1932

Abstract

Mitochondria are unusual organelles in that they contain their own genomes, which are kept apart from the rest of the DNA in the cell. While mitochondrial DNA (mtDNA) is essential for respiration and most multicellular life, maintaining a genome outside the nucleus brings with it a number of challenges. Chief among these is preserving mtDNA genomic integrity from one generation to the next. In this review, we discuss what is known about negative (purifying) selection mechanisms that prevent deleterious mutations from accumulating in mtDNA in the germline. Throughout, we focus on the female germline, as it is the tissue through which mtDNA is inherited in most organisms and, therefore, the tissue that most profoundly shapes the genome. We discuss recent progress in uncovering the mechanisms of germline mtDNA selection, from humans to invertebrates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-121420-081805
2021-08-31
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/genom/22/1/annurev-genom-121420-081805.html?itemId=/content/journals/10.1146/annurev-genom-121420-081805&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abdu Y, Maniscalco C, Heddleston JM, Chew T-L, Nance J 2016. Developmentally programmed germ cell remodelling by endodermal cell cannibalism. Nat. Cell Biol. 18:1302–10
    [Google Scholar]
  2. 2. 
    Ahier A, Dai CY, Tweedie A, Bezawork-Geleta A, Kirmes I, Zuryn S. 2018. Affinity purification of cell-specific mitochondria from whole animals resolves patterns of genetic mosaicism. Nat. Cell Biol. 20:352–60
    [Google Scholar]
  3. 3. 
    Allen JF. 2017. The CoRR hypothesis for genes in organelles. J. Theor. Biol. 434:50–57
    [Google Scholar]
  4. 4. 
    Altshuler DL, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A et al. 2010. A map of human genome variation from population-scale sequencing. Nature 467:1061–73
    [Google Scholar]
  5. 5. 
    Ameur A, Stewart JB, Freyer C, Hagström E, Ingman M et al. 2011. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLOS Genet 7:e1002028
    [Google Scholar]
  6. 6. 
    Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–65
    [Google Scholar]
  7. 7. 
    Andersson DI, Hughes D 1996. Muller's ratchet decreases fitness of a DNA-based microbe. PNAS 93:906–7
    [Google Scholar]
  8. 8. 
    Ashley MV, Laipis PJ, Hauswirth WW. 1989. Rapid segregation of heteroplasmic bovine mitochondria. Nucleic Acids Res 17:7325–31
    [Google Scholar]
  9. 9. 
    Barrett A, Arbeithuber B, Zaidi A, Wilton P, Paul IM et al. 2020. Pronounced somatic bottleneck in mitochondrial DNA of human hair. Philos. Trans. R. Soc. Lond. B 375:20190175
    [Google Scholar]
  10. 10. 
    Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA. 1981. Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–80
    [Google Scholar]
  11. 11. 
    Bilinski SM, Kloc M, Tworzydlo W. 2017. Selection of mitochondria in female germline cells: Is Balbiani body implicated in this process?. J. Assist. Reprod. Genet. 34:1405–12
    [Google Scholar]
  12. 12. 
    Björkholm P, Ernst AM, Hagström E, Andersson SGE. 2017. Why mitochondria need a genome revisited. FEBS Lett. 591:65–75
    [Google Scholar]
  13. 13. 
    Bogenhagen D, Clayton DA. 1977. Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell 11:719–27
    [Google Scholar]
  14. 14. 
    Bohnert KA, Kenyon C. 2017. A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage. Nature 551:629–33
    [Google Scholar]
  15. 15. 
    Bonen L, Cunningham RS, Gray MW, Doolittle WF. 1977. Wheat embryo mitochondrial 18S ribosomal RNA: evidence for its prokaryotic nature. Nucleic Acids Res 4:663–71
    [Google Scholar]
  16. 16. 
    Boulet L, Karpati G, Shoubridge EA. 1992. Distribution and threshold expression of the tRNALys mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). Am. J. Hum. Genet. 51:1187–200
    [Google Scholar]
  17. 17. 
