1932

Abstract

B cell subsets differ in development, tissue distribution, and mechanisms of activation. In response to infections, however, all can differentiate into extrafollicular plasmablasts that rapidly provide highly protective antibodies, indicating that these plasmablasts are the main humoral immune response effectors. Yet, the effectiveness of this response type depends on the presence of antigen-specific precursors in the circulating mature B cell pool, a pool that is generated initially through the stochastic processes of B cell receptor assembly. Importantly, germinal centers then mold the repertoire of this B cell pool to be increasingly responsive to pathogens by generating a broad array of antimicrobial memory B cells that act as highly effective precursors of extrafollicular plasmablasts. Such B cell repertoire molding occurs in two ways: continuously via the chronic germinal centers of mucosal lymphoid tissues, driven by the presence of the microbiome, and via de novo generated germinal centers following acute infections. For effectively evaluating humoral immunity as a correlate of immune protection, it might be critical to measure memory B cell pools in addition to antibody titers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042718-041238
2021-04-26
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-042718-041238.html?itemId=/content/journals/10.1146/annurev-immunol-042718-041238&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Montecino-Rodriguez E, Dorshkind K. 2012. B-1 B cell development in the fetus and adult. Immunity 36:13–21
    [Google Scholar]
  2. 2. 
    Baumgarth N. 2011. The double life of a B-1 cell: Self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 11:34–46
    [Google Scholar]
  3. 3. 
    Beaudin AE, Boyer SW, Perez-Cunningham J, Hernandez GE, Derderian SC et al. 2016. A transient developmental hematopoietic stem cell gives rise to innate-like B and T cells. Cell Stem Cell 19:768–83
    [Google Scholar]
  4. 4. 
    Yuan J, Nguyen CK, Liu X, Kanellopoulou C, Muljo SA. 2012. Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science 335:1195–200
    [Google Scholar]
  5. 5. 
    Ganal-Vonarburg SC, Hornef MW, Macpherson AJ. 2020. Microbial-host molecular exchange and its functional consequences in early mammalian life. Science 368:604–7
    [Google Scholar]
  6. 6. 
    Rechavi E, Lev A, Lee YN, Simon AJ, Yinon Y et al. 2015. Timely and spatially regulated maturation of B and T cell repertoire during human fetal development. Sci. Transl. Med. 7:276ra25
    [Google Scholar]
  7. 7. 
    Loder F, Mutschler B, Ray RJ, Paige CJ, Sideras P et al. 1999. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 190:75–89
    [Google Scholar]
  8. 8. 
    Hammad H, Vanderkerken M, Pouliot P, Deswarte K, Toussaint W et al. 2017. Transitional B cells commit to marginal zone B cell fate by Taok3-mediated surface expression of ADAM10. Nat. Immunol. 18:313–20
    [Google Scholar]
  9. 9. 
    Monroe JG, Dorshkind K. 2007. Fate decisions regulating bone marrow and peripheral B lymphocyte development. Adv. Immunol. 95:1–50
    [Google Scholar]
  10. 10. 
    Pillai S, Cariappa A, Moran ST. 2005. Marginal zone B cells. Annu. Rev. Immunol. 23:161–96
    [Google Scholar]
  11. 11. 
    Martin F, Oliver AM, Kearney JF. 2001. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14:617–29
    [Google Scholar]
  12. 12. 
    Arnon TI, Cyster JG. 2014. Blood, sphingosine-1-phosphate and lymphocyte migration dynamics in the spleen. Curr. Top. Microbiol. Immunol. 378:107–28
    [Google Scholar]
  13. 13. 
    Buza-Vidas N, Cheng M, Duarte S, Nozad H, Jacobsen SE, Sitnicka E. 2007. Crucial role of FLT3 ligand in immune reconstitution after bone marrow transplantation and high-dose chemotherapy. Blood 110:424–32
    [Google Scholar]
  14. 14. 
    Reboldi A, Cyster JG. 2016. Peyer's patches: organizing B-cell responses at the intestinal frontier. Immunol. Rev. 271:230–45
    [Google Scholar]
  15. 15. 
    Adamo L, Rocha-Resende C, Lin CY, Evans S, Williams J et al. 2020. Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart. JCI Insight 5:3e134700
    [Google Scholar]
  16. 16. 
    Sage AP, Tsiantoulas D, Binder CJ, Mallat Z. 2019. The role of B cells in atherosclerosis. Nat. Rev. Cardiol. 16:180–96
    [Google Scholar]
  17. 17. 
    Manz RA, Hauser AE, Hiepe F, Radbruch A. 2005. Maintenance of serum antibody levels. Annu. Rev. Immunol. 23:367–86
    [Google Scholar]
  18. 18. 
    Lino AC, Dang VD, Lampropoulou V, Welle A, Joedicke J et al. 2018. LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells. Immunity 49:120–33.e9
    [Google Scholar]
  19. 19. 
    Savage HP, Yenson VM, Sawhney SS, Mousseau BJ, Lund FE, Baumgarth N. 2017. Blimp-1-dependent and -independent natural antibody production by B-1 and B-1-derived plasma cells. J. Exp. Med. 214:2777–94
    [Google Scholar]
  20. 20. 
    Onodera T, Takahashi Y, Yokoi Y, Ato M, Kodama Y et al. 2012. Memory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfection. PNAS 109:2485–90
    [Google Scholar]
  21. 21. 
    Silva-Sanchez A, Randall TD. 2020. Role of iBALT in respiratory immunity. Curr. Top. Microbiol. Immunol. 426:21–43
    [Google Scholar]
  22. 22. 
    Loxton AG. 2019. Bcells and their regulatory functions during tuberculosis: latency and active disease. Mol. Immunol. 111:145–51
    [Google Scholar]
  23. 23. 
    Rosser EC, Mauri C. 2015. Regulatory B cells: origin, phenotype, and function. Immunity 42:607–12
    [Google Scholar]
  24. 24. 
    Mauri C, Menon M. 2017. Human regulatory B cells in health and disease: therapeutic potential. J. Clin. Investig. 127:772–79
    [Google Scholar]
  25. 25. 
