1932

Abstract

We comprehensively review memory B cells (MBCs), covering the definition of MBCs and their identities and subsets, how MBCs are generated, where they are localized, how they are maintained, and how they are reactivated. Whereas naive B cells adopt multiple fates upon stimulation, MBCs are more restricted in their responses. Evolving work reveals that the MBC compartment in mice and humans consists of distinct subpopulations with differing effector functions. We discuss the various approaches to define subsets and subset-specific roles. A major theme is the need to both deliver faster effector function upon reexposure and readapt to antigenically variant pathogens while avoiding burnout, which would be the result if all MBCs generated only terminal effector function. We discuss cell-intrinsic differences in gene expression and signaling that underlie differences in function between MBCs and naive B cells and among MBC subsets and how this leads to memory responses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-041015-055531
2017-04-26
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/35/1/annurev-immunol-041015-055531.html?itemId=/content/journals/10.1146/annurev-immunol-041015-055531&mimeType=html&fmt=ahah

Literature Cited

  1. Netea MG, Latz E, Mills KHG, O'Neill LAJ. 1.  2015. Innate immune memory: a paradigm shift in understanding host defense. Nat. Immunol. 16:675–79 [Google Scholar]
  2. Yamane H, Paul WE. 2.  2012. Memory CD4+ T cells: fate determination, positive feedback and plasticity. Cell. Mol. Life Sci. 69:1577–83 [Google Scholar]
  3. Restifo NP, Gattinoni L. 3.  2013. Lineage relationship of effector and memory T cells. Curr. Opin. Immunol. 25:556–63 [Google Scholar]
  4. Harris DP, Haynes L, Sayles PC, Durso DK, Eaton SM. 4.  et al. 2000. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat. Immunol. 1:475–82 [Google Scholar]
  5. Lund FE, Garvy BA, Randall TD, Harris DP. 5.  2005. Regulatory roles for cytokine-producing B cells in infection and autoimmune disease. Curr. Dir. Autoimmun. 8:25–54 [Google Scholar]
  6. Duddy M, Niino M, Adatia F, Hebert S, Freedman M. 6.  et al. 2007. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J. Immunol. 178:6092–99 [Google Scholar]
  7. Slifka MK, Antia R, Whitmire JK, Ahmed R. 7.  1998. Humoral immunity due to long-lived plasma cells. Immunity 8:363–72 [Google Scholar]
  8. Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA. 8.  et al. 2003. Duration of antiviral immunity after smallpox vaccination. Nat. Med. 9:1131–37 [Google Scholar]
  9. Obukhanych TV, Nussenzweig MC. 9.  2006. T-independent type II immune responses generate memory B cells. J. Exp. Med. 203:305–10 [Google Scholar]
  10. Taillardet M, Haffar G, Mondière P, Asensio M-J, Gheit H. 10.  et al. 2009. The thymus-independent immunity conferred by a pneumococcal polysaccharide is mediated by long-lived plasma cells. Blood 114:4432–40 [Google Scholar]
  11. McHeyzer-Williams MG, Nossal GJV, Lalor PA. 11.  1991. Molecular characterization of single memory B cells. Nature 350:502–5 [Google Scholar]
  12. Pierce SK, Liu W. 12.  2013. Encoding immunological memory in the initiation of B-cell receptor signaling. Cold Spring Harb. Symp. Quant. Biol. 78:231–37 [Google Scholar]
  13. Anderson SM, Tomayko MM, Shlomchik MJ. 13.  2006. Intrinsic properties of human and murine memory B cells. Immunol. Rev. 211:280–94 [Google Scholar]
  14. Tomayko MM, Steinel NC, Anderson SM, Shlomchik MJ. 14.  2010. Cutting edge: hierarchy of maturity of murine memory B cell subsets. J. Immunol. 185:7146–50 [Google Scholar]
  15. Tomayko MM, Anderson SM, Brayton CE, Sadanand S, Steinel NC. 15.  et al. 2008. Systematic comparison of gene expression between murine memory and naive B cells demonstrates that memory B cells have unique signaling capabilities. J. Immunol. 181:27–38 [Google Scholar]
  16. Anderson SM, Hannum LG, Shlomchik MJ. 16.  2006. Cutting edge: memory B cell survival and function in the absence of secreted antibody and immune complexes on follicular dendritic cells. J. Immunol. 176:4515–19 [Google Scholar]
  17. Anderson SM, Tomayko MM, Ahuja A, Haberman AM, Shlomchik MJ. 17.  2007. New markers for murine memory B cells that define mutated and unmutated subsets. J. Exp. Med. 204:2103–14 [Google Scholar]
  18. Dogan I, Bertocci B, Vilmont V, Delbos F, Megret J. 18.  et al. 2009. Multiple layers of B cell memory with different effector functions. Nat. Immunol. 10:1292–99 [Google Scholar]
  19. Hougs L, Juul L, Ditzel HJ, Heilmann C, Svejgaard A, Barington T. 19.  1999. The first dose of a Haemophilus influenzae type B conjugate vaccine reactivates memory B cells: evidence for extensive clonal selection, intraclonal affinity maturation, and multiple isotype switches to IgA2. J. Immunol. 162:224–37 [Google Scholar]
