1932

Abstract

The interplay between the immune and nervous systems has been acknowledged in the past, but only more recent studies have started to unravel the cellular and molecular players of such interactions. Mounting evidence indicates that environmental signals are sensed by discrete neuro–immune cell units (NICUs), which represent defined anatomical locations in which immune and neuronal cells colocalize and functionally interact to steer tissue physiology and protection. These units have now been described in multiple tissues throughout the body, including lymphoid organs, adipose tissue, and mucosal barriers. As such, NICUs are emerging as important orchestrators of multiple physiological processes, including hematopoiesis, organogenesis, inflammation, tissue repair, and thermogenesis. In this review we focus on the impact of NICUs in tissue physiology and how this fast-evolving field is driving a paradigm shift in our understanding of immunoregulation and organismal physiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042718-041812
2019-04-26
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-042718-041812.html?itemId=/content/journals/10.1146/annurev-immunol-042718-041812&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Veiga-Fernandes H, Pachnis V 2017. Neuroimmune regulation during intestinal development and homeostasis. Nat. Immunol. 18:2116–22
    [Google Scholar]
  2. 2.  Veiga-Fernandes H, Mucida D 2016. Neuro-immune interactions at barrier surfaces. Cell 165:4801–11
    [Google Scholar]
  3. 3.  Franco R, Pacheco R, Lluis C, Ahern GP, O'Connell PJ 2007. The emergence of neurotransmitters as immune modulators. Trends Immunol 28:9400–7
    [Google Scholar]
  4. 4.  Pacheco R, Contreras F, Prado C 2012. Cells, molecules and mechanisms involved in the neuro-immune interaction. Cell Interaction SJT Gowder 139–66 London: IntechOpen
    [Google Scholar]
  5. 5.  Kioussis D, Pachnis V 2009. Immune and nervous systems: more than just a superficial similarity?. Immunity 31:5705–10
    [Google Scholar]
  6. 6.  ThyagaRajan S, Priyanka HP 2012. Bidirectional communication between the neuroendocrine system and the immune system: relevance to health and diseases. Ann. Neurosci. 19:140–46
    [Google Scholar]
  7. 7.  Bellinger DL, Lorton D 2018. Sympathetic nerve hyperactivity in the spleen: causal for nonpathogenic-driven chronic immune-mediated inflammatory diseases (IMIDs)?. Int. J. Mol. Sci. 19:4E1188
    [Google Scholar]
  8. 8.  Jagannathan-Bogdan M, Zon LI 2013. Hematopoiesis. Development 140:122463–67
    [Google Scholar]
  9. 9.  Warr MR, Pietras EM, Passegué E 2011. Mechanisms controlling hematopoietic stem cell functions during normal hematopoiesis and hematological malignancies. Wiley Interdiscip. Rev. Syst. Biol. Med. 3:6681–701
    [Google Scholar]
  10. 10.  Calvo W 1968. The innervation of the bone marrow in laboratory animals. Am. J. Anat. 123:2315–28
    [Google Scholar]
  11. 11.  Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ et al. 2002. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113:1155–66
    [Google Scholar]
  12. 12.  Tabarowski Z, Gibson-Berry K, Felten SY 1996. Noradrenergic and peptidergic innervation of the mouse femur bone marrow. Acta Histochem 98:4453–57
    [Google Scholar]
  13. 13.  Stevens-Felten SY, Bellinger DL 1985. Noradrenergic and peptidergic innervation of lymphoid organs. J. Immunol. 69:2599–131
    [Google Scholar]
  14. 14.  Yamazaki K, Allen TD 1990. Ultrastructural morphometric study of efferent nerve terminals on murine bone marrow stromal cells, and the recognition of a novel anatomical unit: the “neuro-reticular complex.”. Am. J. Anat. 187:3261–76
    [Google Scholar]
  15. 15.  Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD et al. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:7308829–34
    [Google Scholar]
  16. 16.  Afan AM, Broome CS, Nicholls SE, Whetton AD, Miyan JA 1997. Bone marrow innervation regulates cellular retention in the murine haemopoietic system. Br. J. Haematol. 98:3569–77
    [Google Scholar]
  17. 17.  Méndez-Ferrer S, Lucas D, Battista M, Frenette PS 2008. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:7186442–47
    [Google Scholar]
  18. 18.  Méndez-Ferrer S, Battista M, Frenette PS 2010. Cooperation of β2- and β3-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann. N. Y. Acad. Sci. 1192:139–44
    [Google Scholar]
  19. 19.  Maryanovich M, Zahalka AH, Pierce H, Pinho S, Nakahara F et al. 2018. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24:6782–91
    [Google Scholar]
  20. 20.  Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H et al. 2014. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15:3365–75
    [Google Scholar]
  21. 21.  Arranz L, Sánchez-Aguilera A, Martín-Pérez D, Isern J, Langa X et al. 2014. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512:178–81
    [Google Scholar]
  22. 22.  Liu K, Castillo MD, Murthy RG, Patel N, Rameshwar P 2007. Tachykinins and hematopoiesis. Clin. Chim. Acta 385:1–228–34
    [Google Scholar]
  23. 23.  Park MH, Jin HK, Min WK, Lee WW, Lee JE et al. 2015. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow. EMBO J 34:121648–60
