1932

Abstract

The signaling lipid sphingosine 1-phosphate (S1P) plays critical roles in an immune response. Drugs targeting S1P signaling have been remarkably successful in treatment of multiple sclerosis, and they have shown promise in clinical trials for colitis and psoriasis. One mechanism of these drugs is to block lymphocyte exit from lymph nodes, where lymphocytes are initially activated, into circulation, from which lymphocytes can reach sites of inflammation. Indeed, S1P can be considered a circulation marker, signaling to immune cells to help them find blood and lymphatic vessels, and to endothelial cells to stabilize the vasculature. That said, S1P plays pleiotropic roles in the immune response, and it will be important to build an integrated view of how S1P shapes inflammation. S1P can function so effectively because its distribution is exquisitely tightly controlled. Here we review how S1P gradients regulate immune cell exit from tissues, with particular attention to key outstanding questions in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-081519-083952
2020-04-26
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/immunol/38/1/annurev-immunol-081519-083952.html?itemId=/content/journals/10.1146/annurev-immunol-081519-083952&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Yanagida K, Hla T. 2017. Vascular and immunobiology of the circulatory sphingosine 1-phosphate gradient. Annu. Rev. Physiol. 79:67–91
    [Google Scholar]
  2. 2. 
    Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR et al. 1998. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279:1552–55
    [Google Scholar]
  3. 3. 
    Olivera A, Allende ML, Proia RL 2013. Shaping the landscape: metabolic regulation of S1P gradients. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1831:1193–202
    [Google Scholar]
  4. 4. 
    Gault CR, Obeid LM, Hannun YA 2010. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688:1–23
    [Google Scholar]
  5. 5. 
    Maceyka M, Spiegel S. 2014. Sphingolipid metabolites in inflammatory disease. Nature 510:58–67
    [Google Scholar]
  6. 6. 
    Pitson SM. 2011. Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem. Sci. 36:97–107
    [Google Scholar]
  7. 7. 
    Saba JD, Hla T. 2004. Point-counterpoint of sphingosine 1-phosphate metabolism. Circ. Res. 94:724–34
    [Google Scholar]
  8. 8. 
    Le Stunff H, Milstien S, Spiegel S 2004. Generation and metabolism of bioactive sphingosine-1-phosphate. J. Cell. Biochem. 92:882–99
    [Google Scholar]
  9. 9. 
    Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R et al. 2010. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9:883–97
    [Google Scholar]
  10. 10. 
    Chun J, Kihara Y, Jonnalagadda D, Blaho VA 2019. Fingolimod: lessons learned and new opportunities for treating multiple sclerosis and other disorders. Annu. Rev. Pharmacol. Toxicol. 59:149–70
    [Google Scholar]
  11. 11. 
    Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J et al. 2002. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346–49
    [Google Scholar]
  12. 12. 
    Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S et al. 2002. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem. 277:21453–57
    [Google Scholar]
  13. 13. 
    Mehling M, Brinkmann V, Antel J, Bar-Or A, Goebels N et al. 2008. FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis. Neurology 71:1261–67
    [Google Scholar]
  14. 14. 
    Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y et al. 2004. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–60
    [Google Scholar]
  15. 15. 
    Stepanovska B, Huwiler A. 2019. Targeting the S1P receptor signaling pathways as a promising approach for treatment of autoimmune and inflammatory diseases. Pharmacol. Res. 15:104170
    [Google Scholar]
  16. 16. 
    Cohen JA, Arnold DL, Comi G, Bar-Or A, Gujrathi S et al. 2016. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol 15:373–81
    [Google Scholar]
  17. 17. 
    Sandborn WJ, Feagan BG, Wolf DC, D'Haens G, Vermeire S et al. 2016. Ozanimod induction and maintenance treatment for ulcerative colitis. N. Engl. J. Med. 374:1754–62
    [Google Scholar]
  18. 18. 
    Vaclavkova A, Chimenti S, Arenberger P, Hollo P, Sator PG et al. 2014. Oral ponesimod in patients with chronic plaque psoriasis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 384:2036–45
    [Google Scholar]
  19. 19. 
    Olsson T, Boster A, Fernandez O, Freedman MS, Pozzilli C et al. 2014. Oral ponesimod in relapsing-remitting multiple sclerosis: a randomised phase II trial. J. Neurol. Neurosurg. Psychiatry 85:1198–208
    [Google Scholar]
  20. 20. 
    Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G et al. 2018. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391:1263–73
    [Google Scholar]
  21. 21. 
    Al-Salama ZT. 2019. Siponimod: first global approval. Drugs 79:1009–15
    [Google Scholar]
  22. 22. 
    Fujita T, Inoue K, Yamamoto S, Ikumoto T, Sasaki S et al. 1994. Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J. Antibiot. 47:208–15
    [Google Scholar]
  23. 23. 
