1932

Abstract

Neurotropic RNA viruses continue to emerge and are increasingly linked to diseases of the central nervous system (CNS) despite viral clearance. Indeed, the overall mortality of viral encephalitis in immunocompetent individuals is low, suggesting efficient mechanisms of virologic control within the CNS. Both immune and neural cells participate in this process, which requires extensive innate immune signaling between resident and infiltrating cells, including microglia and monocytes, that regulate the effector functions of antiviral T and B cells as they gain access to CNS compartments. While these interactions promote viral clearance via mainly neuroprotective mechanisms, they may also promote neuropathology and, in some cases, induce persistent alterations in CNS physiology and function that manifest as neurologic and psychiatric diseases. This review discusses mechanisms of RNA virus clearance and neurotoxicity during viral encephalitis with a focus on the cytokines essential for immune and neural cell inflammatory responses and interactions. Understanding neuroimmune communications in the setting of viral infections is essential for the development of treatments that augment neuroprotective processes while limiting ongoing immunopathological processes that cause ongoing CNS disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042718-041417
2019-04-26
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-042718-041417.html?itemId=/content/journals/10.1146/annurev-immunol-042718-041417&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Manglani M, McGavern DB 2018. New advances in CNS immunity against viral infection. Curr. Opin. Virol. 28:116–26
    [Google Scholar]
  2. 2.  Durrant DM, Daniels BP, Klein RS 2014. IL-1R1 signaling regulates CXCL12-mediated T cell localization and fate within the central nervous system during West Nile Virus encephalitis. J. Immunol. 193:4095–106
    [Google Scholar]
  3. 3.  McCandless EE, Zhang B, Diamond MS, Klein RS 2008. CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. PNAS 105:11270–75
    [Google Scholar]
  4. 4.  Daniels BP, Jujjavarapu H, Durrant DM, Williams JL, Green RR et al. 2017. Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J. Clin. Investig. 127:843–56
    [Google Scholar]
  5. 5.  Cho H, Proll SC, Szretter KJ, Katze MG, Gale M Jr, Diamond MS 2013. Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nat. Med. 19:458–64
    [Google Scholar]
  6. 6.  Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ 2010. Structure and function of the blood-brain barrier. Neurobiol. Dis. 37:13–25
    [Google Scholar]
  7. 7.  Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y et al. 2014. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509:507–11
    [Google Scholar]
  8. 8.  Daneman R, Zhou L, Kebede AA, Barres BA 2010. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–66
    [Google Scholar]
  9. 9.  Millan J, Cain RJ, Reglero-Real N, Bigarella C, Marcos-Ramiro B et al. 2010. Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol 8:11
    [Google Scholar]
  10. 10.  Rho SS, Ando K, Fukuhara S 2017. Dynamic regulation of vascular permeability by vascular endothelial cadherin-mediated endothelial cell-cell junctions. J. Nippon Med. Sch. 84:148–59
    [Google Scholar]
  11. 11.  Lopes Pinheiro MA, Kooij G, Mizee MR, Kamermans A, Enzmann G et al. 2016. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim. Biophys. Acta 1862:461–71
    [Google Scholar]
  12. 12.  Takeshita Y, Ransohoff RM 2012. Inflammatory cell trafficking across the blood-brain barrier: chemokine regulation and in vitro models. Immunol. Rev. 248:228–39
    [Google Scholar]
  13. 13.  Schafer A, Whitmore AC, Konopka JL, Johnston RE 2009. Replicon particles of Venezuelan equine encephalitis virus as a reductionist murine model for encephalitis. J. Virol. 83:4275–86
    [Google Scholar]
  14. 14.  Siegenthaler JA, Sohet F, Daneman R 2013. ‘Sealing off the CNS’: cellular and molecular regulation of blood–brain barriergenesis. Curr. Opin. Neurobiol. 23:1057–64
    [Google Scholar]
  15. 15.  Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A et al. 2017. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94:581–94.e5
    [Google Scholar]
  16. 16.  Bobardt MD, Chatterji U, Selvarajah S, Van der Schueren B, David G et al. 2007. Cell-free human immunodeficiency virus type 1 transcytosis through primary genital epithelial cells. J. Virol. 81:395–405
    [Google Scholar]