  20. Frolich D, Giesecke C, Mei HE, Reiter K, Daridon C. 20.  et al. 2010. Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells. J. Immunol. 185:3103–10 [Google Scholar]
  21. Giesecke C, Frolich D, Reiter K, Mei HE, Wirries I. 21.  et al. 2014. Tissue distribution and dependence of responsiveness of human antigen-specific memory B cells. J. Immunol. 192:3091–100 [Google Scholar]
  22. Pape KA, Taylor JJ, Maul RW, Gearhart PJ, Jenkins MK. 22.  2011. Different B cell populations mediate early and late memory during an endogenous immune response. Science 331:1203–7 [Google Scholar]
  23. Taylor JJ, Pape KA, Jenkins MK. 23.  2012. A germinal center-independent pathway generates unswitched memory B cells early in the primary response. J. Exp. Med. 209:597–606 [Google Scholar]
  24. Hayakawa K, Ishii R, Yamasaki K, Kishimoto T, Hardy RR. 24.  1987. Isolation of high-affinity memory B cells: phycoerythrin as a probe for antigen-binding cells. PNAS 84:1379–83 [Google Scholar]
  25. Schittek B, Rajewsky K. 25.  1990. Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature 346:749–51 [Google Scholar]
  26. Schittek B, Rajewsky K, Forster I. 26.  1991. Dividing cells in bone marrow and spleen incorporate bromo-deoxyuridine with high efficiency. Eur. J. Immunol. 21:235–38 [Google Scholar]
  27. Weisel FJ, Appelt UK, Schneider AM, Horlitz JU, van Rooijen N. 27.  et al. 2010. Unique requirements for reactivation of virus-specific memory B lymphocytes. J. Immunol. 185:4011–21 [Google Scholar]
  28. Silvy A, Lagresle C, Bella C, Defrance T. 28.  1996. The differentiation of human memory B cells into specific antibody-secreting cells is CD40 independent. Eur. J. Immunol. 26:517–24 [Google Scholar]
  29. Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R. 29.  2003. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J. Immunol. 171:4969–73 [Google Scholar]
  30. Bernasconi NL, Traggiai E, Lanzavecchia A. 30.  2002. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298:2199–202 [Google Scholar]
  31. Clarke ET, Williams NA, Findlow J, Borrow R, Heyderman RS, Finn A. 31.  2013. Polysaccharide-specific memory B cells generated by conjugate vaccines in humans conform to the CD27+IgG+ isotype-switched memory B cell phenotype and require contact-dependent signals from bystander T cells activated by bacterial proteins to differentiate into plasma cells. J. Immunol. 191:6071–83 [Google Scholar]
  32. Joo HM, He Y, Sangster MY. 32.  2008. Broad dispersion and lung localization of virus-specific memory B cells induced by influenza pneumonia. PNAS 105:3485–90 [Google Scholar]
  33. Dal Porto JM, Haberman AM, Shlomchik MJ, Kelsoe G. 33.  1998. Antigen drives very low affinity B cells to become plasmacytes and enter germinal centers. J. Immunol. 161:5373–81 [Google Scholar]
  34. Dal Porto JM, Haberman AM, Kelsoe G, Shlomchik MJ. 34.  2002. Very low affinity B cells form germinal centers, become memory B cells, and participate in secondary immune responses when higher affinity competition is reduced. J. Exp. Med. 195:1215–21 [Google Scholar]
  35. Di Niro R, Lee SJ, Vander Heiden JA, Elsner RA, Trivedi N. 35.  et al. 2015. Salmonella infection drives promiscuous B cell activation followed by extrafollicular affinity maturation. Immunity 43:120–31 [Google Scholar]
  36. Wrammert J, Smith K, Miller J, Langley WA, Kokko K. 36.  et al. 2008. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453:667–71 [Google Scholar]
  37. Wrammert J, Onlamoon N, Akondy RS, Perng GC, Polsrila K. 37.  et al. 2012. Rapid and massive virus-specific plasmablast responses during acute dengue virus infection in humans. J. Virol. 86:2911–18 [Google Scholar]
  38. Klein U, Kuppers R, Rajewsky K. 38.  1997. Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood 89:1288–98 [Google Scholar]
  39. Tangye SG, Liu YJ, Aversa G, Phillips JH, de Vries JE. 39.  1998. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J. Exp. Med. 188:1691–703 [Google Scholar]
  40. Tangye SG, Avery DT, Deenick EK, Hodgkin PD. 40.  2003. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J. Immunol. 170:686–94 [Google Scholar]
  41. Good KL, Bryant VL, Tangye SG. 41.  2006. Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J. Immunol. 177:5236–47 [Google Scholar]
  42. Good KL, Avery DT, Tangye SG. 42.  2009. Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells. J. Immunol. 182:890–901 [Google Scholar]
  43. Tangye SG, Tarlinton DM. 43.  2009. Memory B cells: effectors of long-lived immune responses. Eur. J. Immunol. 39:2065–75 [Google Scholar]
  44. Bernasconi NL, Onai N, Lanzavecchia A. 44.  2003. A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 101:4500–4 [Google Scholar]
  45. Arpin C, Banchereau J, Liu Y-J. 45.  1997. Memory B cells are biased towards terminal differentiation: a strategy that may prevent repertoire freezing. J. Exp. Med. 186:931–40 [Google Scholar]