    [Google Scholar]
  24. 24.  Park MH, Lee JK, Kim N, Min WK, Lee JE et al. 2016. Neuropeptide Y induces hematopoietic stem/progenitor cell mobilization by regulating matrix metalloproteinase-9 activity through Y1 receptor in osteoblasts. Stem Cells 34:82145–56
    [Google Scholar]
  25. 25.  Nowicki M, Ostalska-Nowicka D, Kondraciuk B, Miskowiak B 2007. The significance of substance P in physiological and malignant haematopoiesis. J. Clin. Pathol. 60:7749–55
    [Google Scholar]
  26. 26.  Artico M, Bosco S, Cavallotti C, Agostinelli E, Giuliani-Piccari G et al. 2002. Noradrenergic and cholinergic innervation of the bone marrow. Int. J. Mol. Med. 10:177–80
    [Google Scholar]
  27. 27.  Pierce H, Zhang D, Magnon C, Lucas D, Christin JR et al. 2017. Cholinergic signals from the CNS regulate G-CSF-mediated HSC mobilization from bone marrow via a glucocorticoid signaling relay. Cell Stem Cell 20:5648–58
    [Google Scholar]
  28. 28.  Ahmed M, Bjurholm A, Kreicbergs A, Schultzberg M 1993. Neuropeptide Y, tyrosine hydroxylase and vasoactive intestinal polypeptide-immunoreactive nerve fibers in the vertebral bodies, discs, dura mater, and spinal ligaments of the rat lumbar spine. Spine 18:2268–73
    [Google Scholar]
  29. 29.  Mignini F, Streccioni V, Amenta F 2003. Autonomic innervation of immune organs and neuroimmune modulation. Auton. Autacoid Pharmacol. 23:11–25
    [Google Scholar]
  30. 30.  Bjurholm A, Kreicbergs A, Brodin E, Schultzberg M 1988. Substance P- and CGRP-immunoreactive nerves in bone. Peptides 9:1165–71
    [Google Scholar]
  31. 31.  Hill EL, Elde R 1991. Distribution of CGRP-, VIP-, DβH-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res 264:3469–80
    [Google Scholar]
  32. 32.  Rameshwar P, Gascón P 1995. Substance P (SP) mediates production of stem cell factor and interleukin-1 in bone marrow stroma: potential autoregulatory role for these cytokines in SP receptor expression and induction. Blood 86:2482–90
    [Google Scholar]
  33. 33.  Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H et al. 2011. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:51146–58
    [Google Scholar]
  34. 34.  Fonseca-Pereira D, Arroz-Madeira S, Rodrigues-Campos M, Barbosa IM, Domingues RG et al. 2014. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature 514:752098–101
    [Google Scholar]
  35. 35.  Sergeeva VE 1974. Histotopography of catecholamines in the mammalian thymus. Bull. Exp. Biol. Med. 77:4456–58
    [Google Scholar]
  36. 36.  Bulloch K, Moore RY 1981. Innervation of the thymus gland by brain stem and spinal cord in mouse and rat. Am. J. Anat. 162:2157–66
    [Google Scholar]
  37. 37.  Roggero E, Besedovsky HO, del Rey A 2011. The role of the sympathetic nervous system in the thymus in health and disease. Neuroimmunomodulation 18:5339–49
    [Google Scholar]
  38. 38.  Fatani JA, Qayyum MA, Mehta L, Singh U 1986. Parasympathetic innervation of the thymus: a histochemical and immunocytochemical study. J. Anat. 147:115–19
    [Google Scholar]
  39. 39.  Singh U, Owen JJT 1976. Studies on the maturation of thymus stem cells: The effects of catecholamines, histamine and peptide hormones on the expression of T cell alloantigens. Eur. J. Immunol. 6:159–62
    [Google Scholar]
  40. 40.  Leposavić G, Pilipović I, Radojević K, Pešić V, Perišić M, Kosec D 2008. Catecholamines as immunomodulators: A role for adrenoceptor-mediated mechanisms in fine tuning of T-cell development. Auton. Neurosci. Basic Clin. 144:1–21–12
    [Google Scholar]
  41. 41.  Madden KS, Bellinger DL, Felten SY, Snyder E, Maida ME, Felten DL 1997. Alterations in sympathetic innervation of thymus and spleen in aged mice. Mech. Ageing Dev. 94:1–3165–75
    [Google Scholar]
  42. 42.  Hu D, Nicholls PK, Yin C, Kelman K, Yuan Q et al. 2018. Immunofluorescent localization of non-myelinating Schwann cells and their interactions with immune cells in mouse thymus. J. Histochem. Cytochem. 61:3775–85
    [Google Scholar]
  43. 43.  Bellinger DL, Lorton D, Hamill RW, Felten SY, Felten DL 1993. Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain. Behav. Immun. 7:3191–204
    [Google Scholar]
  44. 44.  Bellinger DL, Lorton D 2014. Autonomic regulation of cellular immune function. Auton. Neurosci. Basic Clin. 182:15–41
    [Google Scholar]
  45. 45.  Bellinger DL, Felten SY, Lorton D, Felten DL 1989. Origin of noradrenergic innervation of the spleen in rats. Brain Behav. Immun. 3:4291–311
    [Google Scholar]
  46. 46.  Oke SL, Tracey KJ 2009. The inflammatory reflex and the role of complementary and alternative medical therapies. Ann. N. Y. Acad. Sci. 1172:172–80
    [Google Scholar]
  47. 47.  Bratton BO, Martelli D, McKinley MJ, Trevaks D, Anderson CR, McAllen RM 2012. Neural regulation of inflammation: No neural connection from the vagus to splenic sympathetic neurons. Exp. Physiol. 97:111180–85
    [Google Scholar]
  48. 48.  Martelli D, Farmer DGS, Yao ST 2016. The splanchnic anti-inflammatory pathway: Could it be the efferent arm of the inflammatory reflex?. Exp. Physiol. 101:101245–52
    [Google Scholar]