  17. 17.  Tugizov SM, Herrera R, Palefsky JM 2013. Epstein-Barr virus transcytosis through polarized oral epithelial cells. J. Virol. 87:8179–94
    [Google Scholar]
  18. 18.  Yu C, Achazi K, Moller L, Schulzke JD, Niedrig M, Bucker R 2014. Tick-borne encephalitis virus replication, intracellular trafficking, and pathogenicity in human intestinal Caco-2 cell monolayers. PLOS ONE 9:e96957
    [Google Scholar]
  19. 19.  Pu H, Hayashi K, Andras IE, Eum SY, Hennig B, Toborek M 2007. Limited role of COX-2 in HIV Tat-induced alterations of tight junction protein expression and disruption of the blood-brain barrier. Brain Res 1184:333–44
    [Google Scholar]
  20. 20.  Ju SM, Song HY, Lee JA, Lee SJ, Choi SY, Park J 2009. Extracellular HIV-1 Tat up-regulates expression of matrix metalloproteinase-9 via a MAPK-NF-κB dependent pathway in human astrocytes. Exp. Mol. Med. 41:86–93
    [Google Scholar]
  21. 21.  Cain MD, Salimi H, Gong Y, Yang L, Hamilton SL et al. 2017. Virus entry and replication in the brain precedes blood-brain barrier disruption during intranasal alphavirus infection. J. Neuroimmunol. 308:118–30
    [Google Scholar]
  22. 22.  Schafer A, Brooke CB, Whitmore AC, Johnston RE 2011. The role of the blood-brain barrier during Venezuelan equine encephalitis virus infection. J. Virol. 85:10682–90
    [Google Scholar]
  23. 23.  Kawai T, Akira S 2009. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21:317–37
    [Google Scholar]
  24. 24.  Butchi NB, Du M, Peterson KE 2010. Interactions between TLR7 and TLR9 agonists and receptors regulate innate immune responses by astrocytes and microglia. Glia 58:650–64
    [Google Scholar]
  25. 25.  Crill EK, Furr-Rogers SR, Marriott I 2015. RIG-I is required for VSV-induced cytokine production by murine glia and acts in combination with DAI to initiate responses to HSV-1. Glia 63:2168–80
    [Google Scholar]
  26. 26.  da Conceicao TM, Rust NM, Berbel AC, Martins NB, do Nascimento Santos CA et al. 2013. Essential role of RIG-I in the activation of endothelial cells by dengue virus. Virology 435:281–92
    [Google Scholar]
  27. 27.  Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS 2014. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. mBio 5:e01476–14
    [Google Scholar]
  28. 28.  Li J, Wang Y, Wang X, Ye L, Zhou Y et al. 2013. Immune activation of human brain microvascular endothelial cells inhibits HIV replication in macrophages. Blood 121:2934–42
    [Google Scholar]
  29. 29.  McCarthy GM, Bridges CR, Blednov YA, Harris RA 2017. CNS cell-type localization and LPS response of TLR signaling pathways. F1000Res 6:1144
    [Google Scholar]
  30. 30.  Nazmi A, Dutta K, Basu A 2011. RIG-I mediates innate immune response in mouse neurons following Japanese encephalitis virus infection. PLOS ONE 6:e21761
    [Google Scholar]
  31. 31.  Peltier DC, Simms A, Farmer JR, Miller DJ 2010. Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling. J. Immunol. 184:7010–21
    [Google Scholar]
  32. 32.  Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD 2005. Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49:360–74
    [Google Scholar]
  33. 33.  De Miranda J, Yaddanapudi K, Hornig M, Lipkin WI 2009. Astrocytes recognize intracellular polyinosinic-polycytidylic acid via MDA-5. FASEB J 23:1064–71
    [Google Scholar]
  34. 34.  Roth-Cross JK, Bender SJ, Weiss SR 2008. Murine coronavirus mouse hepatitis virus is recognized by MDA5 and induces type I interferon in brain macrophages/microglia. J. Virol. 82:9829–38
    [Google Scholar]
  35. 35.  Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA 2006. Microglia recognize double-stranded RNA via TLR3. J. Immunol. 176:3804–12
    [Google Scholar]
  36. 36.  Zhou Y, Ye L, Wan Q, Zhou L, Wang X et al. 2009. Activation of Toll-like receptors inhibits herpes simplex virus-1 infection of human neuronal cells. J. Neurosci. Res. 87:2916–25
    [Google Scholar]
  37. 37.  Bhargavan B, Kanmogne GD 2018. Toll-like receptor-3 mediates HIV-1-induced interleukin-6 expression in the human brain endothelium via TAK1 and JNK pathways: implications for viral neuropathogenesis. Mol. Neurobiol. 55:5976–92
    [Google Scholar]
  38. 38.  Borysiewicz E, Fil D, Konat GW 2009. Rho proteins are negative regulators of TLR2, TLR3, and TLR4 signaling in astrocytes. J. Neurosci. Res. 87:1565–72
    [Google Scholar]
  39. 39.  Das A, Chai JC, Kim SH, Lee YS, Park KS et al. 2015. Transcriptome sequencing of microglial cells stimulated with TLR3 and TLR4 ligands. BMC Genom 16:517
    [Google Scholar]