    Bratic A, Kauppila TES, Macao B, Grönke S, Siibak T et al. 2015. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies. Nat. Commun. 6:8808
    [Google Scholar]
  18. 18. 
    Bratic I, Hench J, Henriksson J, Antebi A, Bürglin TR, Trifunovic A. 2009. Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development. Nucleic Acids Res 37:1817–28
    [Google Scholar]
  19. 19. 
    Brown WM. 1980. Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. PNAS 77:3605–9
    [Google Scholar]
  20. 20. 
    Brown WM, George M, Wilson AC 1979. Rapid evolution of animal mitochondrial DNA. PNAS 76:1967–71
    [Google Scholar]
  21. 21. 
    Burger G, Gray MW, Forget L, Lang BF. 2013. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol. Evol. 5:418–38
    [Google Scholar]
  22. 22. 
    Camus MF, Wolff JN, Sgrò CM, Dowling DK. 2017. Experimental support that natural selection has shaped the latitudinal distribution of mitochondrial haplotypes in Australian Drosophila melanogaster. Mol. Biol. Evol. 34:2600–12
    [Google Scholar]
  23. 23. 
    Cao L, Shitara H, Horii T, Nagao Y, Imai H et al. 2007. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat. Genet. 39:386–90
    [Google Scholar]
  24. 24. 
    Cao L, Shitara H, Sugimoto M, Hayashi JI, Abe K, Yonekawa H 2009. New evidence confirms that the mitochondrial bottleneck is generated without reduction of mitochondrial DNA content in early primordial germ cells of mice. PLOS Genet 5:e1000756
    [Google Scholar]
  25. 25. 
    Chacko LA, Mehta K, Ananthanarayanan V. 2019. Cortical tethering of mitochondria by the anchor protein Mcp5 enables uniparental inheritance. J. Cell Biol. 218:3560–71
    [Google Scholar]
  26. 26. 
    Chao L. 1990. Fitness of RNA virus decreased by Muller's ratchet. Nature 348:454–55
    [Google Scholar]
  27. 27. 
    Chapman J, Ng YS, Nicholls TJ. 2020. The maintenance of mitochondrial DNA integrity and dynamics by mitochondrial membranes. Life 10:164
    [Google Scholar]
  28. 28. 
    Charmpilas N, Tavernarakis N. 2020. Mitochondrial maturation drives germline stem cell differentiation in Caenorhabditis elegans. Cell Death Differ 27:601–17
    [Google Scholar]
  29. 29. 
    Chatre L, Ricchetti M. 2013. Prevalent coordination of mitochondrial DNA transcription and initiation of replication with the cell cycle. Nucleic Acids Res 41:3068–78
    [Google Scholar]
  30. 30. 
    Chen Z, Wang ZH, Zhang G, Bleck CKE, Chung DJ et al. 2020. Mitochondrial DNA segregation and replication restrict the transmission of detrimental mutation. J. Cell Biol. 219:e201905160
    [Google Scholar]
  31. 31. 
    Chiang AC-Y, McCartney E, O'Pharrell PH, Ma H 2019. A genome-wide screen reveals that reducing mitochondrial DNA polymerase can promote elimination of deleterious mitochondrial mutations. Curr. Biol. 29:4330–36.e3
    [Google Scholar]
  32. 32. 
    Colnaghi AM, Pomiankowski A, Lane N. 2020. The need for high-quality oocyte mitochondria at extreme ploidy dictates germline development. bioRxiv 2020.09.03.280628. https://doi.org/10.1101/2020.09.03.280628
    [Crossref]
  33. 33. 
    Cox RT, Spradling AC. 2003. A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130:1579–90
    [Google Scholar]
  34. 34. 
    Cox RT, Spradling AC 2006. Milton controls the early acquisition of mitochondria by Drosophila oocytes. 1333371–77
  35. 35. 
    Cree LM, Samuels DC, De Sousa Lopes SC, Rajasimha HK, Wonnapinij P et al. 2008. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat. Genet. 40:249–54
    [Google Scholar]
  36. 36. 