  49. 49.  Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ 2003. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol. Med. 9:5–8125–34
    [Google Scholar]
  50. 50.  Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI et al. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:6785458–62
    [Google Scholar]
  51. 51.  Strom TB, Carpente CB, Deissero A, Merrill JP, Morganro J 1972. Alteration of cytotoxic action of sensitized lymphocytes by cholinergic agents and activators of adenylate cyclase. PNAS 69:102995–99
    [Google Scholar]
  52. 52.  Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA et al. 2011. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334:605298–101
    [Google Scholar]
  53. 53.  Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT et al. 2008. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. PNAS 105:3111008–13
    [Google Scholar]
  54. 54.  Vida G, Pena G, Deitch EA, Ulloa L 2011. α7-Cholinergic receptor mediates vagal induction of splenic norepinephrine. J. Immunol. 186:74340–46
    [Google Scholar]
  55. 55.  Wang H, Yu M, Ochani M, Amella CA, Tanovic M et al. 2003. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421:6921384–88
    [Google Scholar]
  56. 56.  Romano TA, Felten SY, Felten DL, Olschowka JA 1991. Neuropeptide-Y innervation of the rat spleen: another potential immunomodulatory neuropeptide. Brain Behav. Immun. 5:1116–31
    [Google Scholar]
  57. 57.  Wheway J, Mackay CR, Newton RA, Sainsbury A, Boey D et al. 2005. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J. Exp. Med. 202:111527–38
    [Google Scholar]
  58. 58.  Gonzalez-Rey E, Chorny A, Fernandez-Martin A, Ganea D, Delgado M 2006. Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells. Blood 107:93632–38
    [Google Scholar]
  59. 59.  Gonzalez-Rey E, Delgado M 2007. Vasoactive intestinal peptide and regulatory T-cell induction: a new mechanism and therapeutic potential for immune homeostasis. Trends Mol. Med. 13:6241–51
    [Google Scholar]
  60. 60.  Delgado AV, McManus AT, Chambers JP 2003. Production of Tumor Necrosis Factor-α, Interleukin 1-β, Interleukin 2, and Interleukin 6 by rat leukocyte subpopulations after exposure to Substance P. Neuropeptides 37:6355–61
    [Google Scholar]
  61. 61.  Kawamura N, Tamura H, Obana S, Wenner M, Ishikawa T et al. 1998. Differential effects of neuropeptides on cytokine production by mouse helper T cell subsets. Neuroimmunomodulation 5:1–29–15
    [Google Scholar]
  62. 62.  Gomes RN, Castro-Faria-Neto HC, Bozza PT, Soares MBP, Shoemaker CB et al. 2005. Calcitonin gene-related peptide inhibits local acute inflammation and protects mice against lethal endotoxemia. Shock 24:6590–94
    [Google Scholar]
  63. 63.  Assas BM, Wakid MH, Zakai HA, Miyan JA, Pennock JL 2016. Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis. Immunology 147:3292–304
    [Google Scholar]
  64. 64.  Rochlitzer S, Veres TZ, Kühne K, Prenzler F, Pilzner C et al. 2011. The neuropeptide calcitonin gene-related peptide affects allergic airway inflammation by modulating dendritic cell function. Clin. Exp. Allergy 41:111609–21
    [Google Scholar]
  65. 65.  Nance DM, Sanders VM 2007. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav. Immun. 21:6736–45
    [Google Scholar]
  66. 66.  Rampton DS 2011. The influence of stress on the development and severity of immune-mediated diseases. J. Rheumatol. 88:43–47
    [Google Scholar]
  67. 67.  Kin NW, Sanders VM 2006. It takes nerve to tell T and B cells what to do. J. Leukoc. Biol. 79:61093–104
    [Google Scholar]
  68. 68.  Kouassi E, Li YS, Boukhris W, Millet I, Revillard JP 1988. Opposite effects of the catecholamines dopamine and norepinephrine on murine polyclonal B-cell activation. Immunopharmacology 16:3125–37
    [Google Scholar]
  69. 69.  Kruszewska B, Felten SY, Moynihan JA 1995. Alterations in cytokine and antibody production following chemical sympathectomy in two strains of mice. J. Immunol. 155:104613–20
    [Google Scholar]
  70. 70.  van de Pavert SA, Olivier BJ, Goverse G, Vondenhoff MF, Greuter M et al. 2009. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat. Immunol. 10:111193–99
    [Google Scholar]
  71. 71.  van de Pavert SA, Mebius RE 2010. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10:9664–74
    [Google Scholar]
  72. 72.  Veiga-Fernandes H, Coles MC, Foster KE, Patel A, Williams A et al. 2007. Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis. Nature 446:7135547–51
    [Google Scholar]
  73. 73.  Patel A, Harker N, Moreira-Santos L, Ferreira M, Alden K et al. 2012. Differential RET signaling pathways drive development of the enteric lymphoid and nervous systems. Sci. Signal. 5:235ra55
    [Google Scholar]
  74. 74.  Kabouridis PS, Pachnis V 2015. Emerging roles of gut microbiota and the immune system in the development of the enteric nervous system. J. Clin. Investig. 125:3956–64
    [Google Scholar]
  75. 75.  Veiga-Fernandes H, Freitas AA 2017. The s(c)ensory immune system theory. Trends Immunol 38:10777–88
    [Google Scholar]
  76. 76.  Gershon MD 1999. The enteric nervous system: a second brain. Hosp. Pract. 34:731–52