  40. 40.  Jiang R, Ye J, Zhu B, Song Y, Chen H, Cao S 2014. Roles of TLR3 and RIG-I in mediating the inflammatory response in mouse microglia following Japanese encephalitis virus infection. J. Immunol. Res. 2014:787023
    [Google Scholar]
  41. 41.  Lawrimore CJ, Crews FT 2017. Ethanol, TLR3, and TLR4 agonists have unique innate immune responses in neuron-like SH-SY5Y and microglia-like BV2. Alcohol Clin. Exp. Res. 41:939–54
    [Google Scholar]
  42. 42.  Liu HY, Hong YF, Huang CM, Chen CY, Huang TN, Hsueh YP 2013. TLR7 negatively regulates dendrite outgrowth through the Myd88-c-Fos-IL-6 pathway. J. Neurosci. 33:11479–93
    [Google Scholar]
  43. 43.  Madeddu S, Woods TA, Mukherjee P, Sturdevant D, Butchi NB, Peterson KE 2015. Identification of glial activation markers by comparison of transcriptome changes between astrocytes and microglia following innate immune stimulation. PLOS ONE 10:e0127336
    [Google Scholar]
  44. 44.  Nerurkar L, McColl A, Graham G, Cavanagh J 2017. The systemic response to topical Aldara treatment is mediated through direct TLR7 stimulation as imiquimod enters the circulation. Sci. Rep. 7:16570
    [Google Scholar]
  45. 45.  Tarassishin L, Suh HS, Lee SC 2014. LPS and IL-1 differentially activate mouse and human astrocytes: role of CD14. Glia 62:999–1013
    [Google Scholar]
  46. 46.  Zhou L, Yan C, Gieling RG, Kida Y, Garner W et al. 2009. Tumor necrosis factor-alpha induced expression of matrix metalloproteinase-9 through p21-activated kinase-1. BMC Immunol 10:15
    [Google Scholar]
  47. 47.  Al-Obaidi MMJ, Bahadoran A, Wang SM, Manikam R, Raju CS, Sekaran SD 2018. Disruption of the blood brain barrier is vital property of neurotropic viral infection of the central nervous system. Acta Virol 62:16–27
    [Google Scholar]
  48. 48.  Klein RS, Hunter CA 2017. Protective and pathological immunity during central nervous system infections. Immunity 46:891–909
    [Google Scholar]
  49. 49.  Ando K, Fukuhara S, Moriya T, Obara Y, Nakahata N, Mochizuki N 2013. Rap1 potentiates endothelial cell junctions by spatially controlling myosin II activity and actin organization. J. Cell Biol. 202:901–16
    [Google Scholar]
  50. 50.  Huveneers S, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I et al. 2012. Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. J. Cell Biol. 196:641–52
    [Google Scholar]
  51. 51.  Yamamoto M, Ramirez SH, Sato S, Kiyota T, Cerny RL et al. 2008. Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells. Am. J. Pathol. 172:521–33
    [Google Scholar]
  52. 52.  Amado-Azevedo J, Reinhard NR, van Bezu J, de Menezes RX, van Beusechem VW et al. 2017. A CDC42-centered signaling unit is a dominant positive regulator of endothelial integrity. Sci. Rep. 7:10132
    [Google Scholar]
  53. 53.  Broman MT, Kouklis P, Gao X, Ramchandran R, Neamu RF et al. 2006. Cdc42 regulates adherens junction stability and endothelial permeability by inducing alpha-catenin interaction with the vascular endothelial cadherin complex. Circ. Res. 98:73–80
    [Google Scholar]
  54. 54.  Miner JJ, Daniels BP, Shrestha B, Proenca-Modena JL, Lew ED et al. 2015. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity. Nat. Med. 21:1464–72
    [Google Scholar]
  55. 55.  Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C et al. 2011. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34:213–23
    [Google Scholar]
  56. 56.  Lazear HM, Daniels BP, Pinto AK, Huang AC, Vick SC et al. 2015. Interferon-lambda restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Sci. Transl. Med. 7:284ra59
    [Google Scholar]
  57. 57.  Schulz KS, Mossman KL 2016. Viral evasion strategies in type I IFN signaling—a summary of recent developments. Front. Immunol. 7:498
    [Google Scholar]
  58. 58.  Bleau C, Filliol A, Samson M, Lamontagne L 2015. Brain invasion by mouse hepatitis virus depends on impairment of tight junctions and beta interferon production in brain microvascular endothelial cells. J. Virol. 89:9896–908
    [Google Scholar]
  59. 59.  Sharma A, Bhomia M, Honnold SP, Maheshwari RK 2011. Role of adhesion molecules and inflammation in Venezuelan equine encephalitis virus infected mouse brain. Virol. J. 8:197
    [Google Scholar]
  60. 60.  Cook-Mills JM, Marchese ME, Abdala-Valencia H 2011. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid. Redox Signal. 15:1607–38
    [Google Scholar]
  61. 61.  Li F, Wang Y, Yu L, Cao S, Wang K et al. 2015. Viral infection of the central nervous system and neuroinflammation precede blood-brain barrier disruption during Japanese encephalitis virus infection. J. Virol. 89:5602–14