    Adachi K, Kohara T, Nakao N, Arita M, Chiba K et al. 1995. Design, synthesis, and structure-activity relationships of 2-substituted-2-amino-1,3-propanediols: discovery of a novel immunosuppressant, FTY720. Bioorg. Med. Chem. Lett. 5:853–56
    [Google Scholar]
  24. 24. 
    Adachi K, Chiba K. 2007. FTY720 story: its discovery and the following accelerated development of sphingosine 1-phosphate receptor agonists as immunomodulators based on reverse pharmacology. Perspect. Med. Chem. 1:11–23
    [Google Scholar]
  25. 25. 
    Chiba K, Yanagawa Y, Masubuchi Y, Kataoka H, Kawaguchi T et al. 1998. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J. Immunol. 160:5037–44
    [Google Scholar]
  26. 26. 
    Schwab SR, Pereira JP, Matloubian M, Xu Y, Huang Y, Cyster JG 2005. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309:1735–39
    [Google Scholar]
  27. 27. 
    Allende ML, Dreier JL, Mandala S, Proia RL 2004. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J. Biol. Chem. 279:15396–401
    [Google Scholar]
  28. 28. 
    Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB et al. 2007. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316:295–98
    [Google Scholar]
  29. 29. 
    Jenne CN, Enders A, Rivera R, Watson SR, Bankovich AJ et al. 2009. T-bet–dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J. Exp. Med. 206:2469–81
    [Google Scholar]
  30. 30. 
    Walzer T, Chiossone L, Chaix J, Calver A, Carozzo C et al. 2007. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat. Immunol. 8:1337–44
    [Google Scholar]
  31. 31. 
    Camm J, Hla T, Bakshi R, Brinkmann V 2014. Cardiac and vascular effects of fingolimod: mechanistic basis and clinical implications. Am. Heart J. 168:632–44
    [Google Scholar]
  32. 32. 
    Oo ML, Thangada S, Wu MT, Liu CH, Macdonald TL et al. 2007. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J. Biol. Chem. 282:9082–89
    [Google Scholar]
  33. 33. 
    Liu Y, Wada R, Yamashita T, Mi Y, Deng CX et al. 2000. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Investig. 106:951–61
    [Google Scholar]
  34. 34. 
    Allende ML, Yamashita T, Proia RL 2003. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 102:3665–67
    [Google Scholar]
  35. 35. 
    Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL 2005. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell. Biol. 25:11113–21
    [Google Scholar]
  36. 36. 
    Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH et al. 1999. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99:301–12
    [Google Scholar]
  37. 37. 
    Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN et al. 2009. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J. Clin. Investig. 119:1871–79
    [Google Scholar]
  38. 38. 
    Pham TH, Baluk P, Xu Y, Grigorova I, Bankovich AJ et al. 2010. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J. Exp. Med. 207:17–27, S1–4
    [Google Scholar]
  39. 39. 
    Herzog BH, Fu J, Wilson SJ, Hess PR, Sen A et al. 2013. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 502:105–9
    [Google Scholar]
  40. 40. 
    Gazit SL, Mariko B, Therond P, Decouture B, Xiong Y et al. 2016. Platelet and erythrocyte sources of S1P are redundant for vascular development and homeostasis, but both rendered essential after plasma S1P depletion in anaphylactic shock. Circ. Res. 119:e110–26
    [Google Scholar]
  41. 41. 
    Kono M, Tucker AE, Tran J, Bergner JB, Turner EM, Proia RL 2014. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo. J. Clin. Investig. 124:2076–86
    [Google Scholar]
  42. 42. 
    Hisano Y, Kono M, Cartier A, Engelbrecht E, Kano K et al. 2019. Lysolipid receptor cross-talk regulates lymphatic endothelial junctions in lymph nodes. J. Exp. Med. 216:71582–98
    [Google Scholar]
  43. 43. 
    Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC 2013. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14:1285–93
    [Google Scholar]
  44. 44. 
    Odumade OA, Weinreich MA, Jameson SC, Hogquist KA 2010. Kruppel-like factor 2 regulates trafficking and homeostasis of γδ T cells. J. Immunol. 184:6060–66
    [Google Scholar]
  45. 45. 
    Ramirez-Valle F, Gray EE, Cyster JG 2015. Inflammation induces dermal Vγ4+ γδT17 memory-like cells that travel to distant skin and accelerate secondary IL-17–driven responses. PNAS 112:8046–51
    [Google Scholar]
  46. 46. 
    Laidlaw BJ, Gray EE, Zhang Y, Ramírez-Valle F, Cyster JG 2019. Sphingosine-1-phosphate receptor 2 restrains egress of γδ T cells from the skin. J. Exp. Med. 216:71487–96
    [Google Scholar]
  47. 47. 
    Fang V, Chaluvadi VS, Ramos-Perez WD, Mendoza A, Baeyens A et al. 2017. Gradients of the signaling lipid S1P in lymph nodes position natural killer cells and regulate their interferon-gamma response. Nat. Immunol. 18:15–25
    [Google Scholar]
  48. 48. 