  46. Ehrhardt GRA, Hsu JT, Gartland L, Leu C-M, Zhang S. 46.  et al. 2005. Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J. Exp. Med. 202:783–91 [Google Scholar]
  47. Fecteau JF, Cote G, Neron S. 47.  2006. A new memory CD27IgG+ B cell population in peripheral blood expressing VH genes with low frequency of somatic mutation. J. Immunol. 177:3728–36 [Google Scholar]
  48. Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A. 48.  et al. 2007. A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J. Immunol. 178:6624–33 [Google Scholar]
  49. Kaech SM, Wherry EJ, Ahmed R. 49.  2002. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2:251–62 [Google Scholar]
  50. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA. 50.  et al. 2016. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532:512–16 [Google Scholar]
  51. Reese TA, Bi K, Kambal A, Filali-Mouhim A, Beura LK. 51.  et al. 2016. Sequential infection with common pathogens promotes human-like immune gene expression and altered vaccine response. Cell Host Microbe 19:713–19 [Google Scholar]
  52. Macallan DC, Wallace DL, Zhang Y, Ghattas H, Asquith B. 52.  et al. 2005. B-cell kinetics in humans: rapid turnover of peripheral blood memory cells. Blood 105:3633–40 [Google Scholar]
  53. Wirths S, Lanzavecchia A. 53.  2005. ABCB1 transporter discriminates human resting naive B cells from cycling transitional and memory B cells. Eur. J. Immunol. 35:3433–41 [Google Scholar]
  54. Anderson S, Tomayko M, Ahuja A, Haberman A, Shlomchik M. 54.  2007. New markers for murine memory B cells that define mutated and unmutated subsets. J. Exp. Med. 204:2103–14 [Google Scholar]
  55. Weisel FJ, Zuccarino-Catania GV, Chikina M, Shlomchik MJ. 55.  2016. A temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity 44:116–30 [Google Scholar]
  56. Onodera T, Takahashi Y, Yokoi Y, Ato M, Kodama Y. 56.  et al. 2012. Memory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfection. PNAS 109:2485–90 [Google Scholar]
  57. Bemark M, Bergqvist P, Stensson A, Holmberg A, Mattsson J, Lycke NY. 57.  2011. A unique role of the cholera toxin A1-DD adjuvant for long-term plasma and memory B cell development. J. Immunol. 186:1399–410 [Google Scholar]
  58. Lindner C, Thomsen I, Wahl B, Ugur M, Sethi MK. 58.  et al. 2015. Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat. Immunol. 16:880–88 [Google Scholar]
  59. Krishnamurty AT, Thouvenel CD, Portugal S, Keitany GJ, Kim KS. 59.  et al. 2016. Somatically hypermutated Plasmodium-specific IgM+ memory B cells are rapid, plastic, early responders upon malaria rechallenge. Immunity 45:402–14 [Google Scholar]
  60. Driver DJ, McHeyzer-Williams LJ, Cool M, Stetson DB, McHeyzer-Williams MG. 60.  2001. Development and maintenance of a B220 memory B cell compartment. J. Immunol. 167:1393–405 [Google Scholar]
  61. Bell J, Gray D. 61.  2003. Antigen-capturing cells can masquerade as memory B cells. J. Exp. Med. 197:1233–44 [Google Scholar]
  62. Wolniak KL, Noelle RJ, Waldschmidt TJ. 62.  2006. Characterization of (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific germinal center B cells and antigen-binding B220 cells after primary NP challenge in mice. J. Immunol. 177:2072–79 [Google Scholar]
  63. Dell CL, Lu Y, Claflin JL. 63.  1989. Molecular analysis of clonal stability and longevity in B cell memory. J. Immunol. 143:3364–70 [Google Scholar]
  64. Vajdy M, Lycke N. 64.  1995. Mucosal memory B cells retain the ability to produce IgM antibodies 2 years after oral immunization. Immunology 86:336–42 [Google Scholar]
  65. Jones DD, Wilmore JR, Allman D. 65.  2015. Cellular dynamics of memory B cell populations: IgM+ and IgG+ memory B cells persist indefinitely as quiescent cells. J. Immunol. 195:4753–59 [Google Scholar]
  66. Gitlin AD, von Boehmer L, Gazumyan A, Shulman Z, Oliveira TY, Nussenzweig MC. 66.  2016. Independent roles of switching and hypermutation in the development and persistence of B lymphocyte memory. Immunity 44:769–81 [Google Scholar]
  67. Bar-Or A, Oliveira EM, Anderson DE, Krieger JI, Duddy M. 67.  et al. 2001. Immunological memory: contribution of memory B cells expressing costimulatory molecules in the resting state. J. Immunol. 167:5669–77 [Google Scholar]
  68. Airoldi I, Raffaghello L, Cocco C, Guglielmino R, Roncella S. 68.  et al. 2004. Heterogeneous expression of interleukin-18 and its receptor in B-cell lymphoproliferative disorders deriving from naive, germinal center, and memory B lymphocytes. Clin. Cancer Res. 10:144–54 [Google Scholar]
  69. Ehrhardt GR, Hijikata A, Kitamura H, Ohara O, Wang JY, Cooper MD. 69.  2008. Discriminating gene expression profiles of memory B cell subpopulations. J. Exp. Med. 205:1807–17 [Google Scholar]