    [Google Scholar]
  62. 62.  Hu G, Vogel SM, Schwartz DE, Malik AB, Minshall RD 2008. Intercellular adhesion molecule-1-dependent neutrophil adhesion to endothelial cells induces caveolae-mediated pulmonary vascular hyperpermeability. Circ. Res. 102:e120–31
    [Google Scholar]
  63. 63.  Clarke LE, Barres BA 2013. Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14:311–21
    [Google Scholar]
  64. 64.  Abbott NJ, Ronnback L, Hansson E 2006. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7:41–53
    [Google Scholar]
  65. 65.  Dong Y, Benveniste EN 2001. Immune function of astrocytes. Glia 36:180–90
    [Google Scholar]
  66. 66.  Sofroniew MV, Vinters HV 2010. Astrocytes: biology and pathology. Acta Neuropathol 119:7–35
    [Google Scholar]
  67. 67.  Chen CJ, Ou YC, Lin SY, Raung SL, Liao SL et al. 2010. Glial activation involvement in neuronal death by Japanese encephalitis virus infection. J. Gen. Virol. 91:1028–37
    [Google Scholar]
  68. 68.  Garber C, Vasek MJ, Vollmer LL, Sun T, Jiang X, Klein RS 2018. Astrocytes decrease adult neuro-genesis during virus-induced memory dysfunction via interleukin-1. Nat. Immunol. 19:151–61
    [Google Scholar]
  69. 69.  Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ et al. 2017. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–87
    [Google Scholar]
  70. 70.  Rohl C, Lucius R, Sievers J 2007. The effect of activated microglia on astrogliosis parameters in astrocyte cultures. Brain Res 1129:43–52
    [Google Scholar]
  71. 71.  Pfefferkorn C, Kallfass C, Lienenklaus S, Spanier J, Kalinke U et al. 2016. Abortively infected astrocytes appear to represent the main source of interferon beta in the virus-infected brain. J. Virol. 90:2031–38
    [Google Scholar]
  72. 72.  Lindqvist R, Mundt F, Gilthorpe JD, Wolfel S, Gekara NO et al. 2016. Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects. J. Neuroinflammation 13:277
    [Google Scholar]
  73. 73.  Samuel MA, Diamond MS 2005. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J. Virol. 79:13350–61
    [Google Scholar]
  74. 74.  Zhou S, Cerny AM, Fitzgerald KA, Kurt-Jones EA, Finberg RW 2012. Role of interferon regulatory factor 7 in T cell responses during acute lymphocytic choriomeningitis virus infection. J. Virol. 86:11254–65
    [Google Scholar]
  75. 75.  Zhang Y, Barres BA 2010. Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr. Opin. Neurobiol. 20:588–94
    [Google Scholar]
  76. 76.  Cheng Y, King NJ, Kesson AM 2004. Major histocompatibility complex class I (MHC-I) induction by West Nile virus: involvement of 2 signaling pathways in MHC-I up-regulation. J. Infect. Dis. 189:658–68
    [Google Scholar]
  77. 77.  Kesson AM, Cheng Y, King NJ 2002. Regulation of immune recognition molecules by flavivirus, West Nile. Viral Immunol 15:273–83
    [Google Scholar]
  78. 78.  Hamo L, Stohlman SA, Otto-Duessel M, Bergmann CC 2007. Distinct regulation of MHC molecule expression on astrocytes and microglia during viral encephalomyelitis. Glia 55:1169–77
    [Google Scholar]
  79. 79.  Zuza AL, Barros HL, de Mattos Silva Oliveira TF, Chavez-Pavoni JH, Zanon RG 2016. Astrocyte response to St. Louis encephalitis virus. Virus Res 217:92–100
    [Google Scholar]
  80. 80.  Christensen JE, Simonsen S, Fenger C, Sorensen MR, Moos T et al. 2009. Fulminant lymphocytic choriomeningitis virus-induced inflammation of the CNS involves a cytokine-chemokine-cytokine-chemokine cascade. J. Immunol. 182:1079–87
    [Google Scholar]
  81. 81.  Christensen JE, de Lemos C, Moos T, Christensen JP, Thomsen AR 2006. CXCL10 is the key ligand for CXCR3 on CD8+ effector T cells involved in immune surveillance of the lymphocytic choriomeningitis virus-infected central nervous system. J. Immunol. 176:4235–43
    [Google Scholar]
  82. 82.  Palus M, Bily T, Elsterova J, Langhansova H, Salat J et al. 2014. Infection and injury of human astrocytes by tick-borne encephalitis virus. J. Gen. Virol. 95:2411–26
    [Google Scholar]
  83. 83.  Riazi K, Galic MA, Kentner AC, Reid AY, Sharkey KA, Pittman QJ 2015. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J. Neurosci. 35:4942–52
    [Google Scholar]
  84. 84.  del Rey A, Balschun D, Wetzel W, Randolf A, Besedovsky HO 2013. A cytokine network involving brain-borne IL-1β, IL-1ra, IL-18, IL-6, and TNFα operates during long-term potentiation and learning. Brain Behav. Immun. 33:15–23
    [Google Scholar]