    De Fanti S, Vicario S, Lang M, Simone D, Magli C et al. 2017. Intra-individual purifying selection on mitochondrial DNA variants during human oogenesis. Hum. Reprod. 32:1100–7
    [Google Scholar]
  37. 37. 
    D'Erchia AM, Atlante A, Gadaleta G, Pavesi G, Chiara M et al. 2015. Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity. Mitochondrion 20:13–21
    [Google Scholar]
  38. 38. 
    Diaz F, Bayona-Bafaluy MP, Rana M, Mora M, Hao H, Moraes CT 2002. Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res. 30:4626–33
    [Google Scholar]
  39. 39. 
    Durham SE, Samuels DC, Cree LM, Chinnery PF. 2007. Normal levels of wild-type mitochondrial DNA maintain cytochrome c oxidase activity for two pathogenic mitochondrial DNA mutations but not for m.3243A→G. Am. J. Hum. Genet. 81:189–95
    [Google Scholar]
  40. 40. 
    Ebert KM, Liem H, Hecht NB. 1988. Mitochondrial DNA in the mouse preimplantation embryo. J. Reprod. Fertil. 71:405–13
    [Google Scholar]
  41. 41. 
    Elson JL, Andrews RM, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. 2001. Analysis of European mtDNAs for recombination. Am. J. Hum. Genet. 68:145–53
    [Google Scholar]
  42. 42. 
    Ephrussi B. 1949. Action de l'acrifiavine sur les levures. Unités Biologiques Douées de Continuité Génétique165–80 Paris: Publ. Cent. Natl. Rech. Sci.
    [Google Scholar]
  43. 43. 
    Fan W, Waymire KG, Narula N, Li P, Rocher C et al. 2008. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319:958–62
    [Google Scholar]
  44. 44. 
    Farge G, Falkenberg M. 2019. Organization of DNA in mammalian mitochondria. Int. J. Mol. Sci. 20:2770
    [Google Scholar]
  45. 45. 
    Felsenstein J. 1974. The evolution advantage of recombination. Genetics 78:737–56
    [Google Scholar]
  46. 46. 
    Flegontov P, Michálek J, Janouškovec J, Lai D-H, Jirků M et al. 2015. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol. Biol. Evol. 32:1115–31
    [Google Scholar]
  47. 47. 
    Floros VI, Pyle A, Dietmann S, Wei W, Tang WWC et al. 2018. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat. Cell Biol. 20:144–51
    [Google Scholar]
  48. 48. 
    Fontanillas P, Dépraz A, Giorgi MS, Perrin N. 2004. Nonshivering thermogenesis capacity associated to mitochondrial DNA haplotypes and gender in the greater white-toothed shrew, Crocidura russula. Mol. Ecol. 14:661–70
    [Google Scholar]
  49. 49. 
    Freyer C, Cree LM, Mourier A, Stewart JB, Koolmeister C et al. 2012. Variation in germline mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission. Nat. Genet. 44:1282–85
    [Google Scholar]
  50. 50. 
    Gitschlag BL, Kirby CS, Samuels DC, Gangula RD, Mallal SA, Patel MR. 2016. Homeostatic responses regulate selfish mitochondrial genome dynamics in C. elegans. Cell Metab 24:91–103
    [Google Scholar]
  51. 51. 
    Gitschlag BL, Tate AT, Patel MR. 2020. Nutrient status shapes selfish mitochondrial genome dynamics across different levels of selection. eLife 9:e56686
    [Google Scholar]
  52. 52. 
    Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL et al. 2015. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77:753–59
    [Google Scholar]
  53. 53. 
    Greiner S, Sobanski J, Bock R. 2015. Why are most organelle genomes transmitted maternally?. BioEssays 37:80–94
    [Google Scholar]
  54. 54. 
    Grollman AP, Moriya M. 1993. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 9:246–49
    [Google Scholar]
  55. 55. 