    Tedder TF. 2015. B10 cells: a functionally defined regulatory B cell subset. J. Immunol. 194:1395–401
    [Google Scholar]
  26. 26. 
    Brandtzaeg P. 2009. Mucosal immunity: induction, dissemination, and effector functions. Scand. J. Immunol. 70:505–15
    [Google Scholar]
  27. 27. 
    Cebra JJ, Periwal SB, Lee G, Lee F, Shroff KE. 1998. Development and maintenance of the gut-associated lymphoid tissue (GALT): the roles of enteric bacteria and viruses. Dev. Immunol. 6:13–18
    [Google Scholar]
  28. 28. 
    Chen K, Magri G, Grasset EK, Cerutti A. 2020. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat. Rev. Immunol. 20:7427–41
    [Google Scholar]
  29. 29. 
    Wilson RP, McGettigan SE, Dang VD, Kumar A, Cancro MP et al. 2019. IgM plasma cells reside in healthy skin and accumulate with chronic inflammation. J. Investig. Dermatol. 139:2477–87
    [Google Scholar]
  30. 30. 
    Baumgarth N, Tung JW, Herzenberg LA. 2005. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol. 26:347–62
    [Google Scholar]
  31. 31. 
    Rajendran P, Chen YF, Chen YF, Chung LC, Tamilselvi S et al. 2018. The multifaceted link between inflammation and human diseases. J. Cell Physiol. 233:6458–71
    [Google Scholar]
  32. 32. 
    Ansel KM, Harris RB, Cyster JG. 2002. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16:67–76
    [Google Scholar]
  33. 33. 
    Ha SA, Tsuji M, Suzuki K, Meek B, Yasuda N et al. 2006. Regulation of B1 cell migration by signals through Toll-like receptors. J. Exp. Med. 203:2541–50
    [Google Scholar]
  34. 34. 
    Waffarn EE, Hastey CJ, Dixit N, Soo Choi Y, Cherry S et al. 2015. Infection-induced type I interferons activate CD11b on B-1 cells for subsequent lymph node accumulation. Nat. Commun. 6:8991
    [Google Scholar]
  35. 35. 
    Rauch PJ, Chudnovskiy A, Robbins CS, Weber GF, Etzrodt M et al. 2012. Innate response activator B cells protect against microbial sepsis. Science 335:597–601
    [Google Scholar]
  36. 36. 
    Smith FL, Baumgarth N. 2019. B-1 cell responses to infections. Curr. Opin. Immunol. 57:23–31
    [Google Scholar]
  37. 37. 
    Vale AM, Tanner JM, Schelonka RL, Zhuang Y, Zemlin M et al. 2010. The peritoneal cavity B-2 antibody repertoire appears to reflect many of the same selective pressures that shape the B-1a and B-1b repertoires. J. Immunol. 185:6085–95
    [Google Scholar]
  38. 38. 
    Amanna IJ, Slifka MK. 2010. Mechanisms that determine plasma cell lifespan and the duration of humoral immunity. Immunol. Rev. 236:125–38
    [Google Scholar]
  39. 39. 
    Robinson MJ, Webster RH, Tarlinton DM. 2020. How intrinsic and extrinsic regulators of plasma cell survival might intersect for durable humoral immunity. Immunol. Rev. 296:187–103
    [Google Scholar]
  40. 40. 
    Lu E, Cyster JG. 2019. G-protein coupled receptors and ligands that organize humoral immune responses. Immunol. Rev. 289:158–72
    [Google Scholar]
  41. 41. 
    Baeyens AAL, Schwab SR. 2020. Finding a way out: S1P signaling and immune cell migration. Annu. Rev. Immunol. 38:759–84
    [Google Scholar]
  42. 42. 
    Cyster JG, Schwab SR. 2012. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30:69–94
    [Google Scholar]
  43. 43. 
    Mackay CR, Kimpton WG, Brandon MR, Cahill RN. 1988. Lymphocyte subsets show marked differences in their distribution between blood and the afferent and efferent lymph of peripheral lymph nodes. J. Exp. Med. 167:1755–65
    [Google Scholar]
  44. 44. 
    Geherin SA, Fintushel SR, Lee MH, Wilson RP, Patel RT et al. 2012. The skin, a novel niche for recirculating B cells. J. Immunol. 188:6027–35
    [Google Scholar]
  45. 45. 
    Allie SR, Randall TD. 2020. Resident memory B cells. Viral Immunol 33:282–93
    [Google Scholar]
  46. 46. 
    Allie SR, Bradley JE, Mudunuru U, Schultz MD, Graf BA et al. 2019. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat. Immunol. 20:97–108
    [Google Scholar]
  47. 47. 
    Mueller SN, Mackay LK. 2016. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16:79–89
    [Google Scholar]
  48. 48. 
    Baumgarth N. 2004. B-cell immunophenotyping. Methods Cell Biol 75:643–62
    [Google Scholar]
  49. 49. 
    Roozendaal R, Mempel TR, Pitcher LA, Gonzalez SF, Verschoor A et al. 2009. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30:264–76
    [Google Scholar]
  50. 50. 
    Phan TG, Grigorova I, Okada T, Cyster JG. 2007. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 8:992–1000
    [Google Scholar]
  51. 51. 
    Phan TG, Green JA, Gray EE, Xu Y, Cyster JG. 2009. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat. Immunol. 10:786–93
    [Google Scholar]
  52. 52. 
    Tedford K, Steiner M, Koshutin S, Richter K, Tech L et al. 2017. The opposing forces of shear flow and sphingosine-1-phosphate control marginal zone B cell shuttling. Nat. Commun. 8:2261
    [Google Scholar]
  53. 53. 
    Cinamon G, Zachariah MA, Lam OM, Foss FW Jr., Cyster JG. 2008. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat. Immunol. 9:54–62
    [Google Scholar]
  54. 54. 
    Arnon TI, Horton RM, Grigorova IL, Cyster JG. 2013. Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature 493:684–88
    [Google Scholar]
  55. 55. 