  85. 85.  Wu MD, Montgomery SL, Rivera-Escalera F, Olschowka JA, O'Banion MK 2013. Sustained IL-1β expression impairs adult hippocampal neurogenesis independent of IL-1 signaling in nestin+ neural precursor cells. Brain Behav. Immun. 32:9–18
    [Google Scholar]
  86. 86.  Bonthius DJ, Mahoney J, Buchmeier MJ, Karacay B, Taggard D 2002. Critical role for glial cells in the propagation and spread of lymphocytic choriomeningitis virus in the developing rat brain. J. Virol. 76:6618–35
    [Google Scholar]
  87. 87.  Kalia M, Khasa R, Sharma M, Nain M, Vrati S 2013. Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J. Virol. 87:148–62
    [Google Scholar]
  88. 88.  Klein RS, Lin E, Zhang B, Luster AD, Tollett J et al. 2005. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J. Virol. 79:11457–66
    [Google Scholar]
  89. 89.  Patterson CE, Daley JK, Echols LA, Lane TE, Rall GF 2003. Measles virus infection induces chemokine synthesis by neurons. J. Immunol. 171:3102–9
    [Google Scholar]
  90. 90.  Zhang B, Chan YK, Lu B, Diamond MS, Klein RS 2008. CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis. J. Immunol. 180:2641–49
    [Google Scholar]
  91. 91.  Howe CL, LaFrance-Corey RG, Goddery EN, Johnson RK, Mirchia K 2017. Neuronal CCL2 expression drives inflammatory monocyte infiltration into the brain during acute virus infection. J. Neuroinflammation 14:238
    [Google Scholar]
  92. 92.  Delhaye S, Paul S, Blakqori G, Minet M, Weber F et al. 2006. Neurons produce type I interferon during viral encephalitis. PNAS 103:7835–40
    [Google Scholar]
  93. 93.  Chevalier G, Suberbielle E, Monnet C, Duplan V, Martin-Blondel G et al. 2011. Neurons are MHC class I-dependent targets for CD8 T cells upon neurotropic viral infection. PLOS Pathog 7:e1002393
    [Google Scholar]
  94. 94.  Durrant DM, Robinette ML, Klein RS 2013. IL-1R1 is required for dendritic cell-mediated T cell reactivation within the CNS during West Nile virus encephalitis. J. Exp. Med. 210:503–16
    [Google Scholar]
  95. 95.  Cupovic J, Onder L, Gil-Cruz C, Weiler E, Caviezel-Firner S et al. 2016. Central nervous system stromal cells control local CD8+ T cell responses during virus-induced neuroinflammation. Immunity 44:622–33
    [Google Scholar]
  96. 96.  Herz J, Johnson KR, McGavern DB 2015. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J. Exp. Med. 212:1153–69
    [Google Scholar]
  97. 97.  Zhao J, Zhao J, Perlman S 2014. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages. PLOS Pathog 10:e1004279
    [Google Scholar]
  98. 98.  Lanteri MC, O'Brien KM, Purtha WE, Cameron MJ, Lund JM et al. 2009. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J. Clin. Investig. 119:3266–77
    [Google Scholar]
  99. 99.  Graham JB, Da Costa A, Lund JM 2014. Regulatory T cells shape the resident memory T cell response to virus infection in the tissues. J. Immunol. 192:683–90
    [Google Scholar]
  100. 100.  Kulcsar KA, Baxter VK, Greene IP, Griffin DE 2014. Interleukin 10 modulation of pathogenic Th17 cells during fatal alphavirus encephalomyelitis. PNAS 111:16053–58
    [Google Scholar]
  101. 101.  Martin NM, Griffin DE 2018. Interleukin-10 modulation of virus clearance and disease in mice with alphaviral encephalomyelitis. J. Virol. 92:e01517–17
    [Google Scholar]
  102. 102.  Kim JV, Kang SS, Dustin ML, McGavern DB 2009. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457:191–95
    [Google Scholar]
  103. 103.  Baxter VK, Griffin DE 2016. Interferon gamma modulation of disease manifestation and the local antibody response to alphavirus encephalomyelitis. J. Gen. Virol. 97:2908–25
    [Google Scholar]
  104. 104.  Shrestha B, Wang T, Samuel MA, Whitby K, Craft J et al. 2006. Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J. Virol. 80:5338–48
    [Google Scholar]
  105. 105.  van der Most RG, Murali-Krishna K, Ahmed R 2003. Prolonged presence of effector-memory CD8 T cells in the central nervous system after dengue virus encephalitis. Int. Immunol. 15:119–25
    [Google Scholar]
  106. 106.  Wakim LM, Woodward-Davis A, Bevan MJ 2010. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. PNAS 107:17872–79
    [Google Scholar]
  107. 107.  Stewart BS, Demarest VL, Wong SJ, Green S, Bernard KA 2011. Persistence of virus-specific immune responses in the central nervous system of mice after West Nile virus infection. BMC Immunol 12:6
    [Google Scholar]
  108. 108.  Hawke S, Stevenson PG, Freeman S, Bangham CR 1998. Long-term persistence of activated cytotoxic T lymphocytes after viral infection of the central nervous system. J. Exp. Med. 187:1575–82
