1932

Abstract

Metabolism is one of the strongest drivers of interkingdom interactions—including those between microorganisms and their multicellular hosts. Traditionally thought to fuel energy requirements and provide building blocks for biosynthetic pathways, metabolism is now appreciated for its role in providing metabolites, small-molecule intermediates generated from metabolic processes, to perform various regulatory functions to mediate symbiotic relationships between microbes and their hosts. Here, we review recent advances in our mechanistic understanding of how microbiota-derived metabolites orchestrate and support physiological responses in the host, including immunity, inflammation, defense against infections, and metabolism. Understanding how microbes metabolically communicate with their hosts will provide us an opportunity to better describe how a host interacts with all microbes—beneficial, pathogenic, and commensal—and an opportunity to discover new ways to treat microbial-driven diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-071219-125715
2020-04-26
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/38/1/annurev-immunol-071219-125715.html?itemId=/content/journals/10.1146/annurev-immunol-071219-125715&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Rao S, Schieber AM, O'Connor CP, Leblanc M, Michel D, Ayres JS 2017. Pathogen-mediated inhibition of anorexia promotes host survival and transmission. Cell 168:503–16.e12
    [Google Scholar]
  2. 2. 
    Sanchez KK, Chen GY, Schieber AMP, Redford SE, Shokhirev MN et al. 2018. Cooperative metabolic adaptations in the host can favor asymptomatic infection and select for attenuated virulence in an enteric pathogen. Cell 175:146–58.e15
    [Google Scholar]
  3. 3. 
    Macia L, Tan J, Vieira AT, Leach K, Stanley D et al. 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6:6734
    [Google Scholar]
  4. 4. 
    Kim M, Galan C, Hill AA, Wu WJ, Fehlner-Peach H et al. 2018. Critical role for the microbiota in CX3CR1+ intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity 49:151–63.e5
    [Google Scholar]
  5. 5. 
    Cait A, Hughes MR, Antignano F, Cait J, Dimitriu PA et al. 2018. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol 11:785–95
    [Google Scholar]
  6. 6. 
    Li S, Bostick JW, Ye J, Qiu J, Zhang B et al. 2018. Aryl hydrocarbon receptor signaling cell intrinsically inhibits intestinal group 2 innate lymphoid cell function. Immunity 49:915–28.e5
    [Google Scholar]
  7. 7. 
    Qiu J, Heller JJ, Guo X, Chen ZM, Fish K et al. 2012. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36:92–104
    [Google Scholar]
  8. 8. 
    Schiering C, Wincent E, Metidji A, Iseppon A, Li Y et al. 2017. Feedback control of AHR signalling regulates intestinal immunity. Nature 542:242–45
    [Google Scholar]
  9. 9. 
    Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G et al. 2013. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–85
    [Google Scholar]
  10. 10. 
    Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–45
    [Google Scholar]
  11. 11. 
    Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–15
    [Google Scholar]
  12. 12. 
    Litvak Y, Byndloss MX, Baumler AJ 2018. Colonocyte metabolism shapes the gut microbiota. Science 362:eaat9076
    [Google Scholar]
  13. 13. 
    Sivaprakasam S, Prasad PD, Singh N 2016. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Ther. 164:144–51
    [Google Scholar]
  14. 14. 
    Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–86
    [Google Scholar]
  15. 15. 
    Correa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA 2016. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 5:e73
    [Google Scholar]
  16. 16. 
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–73
    [Google Scholar]
  17. 17. 
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–50
    [Google Scholar]
  18. 18. 
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–55
    [Google Scholar]
  19. 19. 
    Sun M, Wu W, Chen L, Yang W, Huang X et al. 2018. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat. Commun. 9:3555
    [Google Scholar]
  20. 20. 
    Schilderink R, Verseijden C, de Jonge WJ 2013. Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front. Immunol. 4:226
    [Google Scholar]
  21. 21. 
    Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L et al. 2012. Ealy life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 13:5440–47
    [Google Scholar]
  22. 22. 
    Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20:159–66
    [Google Scholar]
  23. 23. 
    Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L et al. 2015. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6:7320
    [Google Scholar]
  24. 24. 
    Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bounny S et al. 2019. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50:1276–88.e5
    [Google Scholar]
  25. 25. 
    Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I et al. 2019. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50:432–45.e7
    [Google Scholar]
  26. 26. 
    Chang PV, Hao L, Offermanns S, Medzhitov R 2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. PNAS 111:2247–52
    [Google Scholar]
  27. 27. 
    Fachi JL, Felipe JS, Pral LP, da Silva BK, Correa RO et al. 2019. Butyrate protects mice from Clostridium difficile-induced colitis through an HIF-1-dependent mechanism. Cell Rep 27:750–61.e7
    [Google Scholar]
  28. 28. 