    [Google Scholar]
  77. 77.  Furness JB 2000. Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst. 81:1–387–96
    [Google Scholar]
  78. 78.  Matteoli G, Gomez-Pinilla PJ, Nemethova A, Di Giovangiulio M, Cailotto C et al. 2014. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63:6938–48
    [Google Scholar]
  79. 79.  Mayer EA 2011. Gut feelings: the emerging biology of gut-brain communication. Nat. Rev. Neur. 12:8453–66
    [Google Scholar]
  80. 80.  Obata Y, Pachnis V 2016. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology 151:5836–44
    [Google Scholar]
  81. 81.  Liu YA, Chung YC, Pan ST, Shen MY, Hou YC et al. 2013. 3-D imaging, illustration, and quantitation of enteric glial network in transparent human colon mucosa. Neurogastroenterol. Motil. 25:5e324–38
    [Google Scholar]
  82. 82.  Boesmans W, Lasrado R, Vanden Berghe P, Pachnis V 2015. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 63:2229–41
    [Google Scholar]
  83. 83.  Bush TG, Savidge TC, Freeman TC, Cox HJ, Campbell EA et al. 1998. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93:2189–201
    [Google Scholar]
  84. 84.  Cornet A, Savidge TC, Cabarrocas J, Deng WL, Colombel JF et al. 2001. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn's disease?. PNAS 98:2313306–11
    [Google Scholar]
  85. 85.  Rao M, Rastelli D, Dong L, Chiu S, Setlik W et al. 2017. Enteric glia regulate gastrointestinal motility but are not required for maintenance of the epithelium in mice. Gastroenterology 153:41068–81
    [Google Scholar]
  86. 86.  Geboes K, Rutgeerts P, Ectors N, Mebis J, Penninckx F et al. 1992. Major histocompatibility class II expression on the small intestinal nervous system in Crohn's disease. Gastroenterology 103:2439–47
    [Google Scholar]
  87. 87.  Koretz K, Momburg F, Otto HF, Moller P 1987. Sequential induction of MHC antigens on autochthonous cells of ileum affected by Crohn's disease. Am. J. Pathol. 129:3493–502
    [Google Scholar]
  88. 88.  Savidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M et al. 2007. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132:41344–58
    [Google Scholar]
  89. 89.  Flamant M, Aubert P, Rolli-Derkinderen M, Bourreille A, Neunlist MR et al. 2011. Enteric glia protect against Shigella flexneri invasion in intestinal epithelial cells: a role for S-nitrosoglutathione. Gut 60:4473–84
    [Google Scholar]
  90. 90.  Neunlist M, Aubert P, Bonnaud S, Van Landeghem L, Coron E et al. 2007. Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-β1-dependent pathway. Am. J. Physiol. 292:1G231–41
    [Google Scholar]
  91. 91.  Xiao W, Wang W, Chen W, Sun L, Li X et al. 2014. GDNF is involved in the barrier-inducing effect of enteric glial cells on intestinal epithelial cells under acute ischemia reperfusion stimulation. Mol. Neurobiol. 50:2274–89
    [Google Scholar]
  92. 92.  Ibiza S, García-Cassani B, Ribeiro H, Carvalho T, Almeida L et al. 2016. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535:7612440–43
    [Google Scholar]
  93. 93.  Laranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A et al. 2011. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Investig. 121:93412–24
    [Google Scholar]
  94. 94.  Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V 1994. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:6461380–83
    [Google Scholar]
  95. 95.  van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R et al. 2014. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508:7494123–27
    [Google Scholar]
  96. 96.  Costes LMM, Boeckxstaens GE, De Jonge WJ, Cailotto C 2013. Neural networks in intestinal immunoregulation. Organogenesis 9:3216–23
    [Google Scholar]
  97. 97.  Gershon MD, Sherman DL 1987. Noradrenergic innervation of serotoninergic neurons in the myenteric plexus. J. Comp. Neurol. 210:193–210
    [Google Scholar]
  98. 98.  Phillips RJ, Rhodes BS, Powley TL 2006. Effects of age on sympathetic innervation of the myenteric plexus and gastrointestinal smooth muscle of Fischer 344 rats. Anat. Embryol. 211:6673–83
    [Google Scholar]
  99. 99.  Fu YY, Peng SJ, Lin HY, Pasricha PJ, Tang SC 2013. 3-D imaging and illustration of mouse intestinal neurovascular complex. Am. J. Physiol. 304:1G1–11
    [Google Scholar]
  100. 100.  Capurso L, Friedmann CA, Parks AG 1968. Adrenergic fibres in the human intestine. Gut 9:6678–82
    [Google Scholar]
  101. 101.  Sitkauskiene B, Sakalauskas R 2005. The role of β2-adrenergic receptors in inflammation and allergy. Curr. Drug Targets Inflamm. Allergy 4:2157–62
    [Google Scholar]
  102. 102.  Kasprowicz DJ, Kohm AP, Berton MT, Chruscinski AJ, Sharpe A, Sanders VM 2000. Stimulation of the B cell receptor, CD86 (B7–2), and the β2-adrenergic receptor intrinsically modulates the level of IgG1 and IgE produced per B cell. J. Immunol. 165:2680–90
    [Google Scholar]
  103. 103.  Kohm P, Sanders VM 2001. Norepinephrine and β2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol. Rev. 53:4487–525
    [Google Scholar]