    Lamana A, Martin P, de la Fuente H, Martinez-Munoz L, Cruz-Adalia A et al. 2011. CD69 modulates sphingosine-1-phosphate-induced migration of skin dendritic cells. J. Investig. Dermatol. 131:1503–12
    [Google Scholar]
  49. 49. 
    Rathinasamy A, Czeloth N, Pabst O, Forster R, Bernhardt G 2010. The origin and maturity of dendritic cells determine the pattern of sphingosine 1-phosphate receptors expressed and required for efficient migration. J. Immunol. 185:4072–81
    [Google Scholar]
  50. 50. 
    Gao Y, Majchrzak-Kita B, Fish EN, Gommerman JL 2009. Dynamic accumulation of plasmacytoid dendritic cells in lymph nodes is regulated by interferon-β. Blood 114:2623–31
    [Google Scholar]
  51. 51. 
    Lewis ND, Haxhinasto SA, Anderson SM, Stefanopoulos DE, Fogal SE et al. 2013. Circulating monocytes are reduced by sphingosine-1-phosphate receptor modulators independently of S1P3. J. Immunol. 190:3533–40
    [Google Scholar]
  52. 52. 
    Sugita K, Kabashima K, Sakabe J, Yoshiki R, Tanizaki H, Tokura Y 2010. FTY720 regulates bone marrow egress of eosinophils and modulates late-phase skin reaction in mice. Am. J. Pathol. 177:1881–87
    [Google Scholar]
  53. 53. 
    Huang Y, Mao K, Chen X, Sun MA, Kawabe T et al. 2018. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359:114–19
    [Google Scholar]
  54. 54. 
    Massberg S, Schaerli P, Knezevic-Maramica I, Kollnberger M, Tubo N et al. 2007. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131:994–1008
    [Google Scholar]
  55. 55. 
    Cortez-Retamozo V, Etzrodt M, Newton A, Ryan R, Pucci F et al. 2013. Angiotensin II drives the production of tumor-promoting macrophages. Immunity 38:296–308
    [Google Scholar]
  56. 56. 
    Kassmer SH, Rodriguez D, Langenbacher AD, Bui C, De Tomaso AW 2015. Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate. Nat. Commun. 6:8565
    [Google Scholar]
  57. 57. 
    Bajwa A, Rosin DL, Chroscicki P, Lee S, Dondeti K et al. 2015. Sphingosine 1-phosphate receptor-1 enhances mitochondrial function and reduces cisplatin-induced tubule injury. J. Am. Soc. Nephrol. 26:908–25
    [Google Scholar]
  58. 58. 
    Camprubi-Robles M, Mair N, Andratsch M, Benetti C, Beroukas D et al. 2013. Sphingosine-1-phosphate-induced nociceptor excitation and ongoing pain behavior in mice and humans is largely mediated by S1P3 receptor. J. Neurosci. 33:2582–92
    [Google Scholar]
  59. 59. 
    Hill RZ, Hoffman BU, Morita T, Campos SM, Lumpkin EA et al. 2018. The signaling lipid sphingosine 1-phosphate regulates mechanical pain. eLife 7:e33285
    [Google Scholar]
  60. 60. 
    Hill RZ, Morita T, Brem RB, Bautista DM 2018. S1PR3 mediates itch and pain via distinct TRP channel-dependent pathways. J. Neurosci. 38:7833–43
    [Google Scholar]
  61. 61. 
    Mair N, Benetti C, Andratsch M, Leitner MG, Constantin CE et al. 2011. Genetic evidence for involvement of neuronally expressed S1P1 receptor in nociceptor sensitization and inflammatory pain. PLOS ONE 6:e17268
    [Google Scholar]
  62. 62. 
    Mendoza A, Fang V, Chen C, Serasinghe M, Verma A et al. 2017. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature 546:158–61
    [Google Scholar]
  63. 63. 
    Green JA, Suzuki K, Cho B, Willison LD, Palmer D et al. 2011. The sphingosine 1-phosphate receptor S1P2 maintains the homeostasis of germinal center B cells and promotes niche confinement. Nat. Immunol. 12:672–80
    [Google Scholar]
  64. 64. 
    Muppidi JR, Schmitz R, Green JA, Xiao W, Larsen AB et al. 2014. Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma. Nature 516:254–58
    [Google Scholar]
  65. 65. 
    CHARGE Consort. Hematol. Work. Group 2016. Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits. Nat. Genet 48:867–76
    [Google Scholar]
  66. 66. 
    Arnon TI, Xu Y, Lo C, Pham T, An J et al. 2011. GRK2-dependent S1PR1 desensitization is required for lymphocytes to overcome their attraction to blood. Science 333:1898–903
    [Google Scholar]
  67. 67. 