    Hryckowian AJ, Van Treuren W, Smits SA, Davis NM, Gardner JO et al. 2018. Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nat. Microbiol. 3:662–69
    [Google Scholar]
  29. 29. 
    Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E et al. 2018. Dietary fiber confers protection against flu by shaping Ly6c patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 48:992–1005.e8
    [Google Scholar]
  30. 30. 
    Rivera-Chavez F, Zhang LF, Faber F, Lopez CA, Byndloss MX et al. 2016. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. . Cell Host Microbe 19:443–54
    [Google Scholar]
  31. 31. 
    Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J et al. 2018. A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection. Cell Host Microbe 24:296–307.e7
    [Google Scholar]
  32. 32. 
    Nadjsombati MS, McGinty JW, Lyons-Cohen MR, Jaffe JB, DiPeso L et al. 2018. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 49:33–41.e7
    [Google Scholar]
  33. 33. 
    Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A et al. 2011. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34:237–46
    [Google Scholar]
  34. 34. 
    Morita N, Umemoto E, Fujita S, Hayashi A, Kikuta J et al. 2019. GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites. Nature 566:110–14
    [Google Scholar]
  35. 35. 
    Gao Z, Yin J, Zhang J, Ward RE, Martin RJ et al. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–17
    [Google Scholar]
  36. 36. 
    De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Backhed F, Mithieux G 2016. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab 24:151–57
    [Google Scholar]
  37. 37. 
    Qin J, Li Y, Cai Z, Li S, Zhu J et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60
    [Google Scholar]
  38. 38. 
    Zhao L, Zhang F, Ding X, Wu G, Lam YY et al. 2018. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359:1151–56
    [Google Scholar]
  39. 39. 
    Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A et al. 2019. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51:600–5
    [Google Scholar]
  40. 40. 
    Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E et al. 2015. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–66
    [Google Scholar]
  41. 41. 
    Walsh ME, Bhattacharya A, Sataranatarajan K, Qaisar R, Sloane L et al. 2015. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell 14:957–70
    [Google Scholar]
  42. 42. 
    Matt SM, Allen JM, Lawson MA, Mailing LJ, Woods JA, Johnson RW 2018. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Front. Immunol. 9:1832
    [Google Scholar]
  43. 43. 
    Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H et al. 2011. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. PNAS 108:Suppl. 14586–91
    [Google Scholar]
  44. 44. 
    Bodogai M, O'Connell J, Kim K, Kim Y, Moritoh K et al. 2018. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci. Transl. Med. 10:eaat4271
    [Google Scholar]
  45. 45. 
    Perry RJ, Peng L, Barry NA, Cline GW, Zhang D et al. 2016. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534:213–17
    [Google Scholar]
  46. 46. 
    Tirosh A, Calay ES, Tuncman G, Claiborn KC, Inouye KE et al. 2019. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci. Transl. Med. 11:eaav0120
    [Google Scholar]
  47. 47. 
    Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–39
    [Google Scholar]
  48. 48. 
    Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L et al. 2016. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165:1708–20
    [Google Scholar]
  49. 49. 
    Belcheva A, Irrazabal T, Robertson SJ, Streutker C, Maughan H et al. 2014. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 158:288–99
    [Google Scholar]
  50. 50. 
    Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ 2012. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48:612–26
    [Google Scholar]
  51. 51. 
    Neis EP, Dejong CH, Rensen SS 2015. The role of microbial amino acid metabolism in host metabolism. Nutrients 7:2930–46
    [Google Scholar]
  52. 52. 
    Roager HM, Licht TR. 2018. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9:3294
    [Google Scholar]
  53. 53. 
    Agus A, Planchais J, Sokol H 2018. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23:716–24
    [Google Scholar]
  54. 54. 
    Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE et al. 2016. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22:586–97
    [Google Scholar]
  55. 55. 
    Lamas B, Richard ML, Leducq V, Pham HP, Michel ML et al. 2016. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22:598–605
    [Google Scholar]
  56. 56. 
    Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP et al. 2017. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 357:806–10
    [Google Scholar]
  57. 57. 
    Hubbard TD, Murray IA, Perdew GH 2015. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab. Dispos. 43:1522–35
    [Google Scholar]
  58. 58. 
    Sonowal R, Swimm A, Sahoo A, Luo L, Matsunaga Y et al. 2017. Indoles from commensal bacteria extend healthspan. PNAS 114:E7506–15
    [Google Scholar]
  59. 59. 
    Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P et al. 2011. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 141:237–48.e1
    [Google Scholar]
  60. 60. 