    Mesin L, Ersching J, Victora GD. 2016. Germinal center B cell dynamics. Immunity 45:471–82
    [Google Scholar]
  56. 56. 
    Baumgarth N. 2013. How specific is too specific? B-cell responses to viral infections reveal the importance of breadth over depth. Immunol. Rev. 255:82–94
    [Google Scholar]
  57. 57. 
    Abbott RK, Crotty S. 2020. Factors in B cell competition and immunodominance. Immunol. Rev. 296:1120–31
    [Google Scholar]
  58. 58. 
    Wing JB, Lim EL, Sakaguchi S. 2020. Control of foreign Ag-specific Ab responses by Treg and Tfr. Immunol. Rev. 296:1104–19
    [Google Scholar]
  59. 59. 
    Krautler NJ, Kana V, Kranich J, Tian Y, Perera D et al. 2012. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150:194–206
    [Google Scholar]
  60. 60. 
    St. John AL, Abraham SN 2009. Salmonella disrupts lymph node architecture by TLR4-mediated suppression of homeostatic chemokines. Nat. Med. 15:1259–65
    [Google Scholar]
  61. 61. 
    Hastey CJ, Ochoa J, Olsen KJ, Barthold SW, Baumgarth N. 2014. MyD88- and TRIF-independent induction of type I interferon drives naive B cell accumulation but not loss of lymph node architecture in Lyme disease. Infect. Immun. 82:1548–58
    [Google Scholar]
  62. 62. 
    Tunev SS, Hastey CJ, Hodzic E, Feng S, Barthold SW, Baumgarth N. 2011. Lymphoadenopathy during Lyme borreliosis is caused by spirochete migration-induced specific B cell activation. PLOS Pathog 7:e1002066
    [Google Scholar]
  63. 63. 
    Glatman Zaretsky A, Silver JS, Siwicki M, Durham A, Ware CF, Hunter CA 2012. Infection with Toxoplasma gondii alters lymphotoxin expression associated with changes in splenic architecture. Infect. Immun. 80:3602–10
    [Google Scholar]
  64. 64. 
    Pape KA, Taylor JJ, Maul RW, Gearhart PJ, Jenkins MK. 2011. Different B cell populations mediate early and late memory during an endogenous immune response. Science 331:1203–7
    [Google Scholar]
  65. 65. 
    Chang WL, Coro ES, Rau FC, Xiao Y, Erle DJ, Baumgarth N. 2007. Influenza virus infection causes global respiratory tract B cell response modulation via innate immune signals. J. Immunol. 178:1457–67
    [Google Scholar]
  66. 66. 
    Coro ES, Chang WL, Baumgarth N. 2006. Type I IFN receptor signals directly stimulate local B cells early following influenza virus infection. J. Immunol. 176:4343–51
    [Google Scholar]
  67. 67. 
    Le Bon A, Thompson C, Kamphuis E, Durand V, Rossmann C et al. 2006. Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J. Immunol. 176:2074–78
    [Google Scholar]
  68. 68. 
    Shiow LR, Rosen DB, Brdickova N, Xu Y, An J et al. 2006. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440:540–44
    [Google Scholar]
  69. 69. 
    Rau FC, Dieter J, Luo Z, Priest SO, Baumgarth N. 2009. B7–1/2 (CD80/CD86) direct signaling to B cells enhances IgG secretion. J. Immunol. 183:7661–71
    [Google Scholar]
  70. 70. 
    Gomez AM, Ouellet M, Tremblay MJ. 2015. HIV-1-triggered release of type I IFN by plasmacytoid dendritic cells induces BAFF production in monocytes. J. Immunol. 194:2300–8
    [Google Scholar]
  71. 71. 
    Ittah M, Miceli-Richard C, Lebon P, Pallier C, Lepajolec C, Mariette X 2011. Induction of B cell-activating factor by viral infection is a general phenomenon, but the types of viruses and mechanisms depend on cell type. J. Innate Immun. 3:200–7
    [Google Scholar]
  72. 72. 
    Mackay F, Schneider P. 2009. Cracking the BAFF code. Nat. Rev. Immunol. 9:491–502
    [Google Scholar]
  73. 73. 
    Giordano D, Kuley R, Draves KE, Roe K, Holder U et al. 2020. BAFF produced by neutrophils and dendritic cells is regulated differently and has distinct roles in antibody responses and protective immunity against West Nile virus. J. Immunol. 204:1508–20
    [Google Scholar]
  74. 74. 
    Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM et al. 2000. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat. Immunol. 1:475–82
    [Google Scholar]
  75. 75. 
    Damdinsuren B, Zhang Y, Khalil A, Wood WH 3rd, Becker KG et al. 2010. Single round of antigen receptor signaling programs naive B cells to receive T cell help. Immunity 32:355–66
    [Google Scholar]
  76. 76. 
    Li J, Lu E, Yi T, Cyster JG. 2016. EBI2 augments Tfh cell fate by promoting interaction with Il-2-quenching dendritic cells. Nature 533:110–14
    [Google Scholar]
  77. 77. 
    Sun L, Paschall AV, Middleton DR, Ishihara M, Ozdilek A et al. 2020. Glycopeptide epitope facilitates HIV-1 envelope specific humoral immune responses by eliciting T cell help. Nat. Commun. 11:2550
    [Google Scholar]
  78. 78. 
    Scherle PA, Gerhard W 1986. Functional analysis of influenza-specific helper T cell clones in vivo: T cells specific for internal viral proteins provide cognate help for B cell responses to hemagglutinin. J. Exp. Med. 164:1114–28
    [Google Scholar]
  79. 79. 
    Sette A, Grey H, Oseroff C, Peters B, Moutaftsi M et al. 2009. Definition of epitopes and antigens recognized by vaccinia specific immune responses: their conservation in variola virus sequences, and use as a model system to study complex pathogens. Vaccine 27:Suppl. 6G21–26
    [Google Scholar]
  80. 80. 