    Kharel Y, Morris EA, Congdon MD, Thorpe SB, Tomsig JL et al. 2015. Sphingosine kinase 2 inhibition and blood sphingosine 1-phosphate levels. J. Pharmacol. Exp. Ther. 355:23–31
    [Google Scholar]
  68. 68. 
    Peest U, Sensken SC, Andreani P, Hanel P, Van Veldhoven PP, Graler MH 2008. S1P-lyase independent clearance of extracellular sphingosine 1-phosphate after dephosphorylation and cellular uptake. J. Cell Biochem. 104:756–72
    [Google Scholar]
  69. 69. 
    Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y et al. 2008. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ. Res. 102:669–76
    [Google Scholar]
  70. 70. 
    Selim S, Sunkara M, Salous AK, Leung SW, Berdyshev EV et al. 2011. Plasma levels of sphingosine 1-phosphate are strongly correlated with haematocrit, but variably restored by red blood cell transfusions. Clin. Sci. 121:565–72
    [Google Scholar]
  71. 71. 
    Ito K, Anada Y, Tani M, Ikeda M, Sano T et al. 2007. Lack of sphingosine 1-phosphate-degrading enzymes in erythrocytes. Biochem. Biophys. Res. Commun. 357:212–17
    [Google Scholar]
  72. 72. 
    Xiong Y, Yang P, Proia RL, Hla T 2014. Erythrocyte-derived sphingosine 1-phosphate is essential for vascular development. J. Clin. Investig. 124:4823–28
    [Google Scholar]
  73. 73. 
    Bode C, Sensken SC, Peest U, Beutel G, Thol F et al. 2010. Erythrocytes serve as a reservoir for cellular and extracellular sphingosine 1-phosphate. J. Cell Biochem. 109:1232–43
    [Google Scholar]
  74. 74. 
    Ohkawa R, Nakamura K, Okubo S, Hosogaya S, Ozaki Y et al. 2008. Plasma sphingosine-1-phosphate measurement in healthy subjects: close correlation with red blood cell parameters. Ann. Clin. Biochem. 45:356–63
    [Google Scholar]
  75. 75. 
    Kobayashi N, Kawasaki-Nishi S, Otsuka M, Hisano Y, Yamaguchi A, Nishi T 2018. MFSD2B is a sphingosine 1-phosphate transporter in erythroid cells. Sci. Rep. 8:4969
    [Google Scholar]
  76. 76. 
    Vu TM, Ishizu AN, Foo JC, Toh XR, Zhang F et al. 2017. Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets. Nature 550:524–28
    [Google Scholar]
  77. 77. 
    Sun K, Zhang Y, D'Alessandro A, Nemkov T, Song A et al. 2016. Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia. Nat. Commun. 7:12086
    [Google Scholar]
  78. 78. 
    Hisano Y, Kobayashi N, Yamaguchi A, Nishi T 2012. Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLOS ONE 7:e38941
    [Google Scholar]
  79. 79. 
    Nijnik A, Clare S, Hale C, Chen J, Raisen C et al. 2012. The role of sphingosine-1-phosphate transporter Spns2 in immune system function. J. Immunol. 189:102–11
    [Google Scholar]
  80. 80. 
    Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y et al. 2012. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J. Clin. Investig. 122:1416–26
    [Google Scholar]
  81. 81. 
    Nagahashi M, Kim EY, Yamada A, Ramachandran S, Allegood JC et al. 2013. Spns2, a transporter of phosphorylated sphingoid bases, regulates their blood and lymph levels, and the lymphatic network. FASEB J 27:1001–11
    [Google Scholar]
  82. 82. 
    Mendoza A, Breart B, Ramos-Perez WD, Pitt LA, Gobert M et al. 2012. The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate. Cell Rep 2:1104–10
    [Google Scholar]
  83. 83. 
    Aoki S, Yatomi Y, Ohta M, Osada M, Kazama F et al. 2005. Sphingosine 1-phosphate-related metabolism in the blood vessel. J. Biochem. 138:47–55
    [Google Scholar]
  84. 84. 
    Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J et al. 2011. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. PNAS 108:9613–18
    [Google Scholar]
  85. 85. 
    Galvani S, Sanson M, Blaho VA, Swendeman SL, Obinata H et al. 2015. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci. Signal. 8:ra79
    [Google Scholar]
  86. 86. 
    Donoviel MS, Hait NC, Ramachandran S, Maceyka M, Takabe K et al. 2015. Spinster 2, a sphingosine-1-phosphate transporter, plays a critical role in inflammatory and autoimmune diseases. FASEB J 29:125018–28
    [Google Scholar]
  87. 87. 
    Carlson CM, Endrizzi BT, Wu J, Ding X, Weinreich MA et al. 2006. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442:299–302
    [Google Scholar]
  88. 88. 
    Bai A, Hu H, Yeung M, Chen J 2007. Kruppel-like factor 2 controls T cell trafficking by activating L-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription. J. Immunol. 178:7632–39
    [Google Scholar]
  89. 89. 