    Hagström E, Freyer C, Battersby BJ, Stewart JB, Larsson NG. 2014. No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline. Nucleic Acids Res 42:1111–16
    [Google Scholar]
  56. 56. 
    Hauswirth WW, Laipis PJ 1982. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. PNAS 79:4686–90
    [Google Scholar]
  57. 57. 
    Hill JH, Chen Z, Xu H 2014. Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant. Nat. Genet. 46:389–92
    [Google Scholar]
  58. 58. 
    Holt IJ, Harding AE, Morgan-Hughes JA. 1989. Deletions of muscle mitochondrial DNA in mitochondrial myopathies: sequence analysis and possible mechanisms. Nucleic Acids Res. 17:4465–69
    [Google Scholar]
  59. 59. 
    Holt IJ, Harding AE, Petty RKH, Morgan-Hughes JA. 1990. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet. 46:428–33
    [Google Scholar]
  60. 60. 
    Howe DK, Denver DR. 2008. Muller's ratchet and compensatory mutation in Caenorhabditis briggsae mitochondrial genome evolution. BMC Evol. Biol. 8:62
    [Google Scholar]
  61. 61. 
    Howell N, Smejkal CB, Mackey DA, Chinnery PF, Turnbull DM et al. 2003. The pedigree rate of sequence divergence in the human mitochondrial genome: There is a difference between phylogenetic and pedigree rates. Am. J. Hum. Genet. 72:659–70
    [Google Scholar]
  62. 62. 
    Hsu HJ, Drummond-Barbosa D. 2017. A visual screen for diet-regulated proteins in the Drosophila ovary using GFP protein trap lines. Gene Expr. Patterns23–2413–21
    [Google Scholar]
  63. 63. 
    Huang CC, Chu CC, Pang CY, Wei YH. 1999. Tissue mosaicism in the skeletal muscle and sural nerve biopsies in the MELAS syndrome. Acta Neurol. Scand. 99:125–29
    [Google Scholar]
  64. 64. 
    Hurd TR, Herrmann B, Sauerwald J, Sanny J, Grosch M, Lehmann R. 2016. Long Oskar controls mitochondrial inheritance in Drosophila melanogaster. Dev. Cell 39:560–71
    [Google Scholar]
  65. 65. 
    Itsara LS, Kennedy SR, Fox EJ, Yu S, Hewitt JJ et al. 2014. Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLOS Genet 10:e1003974
    [Google Scholar]
  66. 66. 
    Jamieson-Lucy A, Mullins MC 2019. The vertebrate Balbiani body, germ plasm, and oocyte polarity. Curr. Top. Dev. Biol. 135:1–34
    [Google Scholar]
  67. 67. 
    Jenuth JP, Peterson AC, Fu K, Shoubridge EA. 1996. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat. Med. 2:534–39
    [Google Scholar]
  68. 68. 
    Johnston IG, Burgstaller JP, Havlicek V, Kolbe T, Rülicke T et al. 2015. Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism. eLife 4:e07464
    [Google Scholar]
  69. 69. 
    Johnston IG, Williams BP. 2016. Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention. Cell Syst 2:101–11
    [Google Scholar]
  70. 70. 
    Kauppila JHK, Baines HL, Bratic A, Simard ML, Freyer C et al. 2016. A phenotype-driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Rep 16:2980–90
    [Google Scholar]
  71. 71. 
    Kennedy SR, Salk JJ, Schmitt MW, Loeb LA. 2013. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLOS Genet 9:se100379
    [Google Scholar]
  72. 72. 
    Khrapko K, Coller HA, André PC, Li XC, Hanekamp JS, Thilly WG 1997. Mitochondrial mutational spectra in human cells and tissues. PNAS 94:13798–803
    [Google Scholar]
  73. 73. 
    King RC, Aggarwal SK, Aggarwal U. 1968. The development of the female Drosophila reproductive system. J. Morphol. 124:143–65
    [Google Scholar]
  74. 74. 