    Aoki R, Aoki-Yoshida A, Suzuki C, Takayama Y 2018. Indole-3-pyruvic acid, an aryl hydrocarbon receptor activator, suppresses experimental colitis in mice. J. Immunol. 201:3683–93
    [Google Scholar]
  61. 61. 
    Goettel JA, Gandhi R, Kenison JE, Yeste A, Murugaiyan G et al. 2016. AHR activation is protective against colitis driven by T cells in humanized mice. Cell Rep 17:1318–29
    [Google Scholar]
  62. 62. 
    Bommarius B, Anyanful A, Izrayelit Y, Bhatt S, Cartwright E et al. 2013. A family of indoles regulate virulence and Shiga toxin production in pathogenic E. coli. . PLOS ONE 8:e54456
    [Google Scholar]
  63. 63. 
    Kohli N, Crisp Z, Riordan R, Li M, Alaniz RC, Jayaraman A 2018. The microbiota metabolite indole inhibits Salmonella virulence: involvement of the PhoPQ two-component system. PLOS ONE 13:e0190613
    [Google Scholar]
  64. 64. 
    Nikaido E, Giraud E, Baucheron S, Yamasaki S, Wiedemann A et al. 2012. Effects of indole on drug resistance and virulence of Salmonella enterica serovar Typhimurium revealed by genome-wide analyses. Gut Pathog 4:5
    [Google Scholar]
  65. 65. 
    Natividad JM, Agus A, Planchais J, Lamas B, Jarry AC et al. 2018. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab 28:737–49.e4
    [Google Scholar]
  66. 66. 
    Metidji A, Omenetti S, Crotta S, Li Y, Nye E et al. 2018. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49:353–62.e5
    [Google Scholar]
  67. 67. 
    Wang Z, Bergeron N, Levison BS, Li XS, Chiu S et al. 2019. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur. Heart J. 40:583–94
    [Google Scholar]
  68. 68. 
    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E et al. 2013. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19:576–85
    [Google Scholar]
  69. 69. 
    Roberts AB, Gu X, Buffa JA, Hurd AG, Wang Z et al. 2018. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 24:1407–17
    [Google Scholar]
  70. 70. 
    Ni J, Shen TD, Chen EZ, Bittinger K, Bailey A et al. 2017. A role for bacterial urease in gut dysbiosis and Crohn's disease. Sci. Transl. Med. 9:eaah6888
    [Google Scholar]
  71. 71. 
    Shen TC, Albenberg L, Bittinger K, Chehoud C, Chen YY et al. 2015. Engineering the gut microbiota to treat hyperammonemia. J. Clin. Investig. 125:2841–50
    [Google Scholar]
  72. 72. 
    Boyer JL. 2013. Bile formation and secretion. Compr. Physiol. 3:1035–78
    [Google Scholar]
  73. 73. 
    Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR 2008. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. PNAS 105:13580–85
    [Google Scholar]
  74. 74. 
    Gerard P. 2013. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 3:14–24
    [Google Scholar]
  75. 75. 
    Chen ML, Takeda K, Sundrud MS 2019. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol 12:851–61
    [Google Scholar]
  76. 76. 
    Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S 2009. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183:6251–61
    [Google Scholar]
  77. 77. 
    Cipriani S, Mencarelli A, Chini MG, Distrutti E, Renga B et al. 2011. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLOS ONE 6:e25637
    [Google Scholar]
  78. 78. 
    Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W et al. 2011. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60:463–72
    [Google Scholar]
  79. 79. 
    Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS 2014. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30:332–38
    [Google Scholar]
  80. 80. 
    Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H et al. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487:104–8
    [Google Scholar]
  81. 81. 
    Hofmann AF. 1999. The continuing importance of bile acids in liver and intestinal disease. Arch. Intern. Med. 159:2647–58
    [Google Scholar]
  82. 82. 
    Sung JY, Costerton JW, Shaffer EA 1992. Defense system in the biliary tract against bacterial infection. Dig. Dis. Sci. 37:689–96
    [Google Scholar]
  83. 83. 
    Theriot CM, Bowman AA, Young VB 2016. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 1:e00045–15
    [Google Scholar]
  84. 84. 
    Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L et al. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. . Nature 517:205–8
    [Google Scholar]
  85. 85. 
    Tremblay S, Romain G, Roux M, Chen XL, Brown K et al. 2017. Bile acid administration elicits an intestinal antimicrobial program and reduces the bacterial burden in two mouse models of enteric infection. Infect. Immun. 85:e00942–16
    [Google Scholar]
  86. 86. 
    Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G et al. 2006. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. PNAS 103:3920–25
    [Google Scholar]
  87. 87. 
    Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S et al. 2018. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 68:1574–88
    [Google Scholar]
  88. 88. 