    Sette A, Moutaftsi M, Moyron-Quiroz J, McCausland MM, Davies DH et al. 2008. Selective CD4+ T cell help for antibody responses to a large viral pathogen: deterministic linkage of specificities. Immunity 28:847–58
    [Google Scholar]
  81. 81. 
    Kleindienst P, Brocker T. 2005. Concerted antigen presentation by dendritic cells and B cells is necessary for optimal CD4 T-cell immunity in vivo. Immunology 115:556–64
    [Google Scholar]
  82. 82. 
    Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG. 2001. B cells and professional APCs recruit regulatory T cells via CCL4. Nat. Immunol. 2:1126–32
    [Google Scholar]
  83. 83. 
    Gulbranson-Judge A, MacLennan I. 1996. Sequential antigen-specific growth of T cells in the T zones and follicles in response to pigeon cytochrome c. Eur. J. Immunol. 26:1830–37
    [Google Scholar]
  84. 84. 
    Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–63
    [Google Scholar]
  85. 85. 
    Tran TH, Nakata M, Suzuki K, Begum NA, Shinkura R et al. 2010. B cell-specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nat. Immunol. 11:148–54
    [Google Scholar]
  86. 86. 
    Stone SL, Peel JN, Scharer CD, Risley CA, Chisolm DA et al. 2019. T-bet transcription factor promotes antibody-secreting cell differentiation by limiting the inflammatory effects of IFN-γ on B cells. Immunity 50:1172–87.e7
    [Google Scholar]
  87. 87. 
    Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ et al. 2011. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34:932–46
    [Google Scholar]
  88. 88. 
    Qi H, Cannons JL, Klauschen F, Schwartzberg PL, Germain RN. 2008. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455:764–69
    [Google Scholar]
  89. 89. 
    Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R et al. 2006. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7:978–86
    [Google Scholar]
  90. 90. 
    Ogg G, Cerundolo V, McMichael AJ. 2019. Capturing the antigen landscape: HLA-E, CD1 and MR1. Curr. Opin. Immunol. 59:121–29
    [Google Scholar]
  91. 91. 
    King IL, Fortier A, Tighe M, Dibble J, Watts GF et al. 2011. Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat. Immunol. 13:44–50
    [Google Scholar]
  92. 92. 
    Leadbetter EA, Brigl M, Illarionov P, Cohen N, Luteran MC et al. 2008. NK T cells provide lipid antigen-specific cognate help for B cells. PNAS 105:8339–44
    [Google Scholar]
  93. 93. 
    Detre C, Keszei M, Garrido-Mesa N, Kis-Toth K, Castro W et al. 2012. SAP expression in invariant NKT cells is required for cognate help to support B-cell responses. Blood 120:122–29
    [Google Scholar]
  94. 94. 
    Chang PP, Barral P, Fitch J, Pratama A, Ma CS et al. 2011. Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat. Immunol. 13:35–43
    [Google Scholar]
  95. 95. 
    Gaya M, Barral P, Burbage M, Aggarwal S, Montaner B et al. 2018. Initiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cells. Cell 172:517–33.e20
    [Google Scholar]
  96. 96. 
    Jacob J, Kassir R, Kelsoe G. 1991. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl: I. The architecture and dynamics of responding cell populations. J. Exp. Med. 173:1165–75
    [Google Scholar]
  97. 97. 
    MacLennan IC, Toellner KM, Cunningham AF, Serre K, Sze DM et al. 2003. Extrafollicular antibody responses. Immunol. Rev. 194:8–18
    [Google Scholar]
  98. 98. 
    Marshall JL, Zhang Y, Pallan L, Hsu MC, Khan M et al. 2011. Early B blasts acquire a capacity for Ig class switch recombination that is lost as they become plasmablasts. Eur. J. Immunol. 41:3506–12
    [Google Scholar]
  99. 99. 
    Roco JA, Mesin L, Binder SC, Nefzger C, Gonzalez-Figueroa P et al. 2019. Class-switch recombination occurs infrequently in germinal centers. Immunity 51:337–50.e7
    [Google Scholar]
  100. 100. 
    Wong R, Belk JA, Govero J, Uhrlaub JL, Reinartz D et al. 2020. Affinity-restricted memory B cells dominate recall responses to heterologous flaviviruses. Immunity 53:1078–94
    [Google Scholar]
  101. 101. 
    Viant C, Weymar GHJ, Esolano A, Chen S, Hartweger H et al. 2020. Antibody affinity shapes the choice between memory and germinal center B cell fates. Cell 183:1298–311
    [Google Scholar]
  102. 102. 
    Kaji T, Ishige A, Hikida M, Taka J, Hijikata A et al. 2012. Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory. J. Exp. Med. 209:2079–97
    [Google Scholar]
  103. 103. 
    Weisel FJ, Zuccarino-Catania GV, Chikina M, Shlomchik MJ. 2016. A temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity 44:116–30
    [Google Scholar]
  104. 104. 
    Taylor JJ, Pape KA, Jenkins MK. 2012. A germinal center-independent pathway generates unswitched memory B cells early in the primary response. J. Exp. Med. 209:597–606
    [Google Scholar]
  105. 105. 
    Pritchard GH, Krishnamurty AT, Netland J, Arroyo EN, Takehara KK, Pepper M. 2019. The development of optimally responsive Plasmodium-specific CD73+CD80+IgM+ memory B cells requires intrinsic Bcl6 expression but not CD4+ Tfh cells. bioRxiv 564351. https://doi.org/10.1101/564351
    [Crossref]
  106. 106. 
    Kenderes KJ, Levack RC, Papillion AM, Cabrera-Martinez B, Dishaw LM, Winslow GM. 2018. T-Bet+ IgM memory cells generate multi-lineage effector B cells. Cell Rep 24:824–37.e3
    [Google Scholar]
  107. 107. 
    Luckey CJ, Bhattacharya D, Goldrath AW, Weissman IL, Benoist C, Mathis D 2006. Memory T and B cells share a transcriptional profile of self-renewal with long-term hematopoietic stem cells. PNAS 103:3304–9
    [Google Scholar]
  108. 108. 