    Zachariah MA, Cyster JG. 2010. Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 328:1129–35
    [Google Scholar]
  90. 90. 
    Breart B, Ramos-Perez WD, Mendoza A, Salous AK, Gobert M et al. 2011. Lipid phosphate phosphatase 3 enables efficient thymic egress. J. Exp. Med. 208:1267–78
    [Google Scholar]
  91. 91. 
    Jia YJ, Kai M, Wada I, Sakane F, Kanoh H 2003. Differential localization of lipid phosphate phosphatases 1 and 3 to cell surface subdomains in polarized MDCK cells. FEBS Lett 552:240–46
    [Google Scholar]
  92. 92. 
    Vogel P, Donoviel MS, Read R, Hansen GM, Hazlewood J et al. 2009. Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PLOS ONE 4:e4112
    [Google Scholar]
  93. 93. 
    Sinkeldam EJ, de Groot AP, van den Berg H, Chappel CI 1988. The effect of pyridoxine on the number of lymphocytes in the blood of rats fed caramel colour (III). Food Chem. Toxicol. 26:195–203
    [Google Scholar]
  94. 94. 
    Zamora-Pineda J, Kumar A, Suh JH, Zhang M, Saba JD 2016. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. J. Exp. Med. 213:2773–91
    [Google Scholar]
  95. 95. 
    Bagdanoff JT, Donoviel MS, Nouraldeen A, Carlsen M, Jessop TC et al. 2010. Inhibition of sphingosine 1-phosphate lyase for the treatment of rheumatoid arthritis: discovery of (E)-1-(4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)-1H-imidazol-2-yl)ethanone oxime (LX2931) and (1R,2S,3R)-1-(2-(isoxazol-3-yl)-1H-imidazol-4-yl)butane-1,2,3,4-tetraol (LX2932). J. Med. Chem. 53:8650–62
    [Google Scholar]
  96. 96. 
    Lovric S, Goncalves S, Gee HY, Oskouian B, Srinivas H et al. 2017. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J. Clin. Investig. 127:912–28
    [Google Scholar]
  97. 97. 
    Prasad R, Hadjidemetriou I, Maharaj A, Meimaridou E, Buonocore F et al. 2017. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. J. Clin. Investig. 127:942–53
    [Google Scholar]
  98. 98. 
    Rieck M, Kremser C, Jobin K, Mettke E, Kurts C et al. 2017. Ceramide synthase 2 facilitates S1P-dependent egress of thymocytes into the circulation in mice. Eur. J. Immunol. 47:677–84
    [Google Scholar]
  99. 99. 
    Pereira JP, Cyster JG, Xu Y 2010. A role for S1P and S1P1 in immature-B cell egress from mouse bone marrow. PLOS ONE 5:e9277
    [Google Scholar]
  100. 100. 
    Allende ML, Tuymetova G, Lee BG, Bonifacino E, Wu YP, Proia RL 2010. S1P1 receptor directs the release of immature B cells from bone marrow into blood. J. Exp. Med. 207:1113–24
    [Google Scholar]
  101. 101. 
    Ishii M, Egen JG, Klauschen F, Meier-Schellersheim M, Saeki Y et al. 2009. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458:524–28
    [Google Scholar]
  102. 102. 
    Ishii M, Kikuta J, Shimazu Y, Meier-Schellersheim M, Germain RN 2010. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J. Exp. Med. 207:2793–98
    [Google Scholar]
  103. 103. 
    Maeda Y, Seki N, Sato N, Sugahara K, Chiba K 2010. Sphingosine 1-phosphate receptor type 1 regulates egress of mature T cells from mouse bone marrow. Int. Immunol. 22:515–25
    [Google Scholar]
  104. 104. 
    Juarez JG, Harun N, Thien M, Welschinger R, Baraz R et al. 2012. Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood 119:707–16
    [Google Scholar]
  105. 105. 
    Golan K, Vagima Y, Ludin A, Itkin T, Cohen-Gur S et al. 2012. S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 119:2478–88
    [Google Scholar]
  106. 106. 
    Lim VY, Zehentmeier S, Fistonich C, Pereira JP 2017. A chemoattractant-guided walk through lymphopoiesis: from hematopoietic stem cells to mature B lymphocytes. Adv. Immunol. 134:47–88
    [Google Scholar]
  107. 107. 
    Beck TC, Gomes AC, Cyster JG, Pereira JP 2014. CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. J. Exp. Med. 211:2567–81
    [Google Scholar]
  108. 108. 
    Chaffin KE, Perlmutter RM. 1991. A pertussis toxin-sensitive process controls thymocyte emigration. Eur. J. Immunol. 21:2565–73
    [Google Scholar]
  109. 109. 
    Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X et al. 2018. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat. Med. 24:1459–68
    [Google Scholar]
  110. 110. 