    Parseus A, Sommer N, Sommer F, Caesar R, Molinaro A et al. 2017. Microbiota-induced obesity requires farnesoid X receptor. Gut 66:429–37
    [Google Scholar]
  89. 89. 
    Imray CH, Radley S, Davis A, Barker G, Hendrickse CW et al. 1992. Faecal unconjugated bile acids in patients with colorectal cancer or polyps. Gut 33:1239–45
    [Google Scholar]
  90. 90. 
    Bayerdorffer E, Mannes GA, Ochsenkuhn T, Dirschedl P, Wiebecke B, Paumgartner G 1995. Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut 36:268–73
    [Google Scholar]
  91. 91. 
    Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F et al. 2019. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25:667–78
    [Google Scholar]
  92. 92. 
    Chen ML, Yi L, Zhang Y, Zhou X, Ran L et al. 2016. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio 2:e02210–15
    [Google Scholar]
  93. 93. 
    Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A et al. 2019. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25:679–89
    [Google Scholar]
  94. 94. 
    Fu T, Coulter S, Yoshihara E, Oh TG, Fang S et al. 2019. FXR regulates intestinal cancer stem cell proliferation. Cell 176:1098–112.e18
    [Google Scholar]
  95. 95. 
    Ma C, Han M, Heinrich B, Fu Q, Zhang Q et al. 2018. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360:eaan5931
    [Google Scholar]
  96. 96. 
    Kulma A, Szopa J. 2007. Catecholamines are active compounds in plants. Plant Sci 172:433–40
    [Google Scholar]
  97. 97. 
    Blaschko H. 1973. Catecholamine biosynthesis. Br. Med. Bull. 29:105–9
    [Google Scholar]
  98. 98. 
    Tank AW, Lee Wong D 2015. Peripheral and central effects of circulating catecholamines. Compr. Physiol. 5:1–15
    [Google Scholar]
  99. 99. 
    Lyte M, Vulchanova L, Brown DR 2011. Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res 343:23–32
    [Google Scholar]
  100. 100. 
    Basu S, Dasgupta PS. 2000. Dopamine, a neurotransmitter, influences the immune system. J. Neuroimmunol. 102:113–24
    [Google Scholar]
  101. 101. 
    Pacheco R, Contreras F, Zouali M 2014. The dopaminergic system in autoimmune diseases. Front. Immunol. 5:117
    [Google Scholar]
  102. 102. 
    McCormick DA. 1989. GABA as an inhibitory neurotransmitter in human cerebral cortex. J. Neurophysiol. 62:1018–27
    [Google Scholar]
  103. 103. 
    Delgado TC. 2013. Glutamate and GABA in appetite regulation. Front. Endocrinol. 4:103
    [Google Scholar]
  104. 104. 
    Kim JK, Kim YS, Lee H-M, Jin HS, Neupane C et al. 2018. GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections. Nat. Commun. 9:4184
    [Google Scholar]
  105. 105. 
    Bhat R, Axtell R, Mitra A, Miranda M, Lock C et al. 2010. Inhibitory role for GABA in autoimmune inflammation. PNAS 107:2580–85
    [Google Scholar]
  106. 106. 
    Feehily C, Karatzas KA. 2013. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J. Appl. Microbiol. 114:11–24
    [Google Scholar]
  107. 107. 
    Reigstad CS, Salmonson CE, Rainey JF 3rd, Szurszewski JH, Linden DR et al. 2015. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:1395–403
    [Google Scholar]
  108. 108. 
    Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P et al. 2015. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–76
    [Google Scholar]
  109. 109. 
    Mandic AD, Woting A, Jaenicke T, Sander A, Sabrowski W et al. 2019. Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Sci. Rep. 9:1177
    [Google Scholar]
  110. 110. 
    De Vadder F, Grasset E, Manneras Holm L, Karsenty G, Macpherson AJ et al. 2018. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. PNAS 115:6458–63
    [Google Scholar]
  111. 111. 
    Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD et al. 2013. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18:666–73
    [Google Scholar]
  112. 112. 
    Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V et al. 2012. The gut microbiota regulates bone mass in mice. J. Bone Miner. Res 27:1357–67
    [Google Scholar]
  113. 113. 
    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA et al. 2009. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. PNAS 106:3698–703
    [Google Scholar]
  114. 114. 
    Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T et al. 2012. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Gastrointest. Liver Physiol. 303:G1288–95
    [Google Scholar]
  115. 115. 
    Matsumoto M, Ooga T, Kibe R, Aiba Y, Koga Y, Benno Y 2017. Colonic absorption of low-molecular-weight metabolites influenced by the intestinal microbiome: a pilot study. PLOS ONE 12:e0169207
    [Google Scholar]
  116. 116. 