  70. Weiss GE, Crompton PD, Li S, Walsh LA, Moir S. 70.  et al. 2009. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J. Immunol. 183:2176–82 [Google Scholar]
  71. Llinàs L, Lázaro A, de Salort J, Matesanz-Isabel J, Sintes J, Engel P. 71.  2011. Expression profiles of novel cell surface molecules on B-cell subsets and plasma cells as analyzed by flow cytometry. Immunol. Lett. 134:113–21 [Google Scholar]
  72. Li H, Borrego F, Nagata S, Tolnay M. 72.  2016. Fc receptor-like 5 expression distinguishes two distinct subsets of human circulating tissue-like memory B cells. J. Immunol. 196:4064–74 [Google Scholar]
  73. Sullivan RT, Kim CC, Fontana MF, Feeney ME, Jagannathan P. 73.  et al. 2015. FCRL5 delineates functionally impaired memory B cells associated with Plasmodium falciparum exposure. PLOS Pathog. 11:e1004894 [Google Scholar]
  74. Isnardi I, Ng Y-S, Menard L, Meyers G, Saadoun D. 74.  et al. 2010. Complement receptor 2/CD21 human naive B cells contain mostly autoreactive unresponsive clones. Blood 115:5026–36 [Google Scholar]
  75. Rakhmanov M, Keller B, Gutenberger S, Foerster C, Hoenig M. 75.  et al. 2009. Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells. PNAS 106:13451–56 [Google Scholar]
  76. Moir S, Ho J, Malaspina A, Wang W, DiPoto AC. 76.  et al. 2008. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med. 205:1797–805 [Google Scholar]
  77. Charles ED, Brunetti C, Marukian S, Ritola KD, Talal AH. 77.  et al. 2011. Clonal B cells in patients with hepatitis C virus–associated mixed cryoglobulinemia contain an expanded anergic CD21low B-cell subset. Blood 117:5425–37 [Google Scholar]
  78. Dauby N, Kummert C, Lecomte S, Liesnard C, Delforge ML. 78.  et al. 2014. Primary human cytomegalovirus infection induces the expansion of virus-specific activated and atypical memory B cells. J. Infect. Dis. 210:1275–85 [Google Scholar]
  79. Portugal S, Tipton CM, Sohn H, Kone Y, Wang J. 79.  et al. 2015. Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function. eLife 4:e07218 [Google Scholar]
  80. Nicholas MW, Dooley MA, Hogan SL, Anolik J, Looney J. 80.  et al. 2008. A novel subset of memory B cells is enriched in autoreactivity and correlates with adverse outcomes in SLE. Clin. Immunol. 126:189–201 [Google Scholar]
  81. Wakabayashi C, Adachi T, Wienands J, Tsubata T. 81.  2002. A distinct signaling pathway used by the IgG-containing B cell antigen receptor. Science 298:2392–95 [Google Scholar]
  82. Martin SW, Goodnow CC. 82.  2002. Burst-enhancing role of the IgG membrane tail as a molecular determinant of memory. Nat. Immunol. 3:182–88 [Google Scholar]
  83. Xu Y, Xu L, Zhao M, Xu C, Fan Y. 83.  et al. 2014. No receptor stands alone: IgG B-cell receptor intrinsic and extrinsic mechanisms contribute to antibody memory. Cell Res 24:651–64 [Google Scholar]
  84. Lutz J, Dittmann K, Bosl MR, Winkler TH, Wienands J, Engels N. 84.  2016. Reactivation of IgG-switched memory B cells by BCR-intrinsic signal amplification promotes IgG antibody production. Nat. Commun. 6:8575 [Google Scholar]
  85. Wienands J, Engels N. 85.  2016. The memory function of the B cell antigen receptor. Curr. Top. Microbiol. Immunol. 393:107–21 [Google Scholar]
  86. Zuccarino-Catania GV, Sadanand S, Weisel FJ, Tomayko MM, Meng H. 86.  et al. 2014. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol. 15:631–37 [Google Scholar]
  87. Kometani K, Nakagawa R, Shinnakasu R, Kaji T, Rybouchkin A. 87.  et al. 2013. Repression of the transcription factor Bach2 contributes to predisposition of IgG1 memory B cells toward plasma cell differentiation. Immunity 39:136–47 [Google Scholar]
  88. Jash A, Wang Y, Weisel FJ, Scharer CD, Boss JM. 88.  et al. 2016. ZBTB32 restricts the duration of memory B cell recall responses. J. Immunol. 197:1159–68 [Google Scholar]
  89. Good KL, Tangye SG. 89.  2007. Decreased expression of Krüppel-like factors in memory B cells induces the rapid response typical of secondary antibody responses. PNAS 104:13420–25 [Google Scholar]
  90. Seifert M, Przekopowitz M, Taudien S, Lollies A, Ronge V. 90.  et al. 2015. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. PNAS 112:E546–55 [Google Scholar]
  91. Davey AM, Pierce SK. 91.  2012. Intrinsic differences in the initiation of B cell receptor signaling favor responses of human IgG+ memory B cells over IgM+ naive B cells. J. Immunol. 188:3332–41 [Google Scholar]
  92. Takahashi Y, Ohta H, Takemori T. 92.  2001. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity 14:181–92 [Google Scholar]
  93. Inamine A, Takahashi Y, Baba N, Miyake K, Tokuhisa T. 93.  et al. 2005. Two waves of memory B-cell generation in the primary immune response. Int. Immunol. 17:581–89 [Google Scholar]
  94. Toyama H, Okada S, Hatano M, Takahashi Y, Takeda N. 94.  et al. 2002. Memory B cells without somatic hypermutation are generated from Bcl6-deficient B cells. Immunity 17:329–39 [Google Scholar]