    [Google Scholar]
  109. 109.  Mueller SN, Mackay LK 2016. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16:79–89
    [Google Scholar]
  110. 110.  Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D 2014. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346:98–101
    [Google Scholar]
  111. 111.  Shiow LR, Rosen DB, Brdickova N, Xu Y, An J et al. 2006. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440:540–44
    [Google Scholar]
  112. 112.  Mackay LK, Braun A, Macleod BL, Collins N, Tebartz C et al. 2015. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol. 194:2059–63
    [Google Scholar]
  113. 113.  Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC et al. 2012. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188:4866–75
    [Google Scholar]
  114. 114.  Steinbach K, Vincenti I, Kreutzfeldt M, Page N, Muschaweckh A et al. 2016. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. J. Exp. Med. 213:1571–87
    [Google Scholar]
  115. 115.  Wakim LM, Woodward-Davis A, Liu R, Hu Y, Villadangos J et al. 2012. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol. 189:3462–71
    [Google Scholar]
  116. 116.  Austin SK, Dowd KA 2014. B cell response and mechanisms of antibody protection to West Nile virus. Viruses 6:1015–36
    [Google Scholar]
  117. 117.  Metcalf TU, Griffin DE 2011. Alphavirus-induced encephalomyelitis: antibody-secreting cells and viral clearance from the nervous system. J. Virol. 85:11490–501
    [Google Scholar]
  118. 118.  Metcalf TU, Baxter VK, Nilaratanakul V, Griffin DE 2013. Recruitment and retention of B cells in the central nervous system in response to alphavirus encephalomyelitis. J. Virol. 87:2420–29
    [Google Scholar]
  119. 119.  Acosta-Ampudia Y, Monsalve DM, Castillo-Medina LF, Rodriguez Y, Pacheco Y et al. 2018. Autoimmune neurological conditions associated with Zika virus infection. Front. Mol. Neurosci. 11:116
    [Google Scholar]
  120. 120.  Nosadini M, Mohammad SS, Corazza F, Ruga EM, Kothur K et al. 2017. Herpes simplex virus-induced anti-N-methyl-d-aspartate receptor encephalitis: a systematic literature review with analysis of 43 cases. Dev. Med. Child Neurol. 59:796–805
    [Google Scholar]
  121. 121.  Mutnal MB, Hu S, Schachtele SJ, Lokensgard JR Infiltrating regulatory B cells control neuroinflammation following viral brain infection. J. Immunol. 193:6070–80
    [Google Scholar]
  122. 122.  Neal JW 2014. Flaviviruses are neurotropic, but how do they invade the CNS?. J. Infect. 69:203–15
    [Google Scholar]
  123. 123.  London A, Cohen M, Schwartz M 2013. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front. Cell Neurosci. 7:34
    [Google Scholar]
  124. 124.  Terry RL, Getts DR, Deffrasnes C, van Vreden C, Campbell IL, King NJ 2012. Inflammatory monocytes and the pathogenesis of viral encephalitis. J. Neuroinflamm. 9:270
    [Google Scholar]
  125. 125.  Bardina SV, Michlmayr D, Hoffman KW, Obara CJ, Sum J et al. 2015. Differential roles of chemokines CCL2 and CCL7 in monocytosis and leukocyte migration during West Nile virus infection. J. Immunol. 195:4306–18
    [Google Scholar]
  126. 126.  Kim JH, Patil AM, Choi JY, Kim SB, Uyangaa E et al. 2016. CCL2, but not its receptor, is essential to restrict immune privileged central nervous system-invasion of Japanese encephalitis virus via regulating accumulation of CD11b+ Ly-6Chi monocytes. Immunology 149:186–203
    [Google Scholar]
  127. 127.  Williams DW, Calderon TM, Lopez L, Carvallo-Torres L, Gaskill PJ et al. 2013. Mechanisms of HIV entry into the CNS: increased sensitivity of HIV infected CD14+CD16+ monocytes to CCL2 and key roles of CCR2, JAM-A, and ALCAM in diapedesis. PLOS ONE 8:e69270
    [Google Scholar]
  128. 128.  Veenstra M, Leon-Rivera R, Li M, Gama L, Clements JE, Berman JW 2017. Mechanisms of CNS viral seeding by HIV+ CD14+ CD16+ monocytes: establishment and reseeding of viral reservoirs contributing to HIV-associated neurocognitive disorders. mBio 8:e01280–17
    [Google Scholar]
  129. 129.  Williams DW, Byrd D, Rubin LH, Anastos K, Morgello S, Berman JW 2014. CCR2 on CD14+CD16+ monocytes is a biomarker of HIV-associated neurocognitive disorders. Neurol. Neuroimmunol. Neuroinflamm. 1:e36
    [Google Scholar]
  130. 130.  Lawson LJ, Perry VH, Dri P, Gordon S 1990. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–70
    [Google Scholar]
  131. 131.  Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R 2001. Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101:249–55