  104. 104.  Straub RH, Pongratz G, Weidler C, Linde H-J, Kirschning CJ et al. 2005. Ablation of the sympathetic nervous system decreases gram-negative and increases gram-positive bacterial dissemination: key roles for tumor necrosis factor/phagocytes and interleukin-4/lymphocytes. J. Infect. Dis. 192:4560–72
    [Google Scholar]
  105. 105.  Belai A, Boulos PB, Robson T, Burnstock G 1997. Neurochemical coding in the small intestine of patients with Crohn's disease. Gut 40:6767–74
    [Google Scholar]
  106. 106.  Bai A, Lu N, Guo Y, Chen J, Liu Z 2009. Modulation of inflammatory response via α2-adrenoceptor blockade in acute murine colitis. Clin. Exp. Immunol. 156:2353–62
    [Google Scholar]
  107. 107.  Xia CM, Colomb DGJ, Akbarali HI, Qiao LY 2011. Prolonged sympathetic innervation of sensory neurons in rat thoracolumbar dorsal root ganglia during chronic colitis. Neurogastroenterol. Motil. 23:8801–39
    [Google Scholar]
  108. 108.  Willemze RA, Luyer MD, Buurman WA, De Jonge WJ 2015. Neural reflex pathways in intestinal inflammation: hypotheses to viable therapy. Nat. Rev. Gastroenterol. Hepatol. 12:6353–62
    [Google Scholar]
  109. 109.  Cheadle GA, Costantini TW, Bansal V, Eliceiri BP, Coimbra R 2014. Cholinergic signaling in the gut: a novel mechanism of barrier protection through activation of enteric glia cells. Surg. Infect. 15:4387–93
    [Google Scholar]
  110. 110.  Freem LJ, Escot S, Tannahill D, Druckenbrod NR, Thapar N, Burns AJ 2010. The intrinsic innervation of the lung is derived from neural crest cells as shown by optical projection tomography in Wnt1-Cre;YFP reporter mice. J. Anat. 217:6651–64
    [Google Scholar]
  111. 111.  Langsdorf A, Radzikinas K, Kroten A, Jain S, Ai X 2011. Neural crest cell origin and signals for intrinsic neurogenesis in the mammalian respiratory tract. Am. J. Respir. Cell Mol. Biol. 44:3293–301
    [Google Scholar]
  112. 112.  McGovern AE, Mazzone SB 2014. Neural regulation of inflammation in the airways and lungs. Auton. Neurosci. Basic Clin. 182:95–101
    [Google Scholar]
  113. 113.  Kummer W, Fischer A, Kurkowski R, Heym C 1992. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience 49:3715–37
    [Google Scholar]
  114. 114.  McGovern AE, Mazzone SB 2010. Characterization of the vagal motor neurons projecting to the guinea pig airways and esophagus. Front. Neurol. 1:153
    [Google Scholar]
  115. 115.  Fischer A, Canning BJ, Undem BJ, Kummer W 1998. Evidence for an esophageal origin of VIP-IR and NO synthase-IR nerves innervating the guinea pig trachealis: a retrograde neuronal tracing and immunohistochemical analysis. J. Comp. Neurol. 394:3326–34
    [Google Scholar]
  116. 116.  Richardson J, Béland J 1976. Nonadrenergic inhibitory nervous system in human airways. J. Appl. Physiol. 41:5764–71
    [Google Scholar]
  117. 117.  Yang X, Zhao C, Gao Z, Su X 2014. A novel regulator of lung inflammation and immunity: pulmonary parasympathetic inflammatory reflex. Q. J. Med. 107:10789–92
    [Google Scholar]
  118. 118.  Audrit KJ, Delventhal L, Aydin O, Nassenstein C 2017. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res 367:3571–90
    [Google Scholar]
  119. 119.  Barnes PJ 1992. Neural mechanisms in asthma. Br. Med. Bull. 48:1149–68
    [Google Scholar]
  120. 120.  Zaccone EJ, Undem BJ 2016. Airway vagal neuroplasticity associated with respiratory viral infections. Lung 194:125–29
    [Google Scholar]
  121. 121.  Baluk P, Nadel JA, McDonald DM 1992. Substance P-immunoreactive sensory axons in the rat respiratory tract: a quantitative study of their distribution and role in neurogenic inflammation. J. Comp. Neurol. 319:4586–98
    [Google Scholar]
  122. 122.  Ollerenshaw SL, Jarvis D, Sullivan CE, Woolcock AJ 1991. Substance P immunoreactive nerves in airways from asthmatics and nonasthmatics. Eur. Respir. J. 4:6673–82
    [Google Scholar]
  123. 123.  van der Velden VH, Hulsmann AR 1999. Autonomic innervation of human airways: structure, function, and pathophysiology in asthma. Neuroimmunomodulation 6:3145–59
    [Google Scholar]
  124. 124.  Howarth PH, Djukanovic R, Wilson JW, Holgate ST, Springall DR, Polak JM 1991. Mucosal nerves in endobronchial biopsies in asthma and non-asthma. Int. Arch. Allergy Immunol. 94:1–4330–33
    [Google Scholar]
  125. 125.  Ellis JL, Sham JSK, Undem BJ 1997. Tachykinin-independent effects of capsaicin on smooth muscle in human isolated bronchi. Am. J. Respir. Crit. Care Med. 155:2751–55
    [Google Scholar]
  126. 126.  Blalock JE 1994. Shared ligands and receptors as a molecular mechanism for communication between the immune and neuroendocrine systems. Ann. N. Y. Acad. Sci. 741:292–98
    [Google Scholar]
  127. 127.  Muller PA, Koscsó B, Rajani GM, Stevanovic K, Berres ML et al. 2014. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158:2300–13 Erratum. 2014. Cell 158:51210
    [Google Scholar]
  128. 128.  Neumann H, Schweigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde YA 2002. Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a Rho-dependent mechanism. J. Neurosci. 22:3854–62
    [Google Scholar]
  129. 129.  Gutierrez H, Kisiswa L, O'Keeffe GW, Smithen MJ, Wyatt S, Davies AM 2013. Regulation of neurite growth by tumour necrosis superfamily member RANKL. Open Biol 3:1120150