    Fujisaka S, Avila-Pacheco J, Soto M, Kostic A, Dreyfuss JM et al. 2018. Diet, genetics, and the gut microbiome drive dynamic changes in plasma metabolites. Cell Rep 22:3072–86
    [Google Scholar]
  117. 117. 
    Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY 2018. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173:1728–41.e13
    [Google Scholar]
  118. 118. 
    Shishov VA, Kirovskaia TA, Kudrin VS, Oleskin AV 2009. [Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12]. Prikl. Biokhim. Mikrobiol. 45:550–54 In Russian )
    [Google Scholar]
  119. 119. 
    Villageliu D, Lyte M. 2018. Dopamine production in Enterococcus faecium: a microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential. PLOS ONE 13:e0207038
    [Google Scholar]
  120. 120. 
    van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshavarzian A et al. 2019. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson's disease. Nat. Commun. 10:310
    [Google Scholar]
  121. 121. 
    Yang SY, Lu FX, Lu ZX, Bie XM, Jiao Y et al. 2008. Production of gamma-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino Acids 34:473–78
    [Google Scholar]
  122. 122. 
    Pokusaeva K, Johnson C, Luk B, Uribe G, Fu Y et al. 2017. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol. Motil. 29:e12904
    [Google Scholar]
  123. 123. 
    Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A et al. 2019. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4:396–403
    [Google Scholar]
  124. 124. 
    Dhakal R, Bajpai VK, Baek KH 2012. Production of gaba (γ - aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 43:1230–41
    [Google Scholar]
  125. 125. 
    Pellock SJ, Redinbo MR. 2017. Glucuronides in the gut: sugar-driven symbioses between microbe and host. J. Biol. Chem. 292:8569–76
    [Google Scholar]
  126. 126. 
    Hata T, Asano Y, Yoshihara K, Kimura-Todani T, Miyata N et al. 2017. Regulation of gut luminal serotonin by commensal microbiota in mice. PLOS ONE 12:e0180745
    [Google Scholar]
  127. 127. 
    Roberts MS, Magnusson BM, Burczynski FJ, Weiss M 2002. Enterohepatic circulation. Clin. Pharmacokinet. 41:751–90
    [Google Scholar]
  128. 128. 
    Gill RK, Pant N, Saksena S, Singla A, Nazir TM et al. 2008. Function, expression, and characterization of the serotonin transporter in the native human intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G254–62
    [Google Scholar]
  129. 129. 
    Lyte M, Brown DR. 2018. Evidence for PMAT- and OCT-like biogenic amine transporters in a probiotic strain of Lactobacillus: implications for interkingdom communication within the microbiota-gut-brain axis. PLOS ONE 13:e0191037
    [Google Scholar]
  130. 130. 
    Knecht LD, O'Connor G, Mittal R, Liu XZ, Daftarian P et al. 2016. Serotonin activates bacterial quorum sensing and enhances the virulence of Pseudomonas aeruginosa in the host. EBioMedicine 9:161–69
    [Google Scholar]
  131. 131. 
    Liu J, Mori A. 1993. Monoamine metabolism provides an antioxidant defense in the brain against oxidant- and free radical-induced damage. Arch. Biochem. Biophys. 302:118–27
    [Google Scholar]
  132. 132. 
    Kwon YH, Wang H, Denou E, Ghia J-E, Rossi L et al. 2019. Modulation of gut microbiota composition by serotonin signaling influences intestinal immune response and susceptibility to colitis. Cell. Mol. Gastroenterol. Hepatol. 7:709–28
    [Google Scholar]
  133. 133. 
    Torabi Delshad S, Soltanian S, Sharifiyazdi H, Bossier P 2019. Effect of catecholamine stress hormones (dopamine and norepinephrine) on growth, swimming motility, biofilm formation and virulence factors of Yersinia ruckeri in vitro and an in vivo evaluation in rainbow trout. J. Fish Dis. 42:477–87
    [Google Scholar]
  134. 134. 
    Wells JE, Williams KB, Whitehead TR, Heuman DM, Hylemon PB 2003. Development and application of a polymerase chain reaction assay for the detection and enumeration of bile acid 7α-dehydroxylating bacteria in human feces. Clin. Chim. Acta 331:127–34
    [Google Scholar]
  135. 135. 
    Sorg JA, Sonenshein AL. 2008. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190:2505–12
    [Google Scholar]
  136. 136. 
    Chen K, Luan X, Liu Q, Wang J, Chang X et al. 2019. Drosophila histone demethylase KDM5 regulates social behavior through immune control and gut microbiota maintenance. Cell Host Microbe 25:537–52.e8
    [Google Scholar]
  137. 137. 