    Koehler CM, Lindberg GL, Brown DR, Beitz DC, Freeman AE et al. 1991. Replacement of bovine mitochondrial DNA by a sequence variant within one generation. Genetics 129:247–55
    [Google Scholar]
  75. 75. 
    Kondo R, Satta Y, Matsuura ET, Ishiwa H, Takahata N, Chigusa SI. 1990. Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics 126:657–63
    [Google Scholar]
  76. 76. 
    Krakauer DC, Mira A 1999. Mitochondria and germ-cell death. Nature 400:125–26
    [Google Scholar]
  77. 77. 
    Kroon AM, Borst P, Van Bruggen EFJ, Ruttenberg GJCM 1966. Mitochondrial DNA from sheep heart. PNAS 56:1836–43
    [Google Scholar]
  78. 78. 
    Kujoth GC, Leeuwenburgh C, Prolla TA. 2005. Mitochondrial DNA mutations and apoptosis in mammalian aging. Science 66:7386–89
    [Google Scholar]
  79. 79. 
    Kukat C, Wurm CA, Spåhr H, Falkenberg M, Larsson NG, Jakobs S 2011. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. PNAS 108:13534–39
    [Google Scholar]
  80. 80. 
    Kuroda Y, Mitsui T, Kunishige M, Shono M, Akaike M et al. 2006. Parkin enhances mitochondrial biogenesis in proliferating cells. Hum. Mol. Genet. 15:883–95
    [Google Scholar]
  81. 81. 
    Lane N, Martin W. 2010. The energetics of genome complexity. Nature 467:929–34
    [Google Scholar]
  82. 82. 
    Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. 2019. Gametogenesis: a journey from inception to conception. Curr. Top. Dev. Biol. 132:257–310
    [Google Scholar]
  83. 83. 
    Lee HS, Ma H, Juanes RC, Tachibana M, Sparman M et al. 2012. Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Rep 1:506–15
    [Google Scholar]
  84. 84. 
    Lei L, Spradling AC. 2013. Mouse primordial germ cells produce cysts that partially fragment prior to meiosis. Development 140:2075–81
    [Google Scholar]
  85. 85. 
    Lei L, Spradling AC. 2016. Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science 352:95–99
    [Google Scholar]
  86. 86. 
    Lewis SC, Uchiyama LF, Nunnari J. 2016. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353:aaf5549
    [Google Scholar]
  87. 87. 
    Li M, Rothwell R, Vermaat M, Wachsmuth M, Schröder R et al. 2016. Transmission of human mtDNA heteroplasmy in the genome of the Netherlands families: support for a variable-size bottleneck. Genome Res. 26:417–26
    [Google Scholar]
  88. 88. 
    Li M, Schönberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M. 2010. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am. J. Hum. Genet. 87:237–49
    [Google Scholar]
  89. 89. 
    Liau WS, Gonzalez-Serricchio AS, Deshommes C, Chin K, LaMunyon CW. 2007. A persistent mitochondrial deletion reduces fitness and sperm performance in heteroplasmic populations of C. elegans. BMC Genet 8:8
    [Google Scholar]
  90. 90. 
    Lieber T, Jeedigunta SP, Palozzi JM, Lehmann R, Hurd TR. 2019. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature 570:380–84
    [Google Scholar]
  91. 91. 
    Lin YF, Schulz AM, Pellegrino MW, Lu Y, Shaham S, Haynes CM. 2016. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533:416–19
    [Google Scholar]
  92. 92. 
    Lott MT, Leipzig JN, Derbeneva O, Xie HM, Chalkia D et al. 2013. mtDNA variation and analysis using Mitomap and Mitomaster. Curr. Protoc. Bioinform. 44:123.1–26
    [Google Scholar]
  93. 93. 
    Ma H, O'Farrell PH 2016. Selfish drive can trump function when animal mitochondrial genomes compete. Nat. Genet. 48:798–802
    [Google Scholar]
  94. 94. 
    Ma H, Xu H, O'Farrell PH. 2014. Transmission of mitochondrial mutations and action of purifying selection in Drosophila melanogaster. Nat. Genet. 46:393–97
    [Google Scholar]
  95. 95. 