    Rollenske T, Szijarto V, Lukasiewicz J, Guachalla LM, Stojkovic K et al. 2018. Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen. Nat. Immunol. 19:617–24
    [Google Scholar]
  109. 109. 
    Sindhava VJ, Oropallo MA, Moody K, Naradikian M, Higdon LE et al. 2017. A TLR9-dependent checkpoint governs B cell responses to DNA-containing antigens. J. Clin. Investig. 127:1651–63
    [Google Scholar]
  110. 110. 
    Kallies A, Good-Jacobson KL. 2017. Transcription factor T-bet orchestrates lineage development and function in the immune system. Trends Immunol 38:287–97
    [Google Scholar]
  111. 111. 
    Racine R, Chatterjee M, Winslow GM. 2008. CD11c expression identifies a population of extrafollicular antigen-specific splenic plasmablasts responsible for CD4 T-independent antibody responses during intracellular bacterial infection. J. Immunol. 181:1375–85
    [Google Scholar]
  112. 112. 
    Yates JL, Racine R, McBride KM, Winslow GM. 2013. T cell-dependent IgM memory B cells generated during bacterial infection are required for IgG responses to antigen challenge. J. Immunol. 191:1240–49
    [Google Scholar]
  113. 113. 
    Myles A, Sanz I, Cancro MP. 2019. T-bet+ B cells: a common denominator in protective and autoreactive antibody responses?. Curr. Opin. Immunol. 57:40–45
    [Google Scholar]
  114. 114. 
    Portugal S, Obeng-Adjei N, Moir S, Crompton PD, Pierce SK. 2017. Atypical memory B cells in human chronic infectious diseases: an interim report. Cell Immunol 321:18–25
    [Google Scholar]
  115. 115. 
    Winslow GM, Papillion AM, Kenderes KJ, Levack RC. 2017. CD11c+ T-bet+ memory B cells: immune maintenance during chronic infection and inflammation?. Cell Immunol 321:8–17
    [Google Scholar]
  116. 116. 
    Zhu J, Jankovic D, Oler AJ, Wei G, Sharma S et al. 2012. The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 37:660–73
    [Google Scholar]
  117. 117. 
    Kardava L, Moir S, Shah N, Wang W, Wilson R et al. 2014. Abnormal B cell memory subsets dominate HIV-specific responses in infected individuals. J. Clin. Investig. 124:3252–62
    [Google Scholar]
  118. 118. 
    Moir S, Ho J, Malaspina A, Wang W, DiPoto AC et al. 2008. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med. 205:1797–805
    [Google Scholar]
  119. 119. 
    Weiss GE, Crompton PD, Li S, Walsh LA, Moir S et al. 2009. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J. Immunol. 183:2176–82
    [Google Scholar]
  120. 120. 
    Rubtsova K, Rubtsov AV, Cancro MP, Marrack P. 2015. Age-associated B cells: a T-bet-dependent effector with roles in protective and pathogenic immunity. J. Immunol. 195:1933–37
    [Google Scholar]
  121. 121. 
    Paus D, Phan TG, Chan TD, Gardam S, Basten A, Brink R. 2006. Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J. Exp. Med. 203:1081–91
    [Google Scholar]
  122. 122. 
    Ochiai K, Maienschein-Cline M, Simonetti G, Chen J, Rosenthal R et al. 2013. Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4. Immunity 38:918–29
    [Google Scholar]
  123. 123. 
    Cook SL, Franke MC, Sievert EP, Sciammas R. 2020. A synchronous IRF4-dependent gene regulatory network in B and helper T cells orchestrating the antibody response. Trends Immunol 41:614–28
    [Google Scholar]
  124. 124. 
    Kavaler J, Caton AJ, Staudt LM, Gerhard W 1991. A B cell population that dominates the primary response to influenza virus hemagglutinin does not participate in the memory response. Eur. J. Immunol. 21:2687–95
    [Google Scholar]
  125. 125. 
    Rothaeusler K, Baumgarth N. 2010. B-cell fate decisions following influenza virus infection. Eur. J. Immunol. 40:366–77
    [Google Scholar]
  126. 126. 
    Kauffman RC, Bhuiyan TR, Nakajima R, Mayo-Smith LM, Rashu R et al. 2016. Single-cell analysis of the plasmablast response to Vibrio cholerae demonstrates expansion of cross-reactive memory B cells. mBio 7:6e02021–16
    [Google Scholar]
  127. 127. 
    Garcia-Bates TM, Cordeiro MT, Nascimento EJ, Smith AP, Soares de Melo KM et al. 2013. Association between magnitude of the virus-specific plasmablast response and disease severity in dengue patients. J. Immunol. 190:80–87
    [Google Scholar]
  128. 128. 
    Zuccarino-Catania GV, Sadanand S, Weisel FJ, Tomayko MM, Meng H et al. 2014. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol. 15:631–37
    [Google Scholar]
  129. 129. 
    Erdei A, Isaak A, Torok K, Sandor N, Kremlitzka M et al. 2009. Expression and role of CR1 and CR2 on B and T lymphocytes under physiological and autoimmune conditions. Mol. Immunol. 46:2767–73
    [Google Scholar]
  130. 130. 
    Bournazos S, Ravetch JV. 2017. Fcγ receptor function and the design of vaccination strategies. Immunity 47:224–33
    [Google Scholar]
  131. 131. 
    Smith KG, Clatworthy MR. 2010. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol. 10:328–43
    [Google Scholar]
  132. 132. 
    Blandino R, Baumgarth N. 2019. Secreted IgM: new tricks for an old molecule. J. Leukoc. Biol. 106:1021–34
    [Google Scholar]
  133. 133. 
    Kubagawa H, Oka S, Kubagawa Y, Torii I, Takayama E et al. 2009. Identity of the elusive IgM Fc receptor (FcμR) in humans. J. Exp. Med. 206:2779–93
    [Google Scholar]
  134. 134. 
    Nguyen TTT, Graf BA, Randall TD, Baumgarth N. 2017. sIgM-FcμR interactions regulate early B cell activation and plasma cell development after influenza virus infection. J. Immunol. 199:1635–46
    [Google Scholar]
  135. 135. 