    Collins N, Han SJ, Enamorado M, Link VM, Huang B et al. 2019. The bone marrow protects and optimizes immunological memory during dietary restriction. Cell 178:1088–101.e15
    [Google Scholar]
  111. 111. 
    Cyster JG, Schwab SR. 2012. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30:69–94
    [Google Scholar]
  112. 112. 
    Thangada S, Khanna KM, Blaho VA, Oo ML, Im DS et al. 2010. Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics. J. Exp. Med. 207:1475–83
    [Google Scholar]
  113. 113. 
    Grigorova IL, Schwab SR, Phan TG, Pham TH, Okada T, Cyster JG 2009. Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nat. Immunol. 10:58–65
    [Google Scholar]
  114. 114. 
    Benechet AP, Menon M, Xu D, Samji T, Maher L et al. 2016. T cell-intrinsic S1PR1 regulates endogenous effector T-cell egress dynamics from lymph nodes during infection. PNAS 113:2182–87
    [Google Scholar]
  115. 115. 
    Nakai A, Hayano Y, Furuta F, Noda M, Suzuki K 2014. Control of lymphocyte egress from lymph nodes through β2-adrenergic receptors. J. Exp. Med. 211:2583–98
    [Google Scholar]
  116. 116. 
    Pham TH, Okada T, Matloubian M, Lo CG, Cyster JG 2008. S1P1 receptor signaling overrides retention mediated by Gαi-coupled receptors to promote T cell egress. Immunity 28:122–33
    [Google Scholar]
  117. 117. 
    Lo CG, Xu Y, Proia RL, Cyster JG 2005. Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J. Exp. Med. 201:291–301
    [Google Scholar]
  118. 118. 
    Grigorova IL, Panteleev M, Cyster JG 2010. Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. PNAS 107:20447–52
    [Google Scholar]
  119. 119. 
    Nakai A, Suzuki K. 2019. Adrenergic control of lymphocyte trafficking and adaptive immune responses. Neurochem. Int. 130:104320
    [Google Scholar]
  120. 120. 
    Druzd D, Matveeva O, Ince L, Harrison U, He W et al. 2017. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46:120–32
    [Google Scholar]
  121. 121. 
    Bankovich AJ, Shiow LR, Cyster JG 2010. CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. J. Biol. Chem. 285:22328–37
    [Google Scholar]
  122. 122. 
    Shiow LR, Rosen DB, Brdickova N, Xu Y, An J et al. 2006. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440:540–44
    [Google Scholar]
  123. 123. 
    Finlay D, Cantrell D. 2010. Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration. Ann. N. Y. Acad. Sci. 1183:149–57
    [Google Scholar]
  124. 124. 
    Breart B, Bousso P. 2016. S1P1 downregulation tailors CD8+ T-cell residence time in lymph nodes to the strength of the antigenic stimulation. Eur. J. Immunol. 46:2730–36
    [Google Scholar]
  125. 125. 
    Mueller SN, Hosiawa-Meagher KA, Konieczny BT, Sullivan BM, Bachmann MF et al. 2007. Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317:670–74
    [Google Scholar]
  126. 126. 
    Beura LK, Wijeyesinghe S, Thompson EA, Macchietto MG, Rosato PC et al. 2018. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity 48:327–38.e5
    [Google Scholar]
  127. 127. 
    Ugur M, Schulz O, Menon MB, Krueger A, Pabst O 2014. Resident CD4+ T cells accumulate in lymphoid organs after prolonged antigen exposure. Nat. Commun. 5:4821
    [Google Scholar]
  128. 128. 
    Lee JY, Skon CN, Lee YJ, Oh S, Taylor JJ et al. 2015. The transcription factor KLF2 restrains CD4+ T follicular helper cell differentiation. Immunity 42:252–64
    [Google Scholar]
  129. 129. 
    Muppidi JR, Lu E, Cyster JG 2015. The G protein-coupled receptor P2RY8 and follicular dendritic cells promote germinal center confinement of B cells, whereas S1PR3 can contribute to their dissemination. J. Exp. Med. 212:2213–22
    [Google Scholar]
  130. 130. 
    Cinamon G, Matloubian M, Lesneski MJ, Xu Y, Low C et al. 2004. Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat. Immunol. 5:713–20
    [Google Scholar]
  131. 131. 
    Sinha RK, Park C, Hwang IY, Davis MD, Kehrl JH 2009. B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis. Immunity 30:434–46
    [Google Scholar]
  132. 132. 
    St. John AL, Ang WX, Huang MN, Kunder CA, Chan EW et al. 2014. S1P-dependent trafficking of intracellular Yersinia pestis through lymph nodes establishes buboes and systemic infection. Immunity 41:440–50
    [Google Scholar]
  133. 133. 
    Mok SW, Proia RL, Brinkmann V, Mabbott NA 2012. B cell-specific S1PR1 deficiency blocks prion dissemination between secondary lymphoid organs. J. Immunol. 188:5032–40
    [Google Scholar]
  134. 134. 