    Marchington DR, Scott-Brown M, Barlow DH, Poulton J. 2006. Mosaicism for mitochondrial DNA polymorphic variants in placenta has implications for the feasibility of prenatal diagnosis in mtDNA diseases. Eur. J. Hum. Genet. 14:816–23
    [Google Scholar]
  96. 96. 
    Meshnik L, Bar-Yaacov D, Kasztan D, Cohen T, Kishner M et al. 2020. Mutant C. elegans mitofusin leads to selective removal of mtDNA heteroplasmic deletions at different rates across generations. bioRxiv 610758. https://doi.org/10.1101/610758
    [Crossref]
  97. 97. 
    Montooth KL, Abt DN, Hofmann JW, Rand DM. 2009. Comparative genomics of Drosophila mtDNA: novel features of conservation and change across functional domains and lineages. J. Mol. Evol. 69:94–114
    [Google Scholar]
  98. 98. 
    Moraes CT, Ricci E, Bonilla E, DiMauro S, Schon EA. 1992. The mitochondrial tRNALeu(UUR) mutation in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS): genetic, biochemical, and morphological correlations in skeletal muscle. Am. J. Hum. Genet. 50:934–49
    [Google Scholar]
  99. 99. 
    Morales HE, Pavlova A, Joseph L, Sunnucks P. 2015. Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance. Mol. Ecol. 24:2820–37
    [Google Scholar]
  100. 100. 
    Muller HJ. 1964. The relation of recombination to mutational advance. Mutat. Res. 1:2–9
    [Google Scholar]
  101. 101. 
    Nachman MW. 1998. Deleterious mutations in animal mitochondrial DNA. Genetica 102–3:61–69
    [Google Scholar]
  102. 102. 
    Nass MMK. 1969. Mitochondrial DNA: I. Intramitochondrial distribution and structural relations of single- and double-length circular DNA. J. Mol. Biol. 42:521–28
    [Google Scholar]
  103. 103. 
    Nass S, Nass MM. 1963. Intramitochondrial fibers with DNA characteristics. II. Enzymatic and other hydrolytic treatments. J. Cell Biol. 19:613–29
    [Google Scholar]
  104. 104. 
    Niki Y, Chigusa SI, Matsuura ET. 1989. Complete replacement of mitochondrial DNA in Drosophila. Nature 341:551–52
    [Google Scholar]
  105. 105. 
    Olivo PD, Van de Walle MJ, Laipis PJ, Hauswirth WW. 1983. Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature 306:400–2
    [Google Scholar]
  106. 106. 
    Otten ABC, Sallevelt SCEH, Carling PJ, Dreesen JCFM, Drüsedau M et al. 2018. Mutation-specific effects in germline transmission of pathogenic mtDNA variants. Hum. Reprod. 33:1331–41
    [Google Scholar]
  107. 107. 
    Parsons TJ, Muniec DS, Sullivan K, Woodyatt N, Alliston-Greiner R et al. 1997. A high observed substitution rate in the human mitochondrial DNA control region. Nat. Genet. 15:363–68
    [Google Scholar]
  108. 108. 
    Payne BAI, Wilson IJ, Yu-Wai-Man P, Coxhead J, Deehan D et al. 2013. Universal heteroplasmy of human mitochondrial DNA. Hum. Mol. Genet. 22:384–90
    [Google Scholar]
  109. 109. 
    Pepling ME, Spradling AC. 1998. Female mouse germ cells form synchronously dividing cysts. Development 125:3323–28
    [Google Scholar]
  110. 110. 
    Pepling ME, Spradling AC. 2001. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev. Biol. 234:339–51
    [Google Scholar]
  111. 111. 
    Pepling ME, Wilhelm JE, O'Hara AL, Gephardt GW, Spradling AC 2007. Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. PNAS 104:187–92
    [Google Scholar]
  112. 112. 