    Cedillo-Barrón L, García-Cordero J, Bustos-Arriaga J, León-Juárez M, Gutiérrez-Castañeda B. 2014. Antibody response to dengue virus. Microbes Infect 16:711–20
    [Google Scholar]
  136. 136. 
    Priyamvada L, Cho A, Onlamoon N, Zheng NY, Huang M et al. 2016. B cell responses during secondary dengue virus infection are dominated by highly cross-reactive, memory-derived plasmablasts. J. Virol. 90:5574–85
    [Google Scholar]
  137. 137. 
    Guzman MG, Alvarez M, Halstead SB. 2013. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol. 158:1445–59
    [Google Scholar]
  138. 138. 
    Zimmermann N, Thormann V, Hu B, Kohler AB, Imai-Matsushima A et al. 2016. Human isotype-dependent inhibitory antibody responses against Mycobacterium tuberculosis. EMBO Mol. Med. 8:1325–39
    [Google Scholar]
  139. 139. 
    Vijay R, Guthmiller JJ, Sturtz AJ, Surette FA, Rogers KJ et al. 2020. Infection-induced plasmablasts are a nutrient sink that impairs humoral immunity to malaria. Nat. Immunol. 21:790–801
    [Google Scholar]
  140. 140. 
    Muller O, Krawinkel M. 2005. Malnutrition and health in developing countries. CMAJ 173:279–86
    [Google Scholar]
  141. 141. 
    Victora GD, Wilson PC. 2015. Germinal center selection and the antibody response to influenza. Cell 163:545–48
    [Google Scholar]
  142. 142. 
    Suan D, Sundling C, Brink R. 2017. Plasma cell and memory B cell differentiation from the germinal center. Curr. Opin. Immunol. 45:97–102
    [Google Scholar]
  143. 143. 
    Cyster JG, Allen CDC. 2019. B cell responses: cell interaction dynamics and decisions. Cell 177:524–40
    [Google Scholar]
  144. 144. 
    Kennedy DE, Okoreeh MK, Maienschein-Cline M, Ai J, Veselits M et al. 2020. Novel specialized cell state and spatial compartments within the germinal center. Nat. Immunol. 21:660–70
    [Google Scholar]
  145. 145. 
    Kalinke U, Bucher EM, Ernst B, Oxenius A, Roost HP et al. 1996. The role of somatic mutation in the generation of the protective humoral immune response against vesicular stomatitis virus. Immunity 5:639–52
    [Google Scholar]
  146. 146. 
    Roost HP, Bachmann MF, Haag A, Kalinke U, Pliska V et al. 1995. Early high-affinity neutralizing anti-viral IgG responses without further overall improvements of affinity. PNAS 92:1257–61
    [Google Scholar]
  147. 147. 
    Bachmann MF, Kalinke U, Althage A, Freer G, Burkhart C et al. 1997. The role of antibody concentration and avidity in antiviral protection. Science 276:2024–27
    [Google Scholar]
  148. 148. 
    Chen H, Zhang Y, Ye AY, Du Z, Xu M et al. 2020. BCR selection and affinity maturation in Peyer's patch germinal centres. Nature 582:421–25
    [Google Scholar]
  149. 149. 
    Lanning DK, Knight KL. 2005. Intestinal bacteria and development of the antibody repertoire. Discov. Med. 5:393–98
    [Google Scholar]
  150. 150. 
    Mesin L, Schiepers A, Ersching J, Barbulescu A, Cavazzoni CB et al. 2020. Restricted clonality and limited germinal center reentry characterize memory B cell reactivation by boosting. Cell 180:92–106.e11
    [Google Scholar]
  151. 151. 
    Slifka MK, Antia R, Whitmire JK, Ahmed R 1998. Humoral immunity due to long-lived plasma cells. Immunity 8:363–72
    [Google Scholar]
  152. 152. 
    Wrammert J, Ahmed R. 2008. Maintenance of serological memory. Biol. Chem. 389:537–39
    [Google Scholar]
  153. 153. 
    Purtha WE, Tedder TF, Johnson S, Bhattacharya D, Diamond MS. 2011. Memory B cells, but not long-lived plasma cells, possess antigen specificities for viral escape mutants. J. Exp. Med. 208:2599–606
    [Google Scholar]
  154. 154. 
    Shinnakasu R, Inoue T, Kometani K, Moriyama S, Adachi Y et al. 2016. Regulated selection of germinal-center cells into the memory B cell compartment. Nat. Immunol. 17:861–69
    [Google Scholar]
  155. 155. 
    Leach S, Shinnakasu R, Adachi Y, Momota M, Makino-Okamura C et al. 2019. Requirement for memory B-cell activation in protection from heterologous influenza virus reinfection. Int. Immunol. 31:771–79
    [Google Scholar]
  156. 156. 
    Burton DR, Hangartner L. 2016. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu. Rev. Immunol. 34:635–59
    [Google Scholar]
  157. 157. 
    Hraber P, Seaman MS, Bailer RT, Mascola JR, Montefiori DC, Korber BT. 2014. Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. AIDS 28:163–69
    [Google Scholar]
  158. 158. 
    Doyle-Cooper C, Hudson KE, Cooper AB, Ota T, Skog P et al. 2013. Immune tolerance negatively regulates B cells in knock-in mice expressing broadly neutralizing HIV antibody 4E10. J. Immunol. 191:3186–91
    [Google Scholar]
  159. 159. 
    Yang G, Holl TM, Liu Y, Li Y, Lu X et al. 2013. Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies. J. Exp. Med. 210:241–56
    [Google Scholar]
  160. 160. 
    Haynes BF, Verkoczy L. 2014. Host controls of HIV neutralizing antibodies. Science 344:588–89
    [Google Scholar]
  161. 161. 
    Cho A, Wrammert J. 2016. Implications of broadly neutralizing antibodies in the development of a universal influenza vaccine. Curr. Opin. Virol. 17:110–15
    [Google Scholar]
  162. 162. 