    Chen R, Davis LK, Guter S, Wei Q, Jacob S et al. 2017. Leveraging blood serotonin as an endophenotype to identify de novo and rare variants involved in autism. Mol. Autism 8:14
    [Google Scholar]
  138. 138. 
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM et al. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS 108:16050–55
    [Google Scholar]
  139. 139. 
    Zheng P, Zeng B, Liu M, Chen J, Pan J et al. 2019. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv. 5:eaau8317
    [Google Scholar]
  140. 140. 
    de las Casas-Engel M, Dominguez-Soto A, Sierra-Filardi E, Bragado R, Nieto C et al. 2013. Serotonin skews human macrophage polarization through HTR2B and HTR7. J. Immunol. 190:2301–10
    [Google Scholar]
  141. 141. 
    Dominguez-Soto A, Usategui A, Casas-Engel ML, Simon-Fuentes M, Nieto C et al. 2017. Serotonin drives the acquisition of a profibrotic and anti-inflammatory gene profile through the 5-HT7R-PKA signaling axis. Sci. Rep. 7:14761
    [Google Scholar]
  142. 142. 
    Maharshak N, Packey CD, Ellermann M, Manick S, Siddle JP et al. 2013. Altered enteric microbiota ecology in interleukin 10-deficient mice during development and progression of intestinal inflammation. Gut Microbes 4:316–24
    [Google Scholar]
  143. 143. 
    Zhang H, Sparks JB, Karyala SV, Settlage R, Luo XM 2015. Host adaptive immunity alters gut microbiota. ISME J 9:770–81
    [Google Scholar]
  144. 144. 
    Posey JE, Gherardini FC. 2000. Lack of a role for iron in the Lyme disease pathogen. Science 288:1651–53
    [Google Scholar]
  145. 145. 
    Pi H, Jones SA, Mercer LE, Meador JP, Caughron JE et al. 2012. Role of catecholate siderophores in gram-negative bacterial colonization of the mouse gut. PLOS ONE 7:e50020
    [Google Scholar]
  146. 146. 
    Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA et al. 2004. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–21
    [Google Scholar]
  147. 147. 
    Johnson EE, Wessling-Resnick M. 2012. Iron metabolism and the innate immune response to infection. Microbes Infect 14:207–16
    [Google Scholar]
  148. 148. 
    Allred BE, Correnti C, Clifton MC, Strong RK, Raymond KN 2013. Siderocalin outwits the coordination chemistry of vibriobactin, a siderophore of Vibrio cholerae. ACS Chem. Biol 8:1882–87
    [Google Scholar]
  149. 149. 
    Nelson AL, Barasch JM, Bunte RM, Weiser JN 2005. Bacterial colonization of nasal mucosa induces expression of siderocalin, an iron-sequestering component of innate immunity. Cell Microbiol 7:1404–17
    [Google Scholar]
  150. 150. 
    Bachman MA, Miller VL, Weiser JN 2009. Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLOS Pathog 5:e1000622
    [Google Scholar]
  151. 151. 
    Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN 2012. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. mBio 3:e00224–11
    [Google Scholar]
  152. 152. 
    Zhao H, Konishi A, Fujita Y, Yagi M, Ohata K et al. 2012. Lipocalin 2 bolsters innate and adaptive immune responses to blood-stage malaria infection by reinforcing host iron metabolism. Cell Host Microbe 12:705–16
    [Google Scholar]
  153. 153. 
    Fenn K, Strandwitz P, Stewart EJ, Dimise E, Rubin S et al. 2017. Quinones are growth factors for the human gut microbiota. Microbiome 5:161
    [Google Scholar]
  154. 154. 
    Hammer ND, Cassat JE, Noto MJ, Lojek LJ, Chadha AD et al. 2014. Inter- and intraspecies metabolite exchange promotes virulence of antibiotic-resistant Staphylococcus aureus. . Cell Host Microbe 16:531–37
    [Google Scholar]
  155. 155. 
    Raines DJ, Moroz OV, Blagova EV, Turkenburg JP, Wilson KS, Duhme-Klair AK 2016. Bacteria in an intense competition for iron: key component of the Campylobacter jejuni iron uptake system scavenges enterobactin hydrolysis product. PNAS 113:5850–55
    [Google Scholar]
  156. 156. 
    Rebuffat S. 2012. Microcins in action: amazing defence strategies of Enterobacteria. Biochem. Soc. Trans. 40:1456–62
    [Google Scholar]
  157. 157. 
    Sassone-Corsi M, Nuccio SP, Liu H, Hernandez D, Vu CT et al. 2016. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540:280–83
    [Google Scholar]
  158. 158. 
    Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ et al. 2013. Probiotic bacteria reduce Salmonella Typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14:26–37
    [Google Scholar]
  159. 159. 
    Saha P, Yeoh BS, Olvera RA, Xiao X, Singh V et al. 2017. Bacterial siderophores hijack neutrophil functions. J. Immunol. 198:4293–303
    [Google Scholar]
  160. 160. 
    Singh V, Yeoh BS, Xiao X, Kumar M, Bachman M et al. 2015. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. coli survival in the inflamed gut. Nat. Commun. 6:7113
    [Google Scholar]
  161. 161. 
    Majmundar AJ, Wong WJ, Simon MC 2010. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40:294–309
    [Google Scholar]
  162. 162. 
    Choi EY, Kim EC, Oh HM, Kim S, Lee HJ et al. 2004. Iron chelator triggers inflammatory signals in human intestinal epithelial cells: involvement of p38 and extracellular signal-regulated kinase signaling pathways. J. Immunol. 172:7069–77
    [Google Scholar]
  163. 163. 
    Holden VI, Lenio S, Kuick R, Ramakrishnan SK, Shah YM, Bachman MA 2014. Bacterial siderophores that evade or overwhelm lipocalin 2 induce hypoxia inducible factor 1α and proinflammatory cytokine secretion in cultured respiratory epithelial cells. Infect. Immun. 82:3826–36
    [Google Scholar]
  164. 164. 
    Hartmann H, Eltzschig HK, Wurz H, Hantke K, Rakin A et al. 2008. Hypoxia-independent activation of HIF-1 by Enterobacteriaceae and their siderophores. Gastroenterology 134:756–67
    [Google Scholar]
  165. 165. 
    Zhang J, Wu Y, Zhang Y, Leroith D, Bernlohr DA, Chen X 2008. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol. Endocrinol. 22:1416–26
    [Google Scholar]
  166. 166. 
    Warszawska JM, Gawish R, Sharif O, Sigel S, Doninger B et al. 2013. Lipocalin 2 deactivates macrophages and worsens pneumococcal pneumonia outcomes. J. Clin. Investig. 123:3363–72
    [Google Scholar]
  167. 167. 
    Qi B, Han M. 2018. Microbial siderophore enterobactin promotes mitochondrial iron uptake and development of the host via interaction with ATP synthase. Cell 175:571–82.e11
    [Google Scholar]
  168. 168. 
    Song E, Ramos SV, Huang X, Liu Y, Botta A et al. 2018. Holo-lipocalin-2-derived siderophores increase mitochondrial ROS and impair oxidative phosphorylation in rat cardiomyocytes. PNAS 115:1576–81
    [Google Scholar]
  169. 169. 
    Moschen AR, Gerner RR, Wang J, Klepsch V, Adolph TE et al. 2016. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe 19:455–69
    [Google Scholar]
  170. 170. 
    Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC et al. 2015. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160:132–44
    [Google Scholar]
  171. 171. 
    Krishnan N, Fu C, Pappin DJ, Tonks NK 2011. H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci. Signal. 4:ra86
    [Google Scholar]
  172. 172. 
    Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W et al. 2009. H2S signals through protein S-sulfhydration. Sci. Signal. 2:ra72
    [Google Scholar]
  173. 173. 
    Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T et al. 2012. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol. Cell 45:13–24
    [Google Scholar]
  174. 174. 
    Yang G, Wu L, Jiang B, Yang W, Qi J et al. 2008. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322:587–90
    [Google Scholar]
  175. 175. 
    Mathai JC, Missner A, Kugler P, Saparov SM, Zeidel ML et al. 2009. No facilitator required for membrane transport of hydrogen sulfide. PNAS 106:16633–38
    [Google Scholar]
  176. 176. 
    Hansen TA. 1994. Metabolism of sulfate-reducing prokaryotes. Antonie Van Leeuwenhoek 66:165–85
    [Google Scholar]
  177. 177. 
    Kadota H, Ishida Y. 1972. Production of volatile sulfur compounds by microorganisms. Annu. Rev. Microbiol. 26:127–38
    [Google Scholar]
  178. 178. 
    Shatalin K, Shatalina E, Mironov A, Nudler E 2011. H2S: a universal defense against antibiotics in bacteria. Science 334:986–90
    [Google Scholar]
  179. 179. 
    Linden DR. 2014. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid. Redox Signal. 20:818–30
    [Google Scholar]
  180. 180. 
    Awano N, Wada M, Mori H, Nakamori S, Takagi H 2005. Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl. Environ. Microbiol. 71:4149–52
    [Google Scholar]
  181. 181. 