    Pikó L, Taylor KD. 1987. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev. Biol. 123:364–74
    [Google Scholar]
  113. 113. 
    Rand DM. 2008. Mitigating mutational meltdown in mammalian mitochondria. PLOS Biol 6:e35
    [Google Scholar]
  114. 114. 
    Rand DM, Kann LM. 1998. Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Genetica 102–103 393–407
    [Google Scholar]
  115. 115. 
    Roger AJ, Muñoz-Gómez SA, Kamikawa R 2017. The origin and diversification of mitochondria. Curr. Biol. 27:R1177–92
    [Google Scholar]
  116. 116. 
    Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC. 2004. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223–26
    [Google Scholar]
  117. 117. 
    Sagan L. 1967. On the origin of mitosing cells. J. Theor. Biol. 14:225–74
    [Google Scholar]
  118. 118. 
    Saitou M. 2021. Mammalian germ cell development: from mechanism to in vitro reconstitution. Stem Cell Rep 16:669–80
    [Google Scholar]
  119. 119. 
    Santorelli FM, Shanske S, Macaya A, DeVivo DC, DiMauro S. 1993. The mutation at nt 8993 of mitochondrial DNA is a common cause of Leigh's syndrome. Ann. Neurol. 34:827–34
    [Google Scholar]
  120. 120. 
    Sato M, Sato K. 2013. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim. Biophys. Acta Mol. Cell Res. 1833:1979–84
    [Google Scholar]
  121. 121. 
    Sazonova MA, Sinyov VV, Barinova VA, Ryzhkova AI, Zhelankin AV et al. 2015. Mosaicism of mitochondrial genetic variation in atherosclerotic lesions of the human aorta. Biomed. Res. Int. 2015.825468
    [Google Scholar]
  122. 122. 
    Schatz G, Haslbrunner E, Tuppy H. 1964. Deoxyribonucleic acid associated with yeast mitochondria. Biochem. Biophys. Res. Commun. 15:127–32
    [Google Scholar]
  123. 123. 
    Schwartz RM, Dayhoff MO. 1978. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199:395–403
    [Google Scholar]
  124. 124. 
    Scott GR, Schulte PM, Egginton S, Scott ALM, Richards JG, Milsom WK. 2011. Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the bar-headed goose. Mol. Biol. Evol. 28:351–63
    [Google Scholar]
  125. 125. 
    Shuster RC, Rubenstein AJ, Wallace DC. 1988. Mitochondrial DNA in anucleate human blood cells. Biochem. Biophys. Res. Commun. 155:1360–65
    [Google Scholar]
  126. 126. 
    Soong NW, Hinton DR, Cortopassi G, Arnheim N. 1992. Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat. Genet. 2:318–23
    [Google Scholar]
  127. 127. 
    Sosa MX, Sivakumar IKA, Maragh S, Veeramachaneni V, Hariharan R et al. 2012. Next-generation sequencing of human mitochondrial reference genomes uncovers high heteroplasmy frequency. PLOS Comput. Biol. 8:e1002737
    [Google Scholar]
  128. 128. 
    Spelbrink JN, Toivonen JM, Hakkaart GAJ, Kurkela JM, Cooper HM et al. 2000. In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. J. Biol. Chem. 275:24818–28
    [Google Scholar]
  129. 129. 
    Stewart JB, Chinnery PF. 2020. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat. Rev. Genet. 22:106–18
    [Google Scholar]
  130. 130. 
    Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z et al. 2008. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLOS Biol 6:e10
    [Google Scholar]
  131. 131. 
    Sullins JA, Coleman-Hulbert AL, Gallegos A, Howe DK, Denver DR, Estes S. 2019. Complex transmission patterns and age-related dynamics of a selfish mtDNA deletion. Integr. Comp. Biol. 59:983–93
    [Google Scholar]
  132. 132. 
    Timmis JN, Ayliff MA, Huang CY, Martin W. 2004. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5:123–35
    [Google Scholar]
  133. 133. 