  95. Kaji T, Ishige A, Hikida M, Taka J, Hijikata A. 95.  et al. 2012. Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory. J. Exp. Med. 209:2079–97 [Google Scholar]
  96. Berkowska MA, Driessen GJA, Bikos V, Grosserichter-Wagener C, Stamatopoulos K. 96.  et al. 2011. Human memory B cells originate from three distinct germinal center–dependent and –independent maturation pathways. Blood 118:2150–58 [Google Scholar]
  97. Tangye SG, Good KL. 97.  2007. Human IgM+CD27+ B cells: memory B cells or “memory” B cells?. J. Immunol. 179:13–19 [Google Scholar]
  98. Schwickert TA, Victora GD, Fooksman DR, Kamphorst AO, Mugnier MR. 98.  et al. 2011. A dynamic T cell–limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J. Exp. Med. 208:1243–52 [Google Scholar]
  99. Song H, Cerny J. 99.  2003. Functional heterogeneity of marginal zone B cells revealed by their ability to generate both early antibody-forming cells and germinal centers with hypermutation and memory in response to a T-dependent antigen. J. Exp. Med. 198:1923–35 [Google Scholar]
  100. Baumgarth N. 100.  2013. Innate-like B cells and their rules of engagement. Adv. Exp. Med. Biol 78557–66 [Google Scholar]
  101. Foote JB, Kearney JF. 101.  2009. Generation of B cell memory to the bacterial polysaccharide α-1,3 dextran. J. Immunol. 183:6359–68 [Google Scholar]
  102. Alugupalli KR, Leong JM, Woodland RT, Muramatsu M, Honjo T, Gerstein RM. 102.  2004. B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity 21:379–90 [Google Scholar]
  103. Liu Y-J, Barthelemy C, de Bouteiller O, Arpin C, Durand I, Banchereau J. 103.  1995. Memory B cells from human tonsils colonize mucosal epithelium and directly present antigen to T cells by rapid up-regulation of B7-1 and B7-2. Immunity 2:239–48 [Google Scholar]
  104. Dunn-Walters DK, Isaacson PG, Spencer J. 104.  1996. Sequence analysis of rearranged IgVH genes from microdissected human Peyer's patch marginal zone B cells. Immunology 88:618–24 [Google Scholar]
  105. Mahanonda R, Champaiboon C, Subbalekha K, Sa-Ard-Iam N, Rattanathammatada W. 105.  et al. 2016. Human memory B cells in healthy gingiva, gingivitis, and periodontitis. J. Immunol. 197:715–25 [Google Scholar]
  106. Vajdy M, Lycke N. 106.  1993. Stimulation of antigen-specific T- and B-cell memory in local as well as systemic lymphoid tissues following oral immunization with cholera toxin adjuvant. Immunology 80:197–203 [Google Scholar]
  107. Bemark M, Hazanov H, Stromberg A, Komban R, Holmqvist J. 107.  et al. 2016. Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization. Nat. Commun. 7:12698 [Google Scholar]
  108. Moyron-Quiroz JE, Rangel-Moreno J, Hartson L, Kusser K, Tighe MP. 108.  et al. 2006. Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity 25:643–54 [Google Scholar]
  109. Bunker JJ, Flynn TM, Koval JC, Shaw DG, Meisel M. 109.  et al. 2015. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43:541–53 [Google Scholar]
  110. Yuvaraj S, Dijkstra G, Burgerhof JG, Dammers PM, Stoel M. 110.  et al. 2009. Evidence for local expansion of IgA plasma cell precursors in human ileum. J. Immunol. 183:4871–78 [Google Scholar]
  111. Hapfelmeier S, Lawson MAE, Slack E, Kirundi JK, Stoel M. 111.  et al. 2010. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328:1705–9 [Google Scholar]
  112. Martinoli C, Chiavelli A, Rescigno M. 112.  2007. Entry route of Salmonella typhimurium directs the type of induced immune response. Immunity 27:975–84 [Google Scholar]
  113. Cunningham AF, Gaspal F, Serre K, Mohr E, Henderson IR. 113.  et al. 2007. Salmonella induces a switched antibody response without germinal centers that impedes the extracellular spread of infection. J. Immunol. 178:6200–7 [Google Scholar]
  114. Mittrucker HW, Raupach B, Kohler A, Kaufmann SH. 114.  2000. Cutting edge: role of B lymphocytes in protective immunity against Salmonella typhimurium infection. J. Immunol. 164:1648–52 [Google Scholar]
  115. Liu YJ, Oldfield S, MacLennan IC. 115.  1988. Memory B cells in T cell-dependent antibody responses colonize the splenic marginal zones. Eur. J. Immunol. 18:355–62 [Google Scholar]
  116. Steiniger B, Timphus E-M, Jacob R, Barth PJ. 116.  2005. CD27+ B cells in human lymphatic organs: re-evaluating the splenic marginal zone. Immunology 116:429–42 [Google Scholar]
  117. Takemori T, Kaji T, Takahashi Y, Shimoda M, Rajewsky K. 117.  2014. Generation of memory B cells inside and outside germinal centers. Eur. J. Immunol. 44:1258–64 [Google Scholar]
  118. Scholz JL, Crowley JE, Tomayko MM, Steinel N, O'Neill PJ. 118.  et al. 2008. BLyS inhibition eliminates primary B cells but leaves natural and acquired humoral immunity intact. PNAS 105:15517–22 [Google Scholar]