    Wojciak JM, Zhu N, Schuerenberg KT, Moreno K, Shestowsky WS et al. 2009. The crystal structure of sphingosine-1-phosphate in complex with a Fab fragment reveals metal bridging of an antibody and its antigen. PNAS 106:17717–22
    [Google Scholar]
  135. 135. 
    Liu CH, Thangada S, Lee MJ, Van Brocklyn JR, Spiegel S, Hla T 1999. Ligand-induced trafficking of the sphingosine-1-phosphate receptor EDG-1. Mol. Biol. Cell 10:1179–90
    [Google Scholar]
  136. 136. 
    Moriyama S, Takahashi N, Green JA, Hori S, Kubo M et al. 2014. Sphingosine-1-phosphate receptor 2 is critical for follicular helper T cell retention in germinal centers. J. Exp. Med. 211:1297–305
    [Google Scholar]
  137. 137. 
    Kastenmuller W, Torabi-Parizi P, Subramanian N, Lammermann T, Germain RN 2012. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell 150:1235–48
    [Google Scholar]
  138. 138. 
    Ramos-Perez WD, Fang V, Escalante-Alcalde D, Cammer M, Schwab SR 2015. A map of the distribution of sphingosine 1-phosphate in the spleen. Nat. Immunol. 16:1245–52
    [Google Scholar]
  139. 139. 
    Mebius RE, Kraal G. 2005. Structure and function of the spleen. Nat. Rev. Immunol. 5:606–16
    [Google Scholar]
  140. 140. 
    Ford WL. 1969. Kinetics of lymphocyte recirculation within rat spleen. Cell Tissue Kinet 2:171–91
    [Google Scholar]
  141. 141. 
    Pellas TC, Weiss L. 1990. Deep splenic lymphatic vessels in the mouse: a route of splenic exit for recirculating lymphocytes. Am. J. Anat. 187:347–54
    [Google Scholar]
  142. 142. 
    Arnon TI, Horton RM, Grigorova IL, Cyster JG 2013. Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature 493:684–88
    [Google Scholar]
  143. 143. 
    Morris MA, Gibb DR, Picard F, Brinkmann V, Straume M, Ley K 2005. Transient T cell accumulation in lymph nodes and sustained lymphopenia in mice treated with FTY720. Eur. J. Immunol. 35:3570–80
    [Google Scholar]
  144. 144. 
    Cinamon G, Zachariah MA, Lam OM, Foss FW Jr, Cyster JG 2008. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat. Immunol. 9:54–62
    [Google Scholar]
  145. 145. 
    Kabashima K, Haynes NM, Xu Y, Nutt SL, Allende ML et al. 2006. Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. J. Exp. Med. 203:2683–90
    [Google Scholar]
  146. 146. 
    Sanna MG, Wang SK, Gonzalez-Cabrera PJ, Don A, Marsolais D et al. 2006. Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat. Chem. Biol 2:434–41
    [Google Scholar]
  147. 147. 
    Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT et al. 2013. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14:1294–301
    [Google Scholar]
  148. 148. 
    Wakim LM, Woodward-Davis A, Liu R, Hu Y, Villadangos J et al. 2012. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol. 189:3462–71
    [Google Scholar]
  149. 149. 
    Iijima N, Iwasaki A. 2014. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346:93–98
    [Google Scholar]
  150. 150. 
    Mackay LK, Braun A, Macleod BL, Collins N, Tebartz C et al. 2015. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol. 194:2059–63
    [Google Scholar]
  151. 151. 
    Steinert EM, Schenkel JM, Fraser KA, Beura LK, Manlove LS et al. 2015. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161:737–49
    [Google Scholar]
  152. 152. 
    Takamura S, Yai H, Hakata Y, Motozono C, McMaster SR et al. 2016. Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance. J. Exp. Med. 213:3057–73
    [Google Scholar]
  153. 153. 
    Walsh DA, Borges da Silva H, Beura LK, Peng C, Hamilton SE et al. 2019. The functional requirement for CD69 in establishment of resident memory CD8+ T cells varies with tissue location. J. Immunol. 203:946–55
    [Google Scholar]
  154. 154. 
    Lee YT, Suarez-Ramirez JE, Wu T, Redman JM, Bouchard K et al. 2011. Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes. J. Virol. 85:4085–94
    [Google Scholar]
  155. 155. 
    Krebs CF, Paust HJ, Krohn S, Koyro T, Brix SR et al. 2016. Autoimmune renal disease is exacerbated by S1P-receptor-1-dependent intestinal Th17 cell migration to the kidney. Immunity 45:1078–92
    [Google Scholar]
  156. 156. 
    Xiong Y, Piao W, Brinkman CC, Li L, Kulinski JM et al. 2019. CD4 T cell sphingosine 1-phosphate receptor (S1PR)1 and S1PR4 and endothelial S1PR2 regulate afferent lymphatic migration. Sci. Immunol. 4:eaav1263
    [Google Scholar]
  157. 157. 
