. Am. J. Hum. Genet. 90:693–700
    [Google Scholar]
  138. 138.
    Stokman M, Lilien M, Knoers N 2016. Nephronophthisis. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean, et al Seattle: Univ. Wash. https://www.ncbi.nlm.nih.gov/books/NBK368475
    [Google Scholar]
  139. 139.
    Suciu SK, Long AB, Caspary T. 2021. Smoothened and ARL13B are critical in mouse for superior cerebellar peduncle targeting. Genetics 218:iyab084
    [Google Scholar]
  140. 140.
    Tallila J, Jakkula E, Peltonen L, Salonen R, Kestila M. 2008. Identification of CC2D2A as a Meckel syndrome gene adds an important piece to the ciliopathy puzzle. Am. J. Hum. Genet. 82:1361–67
    [Google Scholar]
  141. 141.
    Thauvin-Robinet C, Lee JS, Lopez E, Herranz-Perez V, Shida T et al. 2014. The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation. Nat. Genet. 46:905–11
    [Google Scholar]
  142. 142.
    Thomas S, Legendre M, Saunier S, Bessieres B, Alby C et al. 2012. TCTN3 mutations cause Mohr-Majewski syndrome. Am. J. Hum. Genet. 91:372–78
    [Google Scholar]
  143. 143.
    Thomas S, Wright KJ, Le Corre S, Micalizzi A, Romani M et al. 2014. A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum. Mutat. 35:137–46
    [Google Scholar]
  144. 144.
    Tuz K, Bachmann-Gagescu R, O'Day DR, Hua K, Isabella CR et al. 2014. Mutations in CSPP1 cause primary cilia abnormalities and Joubert syndrome with or without Jeune asphyxiating thoracic dystrophy. Am. J. Hum. Genet. 94:62–72
    [Google Scholar]
  145. 145.
    Valente EM, Logan CV, Mougou-Zerelli S, Lee JH, Silhavy JL et al. 2010. Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat. Genet. 42:619–25
    [Google Scholar]
  146. 146.
    Valente EM, Silhavy JL, Brancati F, Barrano G, Krishnaswami SR et al. 2006. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat. Genet. 38:623–25
    [Google Scholar]
  147. 147.
    van Amerongen R, Nusse R. 2009. Towards an integrated view of Wnt signaling in development. Development 136:3205–14
    [Google Scholar]
  148. 148.
    Van De Weghe JC, Giordano JL, Mathijssen IB, Mojarrad M, Lugtenberg D et al. 2021. TMEM218 dysfunction causes ciliopathies, including Joubert and Meckel syndromes. HGG Adv. 2:100016
    [Google Scholar]
  149. 149.
    Van De Weghe JC, Rusterholz TDS, Latour B, Grout ME, Aldinger KA et al. 2017. Mutations in ARMC9, which encodes a basal body protein, cause Joubert syndrome in humans and ciliopathy phenotypes in zebrafish. Am. J. Hum. Genet. 101:23–36
    [Google Scholar]
  150. 150.
    Westfall JE, Hoyt C, Liu Q, Hsiao YC, Pierce EA et al. 2010. Retinal degeneration and failure of photoreceptor outer segment formation in mice with targeted deletion of the Joubert syndrome gene. Ahi1. J. Neurosci. 30:8759–68
    [Google Scholar]
  151. 151.
    Wheway G, Schmidts M, Mans DA, Szymanska K, Nguyen TT et al. 2015. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat. Cell Biol. 17:1074–87
    [Google Scholar]
  152. 152.
    Williams CL, Uytingco CR, Green WW, McIntyre JC, Ukhanov K et al. 2017. Gene therapeutic reversal of peripheral olfactory impairment in Bardet-Biedl syndrome. Mol. Ther. 25:904–16
    [Google Scholar]
  153. 153.
    Won J, Marin de Evsikova C, Smith RS, Hicks WL, Edwards MM et al. 2011. NPHP4 is necessary for normal photoreceptor ribbon synapse maintenance and outer segment formation, and for sperm development. Hum. Mol. Genet. 20:482–96
    [Google Scholar]
  154. 154.
    Wu C, Yang M, Li J, Wang C, Cao T et al. 2014. Talpid3-binding centrosomal protein Cep120 is required for centriole duplication and proliferation of cerebellar granule neuron progenitors. PLOS ONE 9:e107943
    [Google Scholar]
  155. 155.
    Yee LE, Garcia-Gonzalo FR, Bowie RV, Li C, Kennedy JK et al. 2015. Conserved genetic interactions between ciliopathy complexes cooperatively support ciliogenesis and ciliary signaling. PLOS Genet 11:e1005627
    [Google Scholar]
  156. 156.
    Zhang W, Taylor SP, Ennis HA, Forlenza KN, Duran I et al. 2018. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum. Mutat. 39:152–66
    [Google Scholar]
/content/journals/10.1146/annurev-genom-121321-093528
Loading
/content/journals/10.1146/annurev-genom-121321-093528
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error