  119. Benson MJ, Dillon SR, Castigli E, Geha RS, Xu S. 119.  et al. 2008. Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J. Immunol. 180:3655–59 [Google Scholar]
  120. Ackermann JA, Nys J, Schweighoffer E, McCleary S, Smithers N, Tybulewicz VLJ. 120.  2015. Syk tyrosine kinase is critical for B cell antibody responses and memory B cell survival. J. Immunol. 194:4650–56 [Google Scholar]
  121. Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K. 121.  2004. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117:787–800 [Google Scholar]
  122. Turner M, Gulbranson-Judge A, Quinn ME, Walters AE, MacLennan IC, Tybulewicz VL. 122.  1997. Syk tyrosine kinase is required for the positive selection of immature B cells into the recirculating B cell pool. J. Exp. Med. 186:2013–21 [Google Scholar]
  123. Cornall RJ, Cheng AM, Pawson T, Goodnow CC. 123.  2000. Role of Syk in B-cell development and antigen-receptor signaling. PNAS 97:1713–18 [Google Scholar]
  124. Hobeika E, Levit-Zerdoun E, Anastasopoulou V, Pohlmeyer R, Altmeier S. 124.  et al. 2015. CD19 and BAFF‐R can signal to promote B‐cell survival in the absence of Syk. EMBO J 34:925–39 [Google Scholar]
  125. Torcia M, Bracci-Laudiero L, Lucibello M, Nencioni L, Labardi D. 125.  et al. 1996. Nerve growth factor is an autocrine survival factor for memory B lymphocytes. Cell 85:345–56 [Google Scholar]
  126. Bhattacharya D, Cheah MT, Franco CB, Hosen N, Pin CL. 126.  et al. 2007. Transcriptional profiling of antigen-dependent murine B cell differentiation and memory formation. J. Immunol. 179:6808–19 [Google Scholar]
  127. Luckey CJ, Bhattacharya D, Goldrath AW, Weissman IL, Benoist C, Mathis D. 127.  2006. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. PNAS 103:3304–9 [Google Scholar]
  128. Vieira P, Rajewsky K. 128.  1990. Persistence of memory B cells in mice deprived of T cell help. Int. Immunol. 2:487–94 [Google Scholar]
  129. Tew JG, Phipps RP, Madnel TE. 129.  1980. The follicular dendritic cell: long-term antigen retention during immunity. Immunol. Rev. 53:29–59 [Google Scholar]
  130. Kosco-Vilbois MH. 130.  2003. Opinion: Are follicular dendritic cells really good for nothing?. Nat. Rev. Immunol. 3:764–69 [Google Scholar]
  131. Gray D, Skarvall H. 131.  1988. B-cell memory is short-lived in the absence of antigen. Nature 336:70–73 [Google Scholar]
  132. Maruyama M, Lam KP, Rajewsky K. 132.  2000. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407:636–42 [Google Scholar]
  133. Hannum LG, Haberman AM, Anderson SM, Shlomchik MJ. 133.  2000. Germinal center initiation, variable gene region hypermutation, and mutant B cell selection without detectable immune complexes on follicular dendritic cells. J. Exp. Med. 192:931–42 [Google Scholar]
  134. Haberman AM, Shlomchik MJ. 134.  2003. Reassessing the function of immune-complex retention by follicular dendritic cells. Nat. Rev. Immunol. 3:757–64 [Google Scholar]
  135. Clybouw C, Fischer S, Auffredou MT, Hugues P, Alexia C. 135.  et al. 2011. Regulation of memory B-cell survival by the BH3-only protein Puma. Blood 118:4120–28 [Google Scholar]
  136. Vikstrom I, Carotta S, Luthje K, Peperzak V, Jost PJ. 136.  et al. 2010. Mcl-1 is essential for germinal center formation and B cell memory. Science 330:1095–99 [Google Scholar]
  137. Carrington EM, Vikstrom IB, Light A, Sutherland RM, Londrigan SL. 137.  et al. 2010. BH3 mimetics antagonizing restricted prosurvival Bcl-2 proteins represent another class of selective immune modulatory drugs. PNAS 107:10967–71 [Google Scholar]
  138. Shen P, Fillatreau S. 138.  2015. Antibody-independent functions of B cells: a focus on cytokines. Nat. Rev. Immunol. 15:441–51 [Google Scholar]
  139. Amanna I, Slifka M. 139.  2006. Quantitation of rare memory B cell populations by two independent and complementary approaches. J. Immunol. Methods 317:175–85 [Google Scholar]
  140. Bachmann M, Kundig T, Kalberer C, Hengartner H, Zinkernagel R. 140.  1994. How many specific B cells are needed to protect against a virus?. J. Immunol. 152:4235–41 [Google Scholar]
  141. Lalor PA, Nossal GJ, Sanderson RD, McHeyzer-Williams MG. 141.  1992. Functional and molecular characterization of single, (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific, IgG1+ B cells from antibody-secreting and memory B cell pathways in the C57BL/6 immune response to NP. Eur. J. Immunol. 22:3001–11 [Google Scholar]
  142. Li X, Vanitha D, Joo H, He Y, Rouse B, Sangster M. 142.  2006. A strategy for selective, CD4+ T cell-independent activation of virus-specific memory B cells for limiting dilution analysis. J. Immunol. Methods 313:110–18 [Google Scholar]
  143. Slifka M, Ahmed R. 143.  1996. Limiting dilution analysis of virus-specific memory B cells by an ELISPOT assay. J. Immunol. Methods 199:37–46 [Google Scholar]