    [Google Scholar]
  130. 130.  Gougeon PY, Lourenssen S, Han TY, Nair DG, Ropeleski MJ, Blennerhassett MG 2013. The pro-inflammatory cytokines IL-1 and TNF are neurotrophic for enteric neurons. J. Neurosci. 33:83339–51
    [Google Scholar]
  131. 131.  Besedovsky H, del Rey A 1992. Immune-neuroendocrine circuits: integrative role of cytokines. Front. Neuroendocrinol. 13:161–94
    [Google Scholar]
  132. 132.  Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES 2000. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52:4595–638
    [Google Scholar]
  133. 133.  del Rey A, Besedovsky HO 2008. Sympathetic nervous system-immune interactions in autoimmune lymphoproliferative diseases. Neuroimmunomodulation 15:129–36
    [Google Scholar]
  134. 134.  Straub RH, Zeuner M, Lock G, Rath H, Hein R et al. 1996. Autonomic and sensorimotor neuropathy in patients with systemic lupus erythematosus and systemic sclerosis. J. Rheumatol. 23:187–92
    [Google Scholar]
  135. 135.  Dekkers JC, Geenen R, Godaert GL, Bijlsma JW, van Doornen LJ 2004. Elevated sympathetic nervous system activity in patients with recently diagnosed rheumatoid arthritis with active disease. Clin. Exp. Rheumatol. 22:163–70
    [Google Scholar]
  136. 136.  Perin PC, Maule S, Quadri R 2001. Sympathetic nervous system, diabetes, and hypertension. Clin. Exp. Hypertens. 23:1–245–55
    [Google Scholar]
  137. 137.  Mohammed J, Meeus M, Derom E, Da Silva H, Calders P 2015. Evidence for autonomic function and its influencing factors in subjects with COPD: a systematic review. Respir. Care 60:121841–51
    [Google Scholar]
  138. 138.  Albanese V, Lawson VA, Hill AF, Cappai R, Di Guardo G et al. 2008. Evidence for prion protein expression in enteroglial cells of the myenteric plexus of mouse intestine. Auton. Neurosci. Basic Clin. 140:1–217–23
    [Google Scholar]
  139. 139.  Lawson VA, Furness JB, Klemm HM, Pontell L, Chan E et al. 2010. The brain to gut pathway: A possible route of prion transmission. Gut 59:121643–51
    [Google Scholar]
  140. 140.  Seelig DM, Mason GL, Telling GC, Hoover EA 2011. Chronic wasting disease prion trafficking via the autonomic nervous system. Am. J. Pathol. 179:31319–28
    [Google Scholar]
  141. 141.  Clairembault T, Leclair-Visonneau L, Neunlist M, Derkinderen P 2015. Enteric glial cells: New players in Parkinson's disease?. Mov. Disord. 30:4494–98
    [Google Scholar]
  142. 142.  Clairembault T, Kamphuis W, Leclair-Visonneau L, Rolli-Derkinderen M, Coron E et al. 2014. Enteric GFAP expression and phosphorylation in Parkinson's disease. J. Neurochem. 130:6805–15
    [Google Scholar]
  143. 143.  Yu J, Lin S, Zhang J, Otmishi P, Guardiola JJ 2007. Airway nociceptors activated by pro-inflammatory cytokines. Respir. Physiol. Neurobiol. 156:2116–19
    [Google Scholar]
  144. 144.  Talbot S, Abdulnour REE, Burkett PR, Lee S, Cronin SJF et al. 2015. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron 87:2341–55
    [Google Scholar]
  145. 145.  Medzhitov R, Schneider DS, Soares MP 2012. Disease tolerance as a defense strategy. Science 335:6071936–41
    [Google Scholar]
  146. 146.  Nayak D, Roth TL, McGavern DB 2014. Microglia development and function. Annu. Rev. Immunol. 32:1367–402
    [Google Scholar]
  147. 147.  Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W et al. 2016. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535:7612425–29
    [Google Scholar]
  148. 148.  Choi GB, Yim YS, Wong H, Kim S, Kim H et al. 2016. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351:6276933–39
    [Google Scholar]
  149. 149.  Shin Yim Y, Park A, Berrios J, Lafourcade M, Pascual LM et al. 2017. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549:7673482–87
    [Google Scholar]
  150. 150.  Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A et al. 2010. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207:51067–80
    [Google Scholar]
  151. 151.  Tanabe S, Yamashita T 2018. B-1a lymphocytes promote oligodendrogenesis during brain development. Nat. Neurosci. 21:4506–16
    [Google Scholar]
  152. 152.  Nicholls AJ, Wen SW, Hall P, Hickey MJ, Wong CHY 2018. Activation of the sympathetic nervous system modulates neutrophil function. J. Leukoc. Biol. 103:2295–309
    [Google Scholar]
  153. 153.  Pinho-Ribeiro FA, Baddal B, Haarsma R, O'Seaghdha M, Yang NJ et al. 2018. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173:51083–97
    [Google Scholar]
  154. 154.  Baral P, Umans BD, Li L, Wallrapp A, Bist M et al. 2018. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. Nat. Med. 24:4417–26
    [Google Scholar]
  155. 155.  Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH 2015. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43:3515–26
    [Google Scholar]
  156. 156.  Liu B, Escalera J, Balakrishna S, Fan L, Caceres AI et al. 2013. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J 27:93549–63
    [Google Scholar]
  157. 157.  Oetjen LK, Mack MR, Feng J, Whelan TM, Niu H et al. 2017. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell 171:1217–28
    [Google Scholar]