    Andrews SF, Kaur K, Pauli NT, Huang M, Huang Y, Wilson PC. 2015. High preexisting serological antibody levels correlate with diversification of the influenza vaccine response. J. Virol. 89:3308–17
    [Google Scholar]
  163. 163. 
    Andrews SF, Huang Y, Kaur K, Popova LI, Ho IY et al. 2015. Immune history profoundly affects broadly protective B cell responses to influenza. Sci. Transl. Med. 7:316ra192
    [Google Scholar]
  164. 164. 
    Elsner RA, Hastey CJ, Olsen KJ, Baumgarth N. 2015. Suppression of long-lived humoral immunity following Borrelia burgdorferi infection. PLOS Pathog 11:e1004976
    [Google Scholar]
  165. 165. 
    Hastey CJ, Elsner RA, Barthold SW, Baumgarth N. 2012. Delays and diversions mark the development of B cell responses to Borrelia burgdorferi infection. J. Immunol. 188:5612–22
    [Google Scholar]
  166. 166. 
    Elsner RA, Shlomchik MJ. 2019. IL-12 blocks Tfh cell differentiation during Salmonella infection, thereby contributing to germinal center suppression. Cell Rep 29:2796–809.e5
    [Google Scholar]
  167. 167. 
    Meyer-Bahlburg A, Khim S, Rawlings DJ. 2007. B cell intrinsic TLR signals amplify but are not required for humoral immunity. J. Exp. Med. 204:3095–101
    [Google Scholar]
  168. 168. 
    Park SM, Ko HJ, Shim DH, Yang JY, Park YH et al. 2008. MyD88 signaling is not essential for induction of antigen-specific B cell responses but is indispensable for protection against Streptococcus pneumoniae infection following oral vaccination with attenuated Salmonella expressing PspA antigen. J. Immunol. 181:6447–55
    [Google Scholar]
  169. 169. 
    Browne EP, Littman DR. 2009. Myd88 is required for an antibody response to retroviral infection. PLOS Pathog 5:e1000298
    [Google Scholar]
  170. 170. 
    Sin JI. 2011. MyD88 signal is required for more efficient induction of Ag-specific adaptive immune responses and antitumor resistance in a human papillomavirus E7 DNA vaccine model. Vaccine 29:4125–31
    [Google Scholar]
  171. 171. 
    Guay HM, Andreyeva TA, Garcea RL, Welsh RM, Szomolanyi-Tsuda E. 2007. MyD88 is required for the formation of long-term humoral immunity to virus infection. J. Immunol. 178:5124–31
    [Google Scholar]
  172. 172. 
    Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. 2002. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–7
    [Google Scholar]
  173. 173. 
    Nundel K, Marshak-Rothstein A. 2019. The role of nucleic acid sensors and type I IFNs in patient populations and animal models of autoinflammation. Curr. Opin. Immunol. 61:74–79
    [Google Scholar]
  174. 174. 
    Lee MSJ, Natsume-Kitatani Y, Temizoz B, Fujita Y, Konishi A et al. 2019. B cell-intrinsic MyD88 signaling controls IFN-γ-mediated early IgG2c class switching in mice in response to a particulate adjuvant. Eur. J. Immunol. 49:1433–40
    [Google Scholar]
  175. 175. 
    Hou B, Saudan P, Ott G, Wheeler ML, Ji M et al. 2011. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity 34:375–84
    [Google Scholar]
  176. 176. 
    Kremlitzka M, Macsik-Valent B, Erdei A. 2015. Syk is indispensable for CpG-induced activation and differentiation of human B cells. Cell Mol. Life Sci. 72:2223–36
    [Google Scholar]
  177. 177. 
    Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz VLJ. 2017. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J. Exp. Med. 214:1269–80
    [Google Scholar]
  178. 178. 
    Corzo CA, Varfolomeev E, Setiadi AF, Francis R, Klabunde S et al. 2020. The kinase IRAK4 promotes endosomal TLR and immune complex signaling in B cells and plasmacytoid dendritic cells. Sci. Signal. 13:634eaaz1053
    [Google Scholar]
  179. 179. 
    Wong JB, Hewitt SL, Heltemes-Harris LM, Mandal M, Johnson K et al. 2019. B-1a cells acquire their unique characteristics by bypassing the pre-BCR selection stage. Nat. Commun. 10:4768
    [Google Scholar]
  180. 180. 
    Hayakawa K, Asano M, Shinton SA, Gui M, Allman D et al. 1999. Positive selection of natural autoreactive B cells. Science 285:113–16
    [Google Scholar]
  181. 181. 
    Bikah G, Carey J, Ciallella JR, Tarakhovsky A, Bondada S. 1996. CD5-mediated negative regulation of antigen receptor-induced growth signals in B-1 B cells. Science 274:1906–9
    [Google Scholar]
  182. 182. 
    Meyer SJ, Linder AT, Brandl C, Nitschke L. 2018. B cell Siglecs—news on signaling and its interplay with ligand binding. Front. Immunol. 9:2820
    [Google Scholar]
  183. 183. 
    Skrzypczynska KM, Zhu JW, Weiss A. 2016. Positive regulation of Lyn kinase by CD148 is required for B cell receptor signaling in B1 but not B2 B cells. Immunity 45:1232–44
    [Google Scholar]
  184. 184. 
    Bondada S, Bikah G, Robertson DA, Sen G. 2000. Role of CD5 in growth regulation of B-1 cells. Curr. Top. Microbiol. Immunol. 252:141–49
    [Google Scholar]
  185. 185. 
    Yang Y, Wang C, Yang Q, Kantor AB, Chu H et al. 2015. Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires. eLife 4:e09083
    [Google Scholar]
  186. 186. 
    Prohaska TA, Que X, Diehl CJ, Hendrikx S, Chang MW et al. 2018. Massively parallel sequencing of peritoneal and splenic B cell repertoires highlights unique properties of B-1 cell antibodies. J. Immunol. 200:1702–17
    [Google Scholar]
  187. 187. 