  144. Vanitha D, Joo H, Rouse B, Sangster M. 144.  2007. Quantitative analysis of herpes simplex virus type 1-specific memory B cells generated by different routes of infection. Virology 360:136–42 [Google Scholar]
  145. Weiss U, Rajewsky K. 145.  1990. The repertoire of somatic antibody mutants accumulating in the memory compartment after primary immunization is restricted through affinity maturation and mirrors that expressed in the secondary response. J. Exp. Med. 172:1681–89 [Google Scholar]
  146. Helmreich E, Kern M, Eisen H. 146.  1961. The secretion of antibody by isolated lymph node cells. J. Biol. Chem. 236:464–73 [Google Scholar]
  147. Vieira P, Rajewsky K. 147.  1988. The half-lives of serum immunoglobulins in adult mice. Eur. J. Immunol. 18:313–16 [Google Scholar]
  148. Tarlinton D, Good-Jacobson K. 148.  2013. Diversity among memory B cells: origin, consequences, and utility. Science 341:1205–11 [Google Scholar]
  149. Good-Jacobson KL. 149.  2014. Regulation of germinal center, B-cell memory, and plasma cell formation by histone modifiers. Front. Immunol. 5:596 [Google Scholar]
  150. Wienands J, Engels N. 150.  2016. Control of memory B cell responses by extrinsic and intrinsic mechanisms. Immunol. Lett. 178:27–30 [Google Scholar]
  151. Engels N, Konig LM, Heemann C, Lutz J, Tsubata T. 151.  et al. 2009. Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor–intrinsic costimulation to class-switched B cells. Nat. Immunol. 10:1018–25 [Google Scholar]
  152. Engels N, Konig LM, Schulze W, Radtke D, Vanshylla K. 152.  et al. 2014. The immunoglobulin tail tyrosine motif upgrades memory-type BCRs by incorporating a Grb2-Btk signalling module. Nat. Commun. 5:5456 [Google Scholar]
  153. Ackermann JA, Radtke D, Maurberger A, Winkler TH, Nitschke L. 153.  2011. Grb2 regulates B-cell maturation, B-cell memory responses and inhibits B-cell Ca2+ signalling. EMBO J 30:1621–33 [Google Scholar]
  154. Hikida M, Casola S, Takahashi N, Kaji T, Takemori T. 154.  et al. 2009. PLC-γ2 is essential for formation and maintenance of memory B cells. J. Exp. Med. 206:681–89 [Google Scholar]
  155. Wakabayashi C, Adachi T, Wienands J, Tsubata T. 155.  2002. A distinct signaling pathway used by the IgG-containing B cell antigen receptor. Science 298:2392–95 [Google Scholar]
  156. Waisman A, Kraus M, Seagal J, Ghosh S, Melamed D. 156.  et al. 2007. IgG1 B cell receptor signaling is inhibited by CD22 and promotes the development of B cells whose survival is less dependent on Igα/β.. J. Exp. Med. 204:747–58 [Google Scholar]
  157. Shi Y, Agematsu K, Ochs HD, Sugane K. 157.  2003. Functional analysis of human memory B-cell subpopulations: IgD+CD27+ B cells are crucial in secondary immune response by producing high affinity IgM. Clin. Immunol. 108:128–37 [Google Scholar]
  158. Hobeika E, Maity PC, Jumaa H. 158.  2016. Control of B cell responsiveness by isotype and structural elements of the antigen receptor. Trends Immunol 37:310–20 [Google Scholar]
  159. Übelhart R, Hug E, Bach MP, Wossning T, Dühren-von Minden M. 159.  et al. 2015. Responsiveness of B cells is regulated by the hinge region of IgD. Nat. Immunol. 16:534–43 [Google Scholar]
  160. Cumano A, Rajewsky K. 160.  1986. Clonal recruitment and somatic mutation in the generation of immunological memory to the hapten NP. EMBO J 5:2459–68 [Google Scholar]
  161. Chen Z, Koralov SB, Gendelman M, Carroll MC, Kelsoe G. 161.  2000. Humoral immune responses in Cr2−/− mice: enhanced affinity maturation but impaired antibody persistence. J. Immunol. 164:4522–32 [Google Scholar]
  162. Zotos D, Coquet JM, Zhang Y, Light A, D'Costa K. 162.  et al. 2010. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207:365–78 [Google Scholar]
  163. Good-Jacobson KL, Szumilas CG, Chen L, Sharpe AH, Tomayko MM, Shlomchik MJ. 163.  2010. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat. Immunol. 11:535–42 [Google Scholar]
  164. Racine R, Jones DD, Chatterjee M, McLaughlin M, MacNamara KC, Winslow GM. 164.  2010. Impaired germinal center responses and suppression of local IgG production during intracellular bacterial infection. J. Immunol. 184:5085–93 [Google Scholar]
  165. Yates JL, Racine R, McBride KM, Winslow GM. 165.  2013. T cell–dependent IgM memory B cells generated during bacterial infection are required for IgG responses to antigen challenge. J. Immunol. 191:1240–49 [Google Scholar]
  166. Haniuda K, Nojima T, Ohyama K, Kitamura D. 166.  2011. Tolerance induction of IgG+ memory B cells by T cell-independent type II antigens. J. Immunol. 186:5620–28 [Google Scholar]
  167. Hebeis BJ, Klenovsek K, Rohwer P, Ritter U, Schneider A. 167.  et al. 2004. Activation of virus-specific memory B cells in the absence of T cell help. J. Exp. Med. 199:593–602 [Google Scholar]