  158. 158.  Riol-Blanco L, Ordovas-Montanes J, Perro M, Naval E, Thiriot A et al. 2014. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510:7503157–61
    [Google Scholar]
  159. 159.  Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D et al. 2009. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. PNAS 106:229099–104
    [Google Scholar]
  160. 160.  van Diest SA, Stanisor OI, Boeckxstaens GE, de Jonge WJ, van den Wijngaard RM 2012. Relevance of mast cell-nerve interactions in intestinal nociception. Biochim. Biophys. Acta Mol. Basis Dis. 1822:174–84
    [Google Scholar]
  161. 161.  Chiu IM, Von Hehn CA, Woolf CJ 2012. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 15:81063–67
    [Google Scholar]
  162. 162.  Buhner S, Schemann M 2012. Mast cell-nerve axis with a focus on the human gut. Biochim. Biophys. Acta Mol. Basis Dis. 1822:185–92
    [Google Scholar]
  163. 163.  Voisin T, Bouvier A, Chiu IM 2017. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int. Immunol. 29:6247–61
    [Google Scholar]
  164. 164.  Forsythe P 2015. The parasympathetic nervous system as a regulator of mast cell function. Methods Mol. Biol. 1220:141–54
    [Google Scholar]
  165. 165.  Kenney MJ, Ganta CK 2014. Autonomic nervous system and immune system interactions. Compr. Physiol. 4:31177–200
    [Google Scholar]
  166. 166.  Jung WC, Levesque JP, Ruitenberg MJ 2017. It takes nerve to fight back: the significance of neural innervation of the bone marrow and spleen for immune function. Semin. Cell Dev. Biol. 61:60–70
    [Google Scholar]
  167. 167.  Rosas-Ballina M, Tracey KJ 2009. The neurology of the immune system: Neural reflexes regulate immunity. Neuron 64:128–32
    [Google Scholar]
  168. 168.  Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D 2016. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164:3378–91
    [Google Scholar]
  169. 169.  Verheijden S, Schepper SD, Boeckxstaens GE 2015. Neuron-macrophage crosstalk in the intestine: a “microglia” perspective. Front. Cell. Neurosci. 9:403
    [Google Scholar]
  170. 170.  Pirzgalska RM, Seixas E, Seidman JS, Link VM, Sánchez NM et al. 2017. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23:111309–18
    [Google Scholar]
  171. 171.  Camell CD, Sander J, Spadaro O, Lee A, Nguyen KY et al. 2017. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550:7674119–23
    [Google Scholar]
  172. 172.  Wolf Y, Boura-Halfon S, Cortese N, Haimon Z, Sar Shalom H et al. 2017. Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat. Immunol. 18:6665–74
    [Google Scholar]
  173. 173.  Klose CSN, Artis D 2016. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17:7765–74
    [Google Scholar]
  174. 174.  Veiga-Fernandes H, Artis D 2018. Neuronal-immune system cross-talk in homeostasis. Science 359:63831465–66
    [Google Scholar]
  175. 175.  Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A et al. 2013. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502:7470245–48
    [Google Scholar]
  176. 176.  Barrios J, Patel KR, Aven L, Achey R, Minns MS et al. 2017. Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion. FASEB J 31:94117–28
    [Google Scholar]
  177. 177.  Sui P, Wiesner DL, Xu J, Zhang Y, Lee J et al. 2018. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 360:6393eaan8546
    [Google Scholar]
  178. 178.  Cardoso V, Chesné J, Ribeiro H, García-Cassani B, Carvalho T et al. 2017. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549:7671277–81
    [Google Scholar]
  179. 179.  Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour REE, Nyman J et al. 2017. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549:7672351–56
    [Google Scholar]
  180. 180.  Klose CSN, Mahlakõiv T, Moeller JB, Rankin LC, Flamar AL et al. 2017. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549:7671282–86
    [Google Scholar]
  181. 181.  Moriyama S, Brestoff JR, Flamar A-L, Moeller JB, Klose CSN et al. 2018. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science 359:63791056–61
    [Google Scholar]
  182. 182.  Dalli J, Colas RA, Arnardottir H, Serhan CN 2017. Vagal regulation of group 3 innate lymphoid cells and the immunoresolvent PCTR1 controls infection resolution. Immunity 46:192–105
    [Google Scholar]
  183. 183.  Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S 2008. Functions of natural killer cells. Nat. Immunol. 9:5503–10
    [Google Scholar]
  184. 184.  Benschop RJ, Rodriguez-Feuerhahn M, Schedlowski M 1996. Catecholamine-induced leukocytosis: early observations, current research, and future directions. Brain. Behav. Immun. 10:277–91
    [Google Scholar]
  185. 185.  Shakhar G, Ben-Eliyahu S 1998. In vivo β-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J. Immunol. 160:73251–58
    [Google Scholar]
  186. 186.  Xiao J, Huang HW, Peng YP, Bao JY, Huang Y, Qiu YH 2010. Modulation of natural killer cell function by α-adrenoreceptor-coupled signalling. Neuro Endocrinol. Lett. 31:635–44
    [Google Scholar]
  187. 187.  Liu Q, Sanai N, Jin WN, La Cava A, Van Kaer L, Shi FD 2016. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat. Neurosci. 19:2243–52
    [Google Scholar]