    Tokunaga M, Mita S, Murakami T, Kumamoto T, Uchino M et al. 1994. Single muscle fiber analysis of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Ann. Neurol. 35:413–19
    [Google Scholar]
  134. 134. 
    Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT et al. 2004. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–23
    [Google Scholar]
  135. 135. 
    Tsang WY, Lemire BD. 2002. Mitochondrial genome content is regulated during nematode development. Biochem. Biophys. Res. Commun. 291:8–16
    [Google Scholar]
  136. 136. 
    Tsang WY, Lemire BD. 2002. Stable heteroplasmy but differential inheritance of a large mitochondrial DNA deletion in nematodes. Biochem. Cell Biol. 80:645–54
    [Google Scholar]
  137. 137. 
    Veltri KL, Espiritu M, Singh G. 1990. Distinct genomic copy number in mitochondria of different mammalian organs. J. Cell. Physiol. 143:160–64
    [Google Scholar]
  138. 138. 
    Vermulst M, Bielas JH, Kujoth GC, Ladiges WC, Rabinovitch PS et al. 2007. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat. Genet. 39:540–43
    [Google Scholar]
  139. 139. 
    Wai T, Teoli D, Shoubridge EA. 2008. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat. Genet. 40:1484–88
    [Google Scholar]
  140. 140. 
    Wallace DC. 2013. A mitochondrial bioenergetic etiology of disease. J. Clin. Investig. 123:1405–12
    [Google Scholar]
  141. 141. 
    Wei W, Tuna S, Keogh MJ, Smith KR, Aitman TJ et al. 2019. Germline selection shapes human mitochondrial DNA diversity. Science 364:eaau6520
    [Google Scholar]
  142. 142. 
    Xu H, DeLuca SZ, O'Farrell PH. 2008. Manipulating the metazoan mitochondrial genome with targeted restriction enzymes. Science 321:575–77
    [Google Scholar]
  143. 143. 
    Yahalomi D, Atkinson SD, Neuhof M, Chang SE, Philippe H et al. 2020. A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome. PNAS 117:5358–63
    [Google Scholar]
  144. 144. 
    Yu Z, O'Farrell PH, Yakubovich N, DeLuca SZ 2017. The mitochondrial DNA polymerase promotes elimination of paternal mitochondrial genomes. Curr. Biol. 27:1033–39
    [Google Scholar]
  145. 145. 
    Zaidi AA, Wilton PR, Su MSW, Paul IM, Arbeithuber B et al. 2019. Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees. PNAS 116:25172–78
    [Google Scholar]
  146. 146. 
    Zeyl C, Mizesko M, de Visser JAGM. 2001. Mutational meltdown in laboratory yeast populations. Evolution 55:909–17
    [Google Scholar]
  147. 147. 
    Zhang Y, Chen Y, Gucek M, Xu H. 2016. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication. EMBO J 35:1045–57
    [Google Scholar]
  148. 148. 
    Zhang Y, Wang Z-H, Liu Y, Gucek M, Zhang F, Xu H. 2019. PINK1 inhibits local protein synthesis to limit transmission of deleterious mitochondrial DNA mutations. Mol. Cell 73:1127–37.e5
    [Google Scholar]
  149. 149. 
    Zhang YZ, Ouyang YC, Hou Y, Schatten H, Chen DY, Sun QY. 2008. Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis. Dev. Growth Differ. 50:189–201
    [Google Scholar]
  150. 150. 
    Zheng W, Khrapko K, Coller HA, Thilly WG, Copeland WC. 2006. Origins of human mitochondrial point mutations as DNA polymerase γ-mediated errors. Mutat. Res. 599:11–20
    [Google Scholar]
  151. 151. 
    Zouros E, Freeman KR, Ball AO, Pogson GH. 1992. Direct evidence for extensive paternal mitochondrial DNA inheritance in the marine mussel Mytilus. Nature 359:412–14
    [Google Scholar]
/content/journals/10.1146/annurev-genom-121420-081805
Loading
/content/journals/10.1146/annurev-genom-121420-081805
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error