    Kumagai H, Sejima S, Choi Y, Tanaka H, Yamada H 1975. Crystallization and properties of cysteine desulfhydrase from Aerobacter aerogenes. . FEBS Lett 52:304–7
    [Google Scholar]
  182. 182. 
    Flannigan KL, McCoy KD, Wallace JL 2011. Eukaryotic and prokaryotic contributions to colonic hydrogen sulfide synthesis. Am. J. Physiol. Gastrointest. Liver Physiol. 301:G188–93
    [Google Scholar]
  183. 183. 
    Shen X, Carlstrom M, Borniquel S, Jadert C, Kevil CG, Lundberg JO 2013. Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic. Biol. Med. 60:195–200
    [Google Scholar]
  184. 184. 
    Harris K, Kassis A, Major G, Chou CJ 2012. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders?. J. Obes. 2012:879151
    [Google Scholar]
  185. 185. 
    Marchetti G, Tincati C, Silvestri G 2013. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin. Microbiol. Rev. 26:2–18
    [Google Scholar]
  186. 186. 
    Yan AW, Schnabl B. 2012. Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease. World J. Hepatol. 4:110–18
    [Google Scholar]
  187. 187. 
    Li L, Whiteman M, Moore PK 2009. Dexamethasone inhibits lipopolysaccharide-induced hydrogen sulphide biosynthesis in intact cells and in an animal model of endotoxic shock. J. Cell Mol. Med. 13:2684–92
    [Google Scholar]
  188. 188. 
    Cao Q, Zhang L, Yang G, Xu C, Wang R 2010. Butyrate-stimulated H2S production in colon cancer cells. Antioxid. Redox Signal. 12:1101–9
    [Google Scholar]
  189. 189. 
    Miller TW, Wang EA, Gould S, Stein EV, Kaur S et al. 2012. Hydrogen sulfide is an endogenous potentiator of T cell activation. J. Biol. Chem. 287:4211–21
    [Google Scholar]
  190. 190. 
    Miller TW, Kaur S, Ivins-O'Keefe K, Roberts DD 2013. Thrombospondin-1 is a CD47-dependent endogenous inhibitor of hydrogen sulfide signaling in T cell activation. Matrix Biol 32:316–24
    [Google Scholar]
  191. 191. 
    Yang R, Qu C, Zhou Y, Konkel JE, Shi S et al. 2015. Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43:251–63
    [Google Scholar]
  192. 192. 
    Flannigan KL, Agbor TA, Motta JP, Ferraz JG, Wang R et al. 2015. Proresolution effects of hydrogen sulfide during colitis are mediated through hypoxia-inducible factor-1α. FASEB J 29:1591–602
    [Google Scholar]
  193. 193. 
    Hirata I, Naito Y, Takagi T, Mizushima K, Suzuki T et al. 2011. Endogenous hydrogen sulfide is an anti-inflammatory molecule in dextran sodium sulfate-induced colitis in mice. Dig. Dis. Sci. 56:1379–86
    [Google Scholar]
  194. 194. 
    Motta JP, Flannigan KL, Agbor TA, Beatty JK, Blackler RW et al. 2015. Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Inflamm. Bowel Dis. 21:1006–17
    [Google Scholar]
  195. 195. 
    Qin M, Long F, Wu W, Yang D, Huang M et al. 2019. Hydrogen sulfide protects against DSS-induced colitis by inhibiting NLRP3 inflammasome. Free Radic. Biol. Med. 137:99–109
    [Google Scholar]
  196. 196. 
    Wallace JL, Vong L, McKnight W, Dicay M, Martin GR 2009. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137:569–78.e1
    [Google Scholar]
  197. 197. 
    Sigthorsson G, Simpson RJ, Walley M, Anthony A, Foster R et al. 2002. COX-1 and 2, intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory drug enteropathy in mice. Gastroenterology 122:1913–23
    [Google Scholar]
  198. 198. 
    Whiteman M, Winyard PG. 2011. Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev. Clin. Pharmacol. 4:13–32
    [Google Scholar]
  199. 199. 
    Fiorucci S, Antonelli E, Distrutti E, Rizzo G, Mencarelli A et al. 2005. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology 129:1210–24
    [Google Scholar]
  200. 200. 
    Wallace JL, Dicay M, McKnight W, Martin GR 2007. Hydrogen sulfide enhances ulcer healing in rats. FASEB J 21:4070–76
    [Google Scholar]
  201. 201. 
    Blackler RW, Motta JP, Manko A, Workentine M, Bercik P et al. 2015. Hydrogen sulphide protects against NSAID-enteropathy through modulation of bile and the microbiota. Br. J. Pharmacol. 172:992–1004
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-071219-125715
Loading
/content/journals/10.1146/annurev-immunol-071219-125715
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error