    Kreuk LS, Koch MA, Slayden LC, Lind NA, Chu S et al. 2019. B cell receptor and Toll-like receptor signaling coordinate to control distinct B-1 responses to both self and the microbiota. eLife 8:e47015
    [Google Scholar]
  188. 188. 
    Kroese FG, Butcher EC, Stall AM, Herzenberg LA. 1989. A major peritoneal reservoir of precursors for intestinal IgA plasma cells. Immunol. Investig. 18:47–58
    [Google Scholar]
  189. 189. 
    Kroese FG, Butcher EC, Stall AM, Lalor PA, Adams S, Herzenberg LA. 1989. Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int. Immunol. 1:75–84
    [Google Scholar]
  190. 190. 
    Baumgarth N, Herman OC, Jager GC, Brown L, Herzenberg LA, Herzenberg LA 1999. Innate and acquired humoral immunities to influenza virus are mediated by distinct arms of the immune system. PNAS 96:2250–55
    [Google Scholar]
  191. 191. 
    Zhou ZH, Zhang Y, Hu YF, Wahl LM, Cisar JO, Notkins AL. 2007. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 1:51–61
    [Google Scholar]
  192. 192. 
    Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J 2000. B-1 and B-2 cell–derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 192:271–80
    [Google Scholar]
  193. 193. 
    Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F et al. 1999. Control of early viral and bacterial distribution and disease by natural antibodies. Science 286:2156–59
    [Google Scholar]
  194. 194. 
    Jayasekera JP, Moseman EA, Carroll MC. 2007. Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J. Virol. 81:3487–94
    [Google Scholar]
  195. 195. 
    Boes M, Esau C, Fischer MB, Schmidt T, Carroll M, Chen J 1998. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 160:4776–87
    [Google Scholar]
  196. 196. 
    Nguyen TT, Elsner RA, Baumgarth N. 2015. Natural IgM prevents autoimmunity by enforcing B cell central tolerance induction. J. Immunol. 194:1489–502
    [Google Scholar]
  197. 197. 
    O'Garra A, Chang R, Go N, Hastings R, Haughton G, Howard M. 1992. Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur. J. Immunol. 22:711–17
    [Google Scholar]
  198. 198. 
    Genestier L, Taillardet M, Mondiere P, Gheit H, Bella C, Defrance T. 2007. TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. J. Immunol. 178:7779–86
    [Google Scholar]
  199. 199. 
    Savage HP, Klasener K, Smith FL, Luo Z, Reth M, Baumgarth N. 2019. TLR induces reorganization of the IgM-BCR complex regulating murine B-1 cell responses to infections. eLife 8:e46997
    [Google Scholar]
  200. 200. 
    Liu Z, Liu Y, Li T, Wang P, Mo X et al. 2020. CMTM7 plays key roles in TLR-induced plasma cell differentiation and p38 activation in murine B-1 B cells. Eur. J. Immunol. 50:809–21
    [Google Scholar]
  201. 201. 
    Haas KM, Poe JC, Steeber DA, Tedder TF. 2005. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 23:7–18
    [Google Scholar]
  202. 202. 
    Alugupalli KR, Leong JM, Woodland RT, Muramatsu M, Honjo T, Gerstein RM. 2004. B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity 21:379–90
    [Google Scholar]
  203. 203. 
    Cunningham AF, Flores-Langarica A, Bobat S, Dominguez Medina CC, Cook CN et al. 2014. B1b cells recognize protective antigens after natural infection and vaccination. Front. Immunol. 5:535
    [Google Scholar]
  204. 204. 
    Cole LE, Yang Y, Elkins KL, Fernandez ET, Qureshi N et al. 2009. Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge. PNAS 106:4343–48
    [Google Scholar]
  205. 205. 
    Choi YS, Baumgarth N. 2008. Dual role for B-1a cells in immunity to influenza virus infection. J. Exp. Med. 205:3053–64
    [Google Scholar]
  206. 206. 
    Gunti S, Messer RJ, Xu C, Yan M, Coleman WG Jr. et al. 2015. Stimulation of Toll-Like Receptors profoundly influences the titer of polyreactive antibodies in the circulation. Sci. Rep. 5:15066
    [Google Scholar]
  207. 207. 
    Yang Y, Tung JW, Ghosn EE, Herzenberg LA, Herzenberg LA 2007. Division and differentiation of natural antibody-producing cells in mouse spleen. PNAS 104:4542–46
    [Google Scholar]
  208. 208. 
    Yang Y, Ghosn EE, Cole LE, Obukhanych TV, Sadate-Ngatchou P et al. 2012. Antigen-specific memory in B-1a and its relationship to natural immunity. PNAS 109:5388–93
    [Google Scholar]
  209. 209. 
    Yang Y, Ghosn EE, Cole LE, Obukhanych TV, Sadate-Ngatchou P et al. 2012. Antigen-specific antibody responses in B-1a and their relationship to natural immunity. PNAS 109:5382–87
    [Google Scholar]
  210. 210. 
    Chin SS, Chorro L, Chan J, Lauvau G. 2019. Splenic innate B1 B cell plasmablasts produce sustained granulocyte-macrophage colony-stimulating factor and interleukin-3 cytokines during murine malaria infections. Infect. Immun. 87:12e00482–19
    [Google Scholar]
  211. 211. 
    Chousterman BG, Swirski FK. 2015. Innate response activator B cells: origins and functions. Int. Immunol. 27:537–41
    [Google Scholar]
  212. 212. 
    Aziz M, Holodick NE, Rothstein TL, Wang P. 2017. B-1a cells protect mice from sepsis: critical role of CREB. J. Immunol. 199:750–60
    [Google Scholar]
  213. 213. 
    Martin F, Kearney JF. 2002. Marginal-zone B cells. Nat. Rev. Immunol. 2:323–35
    [Google Scholar]
  214. 214. 
    Song H, Cerny J. 2003. Functional heterogeneity of marginal zone B cells revealed by their ability to generate both early antibody-forming cells and germinal centers with hypermutation and memory in response to a T-dependent antigen. J. Exp. Med. 198:1923–35
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042718-041238
Loading
/content/journals/10.1146/annurev-immunol-042718-041238
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error