    [Google Scholar]
  132. 132.  Walton MR, Gibbons H, MacGibbon GA, Sirimanne E, Saura J et al. 2000. PU.1 expression in microglia. J. Neuroimmunol. 104:109–15
    [Google Scholar]
  133. 133.  Ginhoux F, Greter M, Leboeuf M, Nandi S, See P et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–45
    [Google Scholar]
  134. 134.  Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J et al. 2006. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. PNAS 103:16021–26
    [Google Scholar]
  135. 135.  Djukic M, Mildner A, Schmidt H, Czesnik D, Bruck W et al. 2006. Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain 129:2394–403
    [Google Scholar]
  136. 136.  Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y et al. 2017. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep 18:391–405
    [Google Scholar]
  137. 137.  Cecchini MG, Dominguez MG, Mocci S, Wetterwald A, Felix R et al. 1994. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120:1357–72
    [Google Scholar]
  138. 138.  Chitu V, Gokhan S, Nandi S, Mehler MF, Stanley ER 2016. Emerging roles for CSF-1 receptor and its ligands in the nervous system. Trends Neurosci 39:378–93
    [Google Scholar]
  139. 139.  Nandi S, Gokhan S, Dai XM, Wei S, Enikolopov G et al. 2012. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev. Biol. 367:100–13
    [Google Scholar]
  140. 140.  Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C et al. 2012. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13:753–60
    [Google Scholar]
  141. 141.  Ransohoff RM, Cardona AE 2010. The myeloid cells of the central nervous system parenchyma. Nature 468:253–62
    [Google Scholar]
  142. 142.  Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM et al. 2017. An environment-dependent transcriptional network specifies human microglia identity. Science356:eaal3222
  143. 143.  Ludlow M, Kortekaas J, Herden C, Hoffmann B, Tappe D et al. 2016. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol 131:159–84
    [Google Scholar]
  144. 144.  Quick ED, Leser JS, Clarke P, Tyler KL 2014. Activation of intrinsic immune responses and microglial phagocytosis in an ex vivo spinal cord slice culture model of West Nile virus infection. J. Virol. 88:13005–14
    [Google Scholar]
  145. 145.  Wheeler DL, Sariol A, Meyerholz DK, Perlman S 2018. Microglia are required for protection against lethal coronavirus encephalitis in mice. J. Clin. Investig. 128:931–43
    [Google Scholar]
  146. 146.  Tsai TT, Chen CL, Lin YS, Chang CP, Tsai CC et al. 2016. Microglia retard dengue virus-induced acute viral encephalitis. Sci. Rep. 6:27670
    [Google Scholar]
  147. 147.  Almolda B, de Labra C, Barrera I, Gruart A, Delgado-Garcia JM et al. 2015. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav. Immun. 45:80–97
    [Google Scholar]
  148. 148.  Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A 2011. The role of microglia in the healthy brain. J. Neurosci. 31:16064–69
    [Google Scholar]
  149. 149.  Vasek MJ, Garber C, Dorsey D, Durrant DM, Bollman B et al. 2016. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature 534:538–43
    [Google Scholar]
  150. 150.  Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T et al. 2018. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556:332–38
    [Google Scholar]
  151. 151.  Bellini WJ, Rota JS, Lowe LE, Katz RS, Dyken PR et al. 2005. Subacute sclerosing panencephalitis: More cases of this fatal disease are prevented by measles immunization than was previously recognized. J. Infect. Dis. 192:1686–93
    [Google Scholar]
  152. 152.  Schonberger K, Ludwig MS, Wildner M, Weissbrich B 2013. Epidemiology of subacute sclerosing panencephalitis (SSPE) in Germany from 2003 to 2009: a risk estimation. PLOS ONE 8:e68909
    [Google Scholar]
  153. 153.  Campbell H, Andrews N, Brown KE, Miller E 2007. Review of the effect of measles vaccination on the epidemiology of SSPE. Int. J. Epidemiol. 36:1334–48
    [Google Scholar]
  154. 154.  Garg RK 2008. Subacute sclerosing panencephalitis. J. Neurol. 255:1861–71
    [Google Scholar]
  155. 155.  Esiri MM, Oppenheimer DR, Brownell B, Haire M 1982. Distribution of measles antigen and immunoglobulin-containing cells in the CNS in subacute sclerosing panencephalitis (SSPE) and atypical measles encephalitis. J. Neurol. Sci. 53:29–43
    [Google Scholar]
  156. 156.  Tripathy K, Chawla R, Mittal K, Farmania R, Venkatesh P, Gulati S 2017. Ophthalmic examination as a means to diagnose subacute sclerosing panencephalitis: an optical coherence tomography and ultrawide field imaging evaluation. Eye Vis 4:1