  168. Koch G, Osmond DG, Julius MH, Benner R. 168.  1981. The mechanism of thymus-dependent antibody formation in bone marrow. J. Immunol. 126:1447–51 [Google Scholar]
  169. Shepherd D, Noelle R. 169.  1991. The lack of memory B cells in immune bone marrow. Transplantation 52:97–100 [Google Scholar]
  170. Slifka M, Antia R, Whitmire J, Ahmed R. 170.  1998. Humoral immunity due to long-lived plasma cells. Immunity 8:363–72 [Google Scholar]
  171. Ochsenbein A, Pinschewer D, Sierro S, Horvath E, Hengartner H, Zinkernagel R. 171.  2000. Protective long-term antibody memory by antigen-driven and T help-dependent differentiation of long-lived memory B cells to short-lived plasma cells independent of secondary lymphoid organs. PNAS 97:13263–68 [Google Scholar]
  172. Cinamon G, Matloubian M, Lesneski M, Xu Y, Low C. 172.  et al. 2004. Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat. Immunol. 5:713–20 [Google Scholar]
  173. Forster R, Mattis A, Kremmer E, Wolf E, Brem G, Lipp M. 173.  1996. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87:1037–47 [Google Scholar]
  174. Onodera T, Hosono A, Odagiri T, Tashiro M, Kaminogawa S. 174.  et al. 2016. Whole-virion influenza vaccine recalls an early burst of high-affinity memory B cell response through TLR signaling. J. Immunol. 196:4172–84 [Google Scholar]
  175. Boeckh M, Nichols W, Papanicolaou G, Rubin R, Wingard J, Zaia J. 175.  2003. Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biol. Blood Marrow Transplant. 9:543–58 [Google Scholar]
  176. Klenovsek K, Weisel F, Schneider A, Appelt U, Jonjic S. 176.  et al. 2007. Protection from CMV infection in immunodeficient hosts by adoptive transfer of memory B cells. Blood 110:3472–79 [Google Scholar]
  177. Weinberger B, Herndler-Brandstetter D, Schwanninger A, Weiskopf D, Grubeck-Loebenstein B. 177.  2008. Biology of immune responses to vaccines in elderly persons. Clin. Infect. Dis. 46:1078–84 [Google Scholar]
  178. Chiu C, Ellebedy AH, Wrammert J, Ahmed R. 178.  2015. B cell responses to influenza infection and vaccination. Curr. Top. Microbiol. Immunol. 386:381–98 [Google Scholar]
  179. Yu X, Tsibane T, McGraw PA, House FS, Keefer CJ. 179.  et al. 2008. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 455:532–36 [Google Scholar]
  180. Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F. 180.  et al. 2004. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med. 10:927–34 [Google Scholar]
  181. Baumgarth N, Choi YS, Rothaeusler K, Yang Y, Herzenberg LA. 181.  2008. B cell lineage contributions to antiviral host responses. Curr. Top. Microbiol. Immunol. 319:41–61 [Google Scholar]
  182. Adachi Y, Onodera T, Yamada Y, Daio R, Tsuiji M. 182.  et al. 2015. Distinct germinal center selection at local sites shapes memory B cell response to viral escape. J. Exp. Med. 212:1709–23 [Google Scholar]
  183. Pichyangkul S, Yongvanitchit K, Limsalakpetch A, Kum-Arb U, Im-Erbsin R. 183.  et al. 2015. Tissue distribution of memory T and B cells in rhesus monkeys following influenza A infection. J. Immunol. 195:4378–86 [Google Scholar]
  184. Li G-M, Chiu C, Wrammert J, McCausland M, Andrews SF. 184.  et al. 2012. Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. PNAS 109:9047–52 [Google Scholar]
  185. Andrews SF, Huang Y, Kaur K, Popova LI, Ho IY. 185.  et al. 2015. Immune history profoundly affects broadly protective B cell responses to influenza. Sci. Transl. Med. 7:316ra192 [Google Scholar]
  186. Li Y, Myers JL, Bostick DL, Sullivan CB, Madara J. 186.  et al. 2013. Immune history shapes specificity of pandemic H1N1 influenza antibody responses. J. Exp. Med. 210:1493–500 [Google Scholar]
  187. Neu KE, Henry Dunand CJ, Wilson PC. 187.  2016. Heads, stalks and everything else: How can antibodies eradicate influenza as a human disease?. Curr. Opin. Immunol. 42:48–55 [Google Scholar]
  188. Moir S, Fauci AS. 188.  2009. B cells in HIV infection and disease. Nat. Rev. Immunol. 9:235–45 [Google Scholar]
  189. Kwong PD, Mascola JR. 189.  2012. Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies. Immunity 37:412–25 [Google Scholar]
  190. Wu X, Zhou T, Zhu J, Zhang B, Georgiev I. 190.  et al. 2011. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333:1593–602 [Google Scholar]
  191. Lynch RM, Tran L, Louder MK, Schmidt SD, Cohen M. 191.  et al. 2012. The development of CD4 binding site antibodies during HIV-1 infection. J. Virol. 86:7588–95 [Google Scholar]
  192. Klein F, Mouquet H, Dosenovic P, Scheid JF, Scharf L, Nussenzweig MC. 192.  2013. Antibodies in HIV-1 vaccine development and therapy. Science 341:1199–204 [Google Scholar]
  193. Mouquet H, Nussenzweig MC. 193.  2013. HIV: roadmaps to a vaccine. Nature 496:441–42 [Google Scholar]
/content/journals/10.1146/annurev-immunol-041015-055531
Loading
/content/journals/10.1146/annurev-immunol-041015-055531
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error