  188. 188.  Mildner A, Jung S 2014. Development and function of dendritic cell subsets. Immunity 40:5642–56
    [Google Scholar]
  189. 189.  Takenaka MC, Guereschi MG, Basso AS 2017. Neuroimmune interactions: dendritic cell modulation by the sympathetic nervous system. Semin. Immunopathol. 39:2165–76
    [Google Scholar]
  190. 190.  McMahon SB, La Russa F, Bennett DLH 2015. Crosstalk between the nociceptive and immune systems in host defence and disease. Nat. Rev. Neurosci. 16:7389–402
    [Google Scholar]
  191. 191.  Chorny A, Gonzalez-Rey E, Fernandez-Martin A, Pozo D, Ganea D, Delgado M 2005. Vasoactive intestinal peptide induces regulatory dendritic cells with therapeutic effects on autoimmune disorders. PNAS 102:3813562–67
    [Google Scholar]
  192. 192.  Delgado M, Chorny A, Gonzalez-Rey E, Ganea D 2005. Vasoactive intestinal peptide generates CD4+CD25+ regulatory T cells in vivo. J. Leukoc. Biol. 78:61327–38
    [Google Scholar]
  193. 193.  Toscano MG, Delgado M, Kong W, Martin F, Skarica M, Ganea D 2010. Dendritic cells transduced with lentiviral vectors expressing VIP differentiate into VIP-secreting tolerogenic-like DCs. Mol. Ther. 18:51035–45
    [Google Scholar]
  194. 194.  Padro CJ, Sanders VM 2014. Neuroendocrine regulation of inflammation. Semin. Immunol. 26:5357–68
    [Google Scholar]
  195. 195.  Nakai A, Hayano Y, Furuta F, Noda M, Suzuki K 2014. Control of lymphocyte egress from lymph nodes through β2-adrenergic receptors. J. Exp. Med. 211:132583–98
    [Google Scholar]
  196. 196.  Druzd D, Matveeva O, Ince L, Harrison U, He W et al. 2017. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46:1120–32
    [Google Scholar]
  197. 197.  Kipnis J 2016. Multifaceted interactions between adaptive immunity and the central nervous system. Science 353:6301766–71
    [Google Scholar]
  198. 198.  van Westerloo DJ, Giebelen IA, Florquin S, Bruno MJ, Larosa GJ et al. 2006. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 130:61822–30
    [Google Scholar]
  199. 199.  Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, Ochani M, Ochani K et al. 2008. Modulation of TNF release by choline requires α7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol. Med. 14:9–10567–74
    [Google Scholar]
  200. 200.  Ji H, Rabbi MF, Labis B, Pavlov VA, Tracey KJ, Ghia JE 2014. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol 7:2335–47
    [Google Scholar]
  201. 201.  Pavlov VA, Ochani M, Yang LH, Gallowitsch-Puerta M, Ochani K et al. 2007. Selective α7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit. Care Med. 35:41139–44
    [Google Scholar]
  202. 202.  Hanes WM, Olofsson PS, Kwan K, Hudson LK, Chavan SS et al. 2015. Galantamine attenuates type 1 diabetes and inhibits anti-insulin antibodies in non-obese diabetic mice. Mol. Med. 21:702–8
    [Google Scholar]
  203. 203.  Yeboah MM, Xue X, Duan B, Ochani M, Tracey KJ et al. 2008. Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats. Kidney Int 74:162–69
    [Google Scholar]
  204. 204.  Rosas-Ballina M, Valdés-Ferrer S, Dancho ME, Ochani M, Katz D et al. 2015. Xanomeline suppresses excessive pro-inflammatory cytokine responses through neural signal-mediated pathways and improves survival in lethal inflammation. Brain Behav. Immun. 44:19–27
    [Google Scholar]
  205. 205.  Terrando N, Yang T, Ryu JK, Newton PT, Monaco C et al. 2015. Stimulation of the α7 nicotinic acetylcholine receptor protects against neuroinflammation after tibia fracture and endotoxemia in mice. Mol. Med. 20:667–75
    [Google Scholar]
  206. 206.  Munyaka P, Rabbi MF, Pavlov VA, Tracey KJ, Khafipour E, Ghia JE 2014. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25 T cells in experimental colitis. PLOS ONE 9:10e109272
    [Google Scholar]
  207. 207.  Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M et al. 2009. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun. 23:141–45
    [Google Scholar]
  208. 208.  Marino F, Cosentino M 2013. Adrenergic modulation of immune cells: an update. Amino Acids 45:155–71
    [Google Scholar]
  209. 209.  Consolim-Colombo FM 2014. Galantamine effects in patients with metabolic syndrome (GALANTA-MS) NCT02283242, University of São Paulo, São Paulo
  210. 210.  Song JG, Li HH, Cao YF, Lv X, Zhang P et al. 2012. Electroacupuncture improves survival in rats with lethal endotoxemia via the autonomic nervous system. Anesthesiology 116:2406–14
    [Google Scholar]
  211. 211.  Torres-Rosas R, Yehia G, Pena G, Mishra P, del Rocio Thompson-Bonilla M et al. 2014. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat. Med. 20:3291–95
    [Google Scholar]
  212. 212.  Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S et al. 2016. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. PNAS 113:298284–89
    [Google Scholar]
  213. 213.  Bonaz B, Sinniger V, Hoffmann D, Clarençon D, Mathieu N et al. 2016. Chronic vagus nerve stimulation in Crohn's disease: a 6-month follow-up pilot study. Neurogastroenterol. Motil. 28:6948–53
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042718-041812
Loading
/content/journals/10.1146/annurev-immunol-042718-041812
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error