    [Google Scholar]
  157. 157.  Saini AG, Sankhyan N, Padmanabh H, Sahu JK, Vyas S, Singhi P 2016. Subacute sclerosing panencephalitis presenting as acute cerebellar ataxia and brain stem hyperintensities. Eur. J. Paediatr. Neurol. 20:435–38
    [Google Scholar]
  158. 158.  Wendorf KA, Winter K, Zipprich J, Schechter R, Hacker JK et al. 2017. Subacute sclerosing panencephalitis: the devastating measles complication that might be more common than previously estimated. Clin. Infect. Dis. 65:226–32
    [Google Scholar]
  159. 159.  Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ 2002. West Nile virus. Lancet Infect. Dis. 2:519–29
    [Google Scholar]
  160. 160.  Davis LE, DeBiasi R, Goade DE, Haaland KY, Harrington JA et al. 2006. West Nile virus neuroinvasive disease. Ann. Neurol. 60:286–300
    [Google Scholar]
  161. 161.  Athar P, Hasbun R, Nolan MS, Salazar L, Woods SP et al. 2018. Long-term neuromuscular outcomes of West Nile virus infection: a clinical and electromyographic evaluation of patients with a history of infection. Muscle Nerve 57:77–82
    [Google Scholar]
  162. 162.  Samaan Z, McDermid Vaz S, Bawor M, Potter TH, Eskandarian S, Loeb M 2016. Neuropsychological impact of West Nile virus infection: an extensive neuropsychiatric assessment of 49 cases in Canada. PLOS ONE 11:e0158364
    [Google Scholar]
  163. 163.  Soares de Oliveira-Szejnfeld P, Levine D, Melo AS, Amorim MM, Batista AG et al. 2016. Congenital brain abnormalities and Zika virus: what the radiologist can expect to see prenatally and postnatally. Radiology 281:203–18
    [Google Scholar]
  164. 164.  Munoz LS, Parra B, Pardo CANeuroviruses Emerg. Am. Study. 2017. Neurological implications of Zika virus infection in adults. J. Infect. Dis 216:S897–905
    [Google Scholar]
  165. 165.  Roth W, Tyshkov C, Thakur K, Vargas W 2017. Encephalomyelitis following definitive Zika virus infection. Neurol. Neuroimmunol. Neuroinflamm. 4:e349
    [Google Scholar]
  166. 166.  Carteaux G, Maquart M, Bedet A, Contou D, Brugieres P et al. 2016. Zika virus associated with meningoencephalitis. N. Engl. J. Med. 374:1595–96
    [Google Scholar]
  167. 167.  Mehta R, Soares CN, Medialdea-Carrera R, Ellul M, da Silva MTT et al. 2018. The spectrum of neurological disease associated with Zika and chikungunya viruses in adults in Rio de Janeiro, Brazil: a case series. PLOS Negl. Trop. Dis. 12:e0006212
    [Google Scholar]
  168. 168.  Soares CN, Brasil P, Carrera RM, Sequeira P, de Filippis AB et al. 2016. Fatal encephalitis associated with Zika virus infection in an adult. J. Clin. Virol. 83:63–65
    [Google Scholar]
  169. 169.  Solomon T, Dung NM, Kneen R, Gainsborough M, Vaughn DW, Khanh VT 2000. Japanese encephalitis. J. Neurol. Neurosurg. Psychiatry 68:405–15
    [Google Scholar]
  170. 170.  Ravi V, Desai AS, Shenoy PK, Satishchandra P, Chandramuki A, Gourie-Devi M 1993. Persistence of Japanese encephalitis virus in the human nervous system. J. Med. Virol. 40:326–29
    [Google Scholar]
  171. 171.  Ronca SE, Dineley KT, Paessler S 2016. Neurological sequelae resulting from encephalitic alphavirus infection. Front. Microbiol. 7:959
    [Google Scholar]
  172. 172.  Britton PN, Dale RC, Blyth CC, Macartney K, Crawford NW et al. 2017. Influenza-associated encephalitis/encephalopathy identified by the Australian Childhood Encephalitis Study 2013–2015. Pediatr. Infect. Dis. J. 36:111021–26
    [Google Scholar]
  173. 173.  Yoshikawa H, Yamazaki S, Watanabe T, Abe T 2001. Study of influenza-associated encephalitis/encephalopathy in children during the 1997 to 2001 influenza seasons. J. Child Neurol. 16:885–90
    [Google Scholar]
  174. 174.  Morishima T, Togashi T, Yokota S, Okuno Y, Miyazaki C et al. 2002. Encephalitis and encephalopathy associated with an influenza epidemic in Japan. Clin. Infect. Dis. 35:512–17
    [Google Scholar]
  175. 175.  Meijer WJ, Linn FH, Wensing AM, Leavis HL, van Riel D et al. 2016. Acute influenza virus-associated encephalitis and encephalopathy in adults: a challenging diagnosis. JMM Case Rep 3:e005076
    [Google Scholar]
  176. 176.  Amano H, Miyamoto N, Shimura H, Sato DK, Fujihara K et al. 2014. Influenza-associated MOG antibody-positive longitudinally extensive transverse myelitis: a case report. BMC Neurol 14:224
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042718-041417
Loading
/content/journals/10.1146/annurev-immunol-042718-041417
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error