    Brown MN, Fintushel SR, Lee MH, Jennrich S, Geherin SA et al. 2010. Chemoattractant receptors and lymphocyte egress from extralymphoid tissue: changing requirements during the course of inflammation. J. Immunol. 185:4873–82
    [Google Scholar]
  158. 158. 
    van der Weyden L, Arends MJ, Campbell AD, Bald T, Wardle-Jones H et al. 2017. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature 541:233–36
    [Google Scholar]
  159. 159. 
    Bromley SK, Thomas SY, Luster AD 2005. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol. 6:895–901
    [Google Scholar]
  160. 160. 
    Debes GF, Arnold CN, Young AJ, Krautwald S, Lipp M et al. 2005. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat. Immunol. 6:889–94
    [Google Scholar]
  161. 161. 
    Gomez D, Diehl MC, Crosby EJ, Weinkopff T, Debes GF 2015. Effector T cell egress via afferent lymph modulates local tissue inflammation. J. Immunol. 195:83531–36
    [Google Scholar]
  162. 162. 
    Quarta S, Camprubi-Robles M, Schweigreiter R, Matusica D, Haberberger RV et al. 2017. Sphingosine-1-phosphate and the S1P3 receptor initiate neuronal retraction via RhoA/ROCK associated with CRMP2 phosphorylation. Front. Mol. Neurosci. 10:317
    [Google Scholar]
  163. 163. 
    Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW et al. 2011. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. PNAS 108:751–56
    [Google Scholar]
  164. 164. 
    Groves A, Kihara Y, Jonnalagadda D, Rivera R, Kennedy G et al. 2018. A functionally defined in vivo astrocyte population identified by c-Fos activation in a mouse model of multiple sclerosis modulated by S1P signaling: immediate-early astrocytes (ieAstrocytes). eNeuro 5:ENEURO.0239–18.2018
    [Google Scholar]
  165. 165. 
    Chen Z, Doyle TM, Luongo L, Largent-Milnes TM, Giancotti LA et al. 2019. Sphingosine-1-phosphate receptor 1 activation in astrocytes contributes to neuropathic pain. PNAS 116:10557–62
    [Google Scholar]
  166. 166. 
    Zhuo L, Theis M, Alvarez-Maya I, Brenner M, Willecke K, Messing A 2001. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31:85–94
    [Google Scholar]
  167. 167. 
    Xiong Y, Hla T. 2014. S1P control of endothelial integrity. Curr. Top. Microbiol. Immunol. 378:85–105
    [Google Scholar]
  168. 168. 
    Cruz-Orengo L, Daniels BP, Dorsey D, Basak SA, Grajales-Reyes JG et al. 2014. Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility. J. Clin. Investig. 124:2571–84
    [Google Scholar]
  169. 169. 
    Kono M, Conlon EG, Lux SY, Yanagida K, Hla T, Proia RL 2017. Bioluminescence imaging of G protein-coupled receptor activation in living mice. Nat. Commun. 8:1163
    [Google Scholar]
  170. 170. 
    Kulakowska A, Byfield FJ, Zendzian-Piotrowska M, Zajkowska JM, Drozdowski W et al. 2014. Increased levels of sphingosine-1-phosphate in cerebrospinal fluid of patients diagnosed with tick-borne encephalitis. J. Neuroinflamm. 11:193
    [Google Scholar]
  171. 171. 
    Kulakowska A, Zendzian-Piotrowska M, Baranowski M, Kononczuk T, Drozdowski W et al. 2010. Intrathecal increase of sphingosine 1-phosphate at early stage multiple sclerosis. Neurosci. Lett. 477:149–52
    [Google Scholar]
  172. 172. 
    Stockstill K, Doyle TM, Yan X, Chen Z, Janes K et al. 2018. Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. J. Exp. Med. 215:1301–13
    [Google Scholar]
  173. 173. 
    Pitson SM, Xia P, Leclercq TM, Moretti PA, Zebol JR et al. 2005. Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J. Exp. Med. 201:49–54
    [Google Scholar]
  174. 174. 
    Ikeda M, Kihara A, Igarashi Y 2004. Sphingosine-1-phosphate lyase SPL is an endoplasmic reticulum-resident, integral membrane protein with the pyridoxal 5′-phosphate binding domain exposed to the cytosol. Biochem. Biophys. Res. Commun. 325:338–43
    [Google Scholar]
  175. 175. 
    Kihara A, Sano T, Iwaki S, Igarashi Y 2003. Transmembrane topology of sphingoid long-chain base-1-phosphate phosphatase, Lcb3p. Genes Cells 8:525–35
    [Google Scholar]
  176. 176. 
    Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N 2009. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323:524–27
    [Google Scholar]
  177. 177. 
    Osborne N, Brand-Arzamendi K, Ober EA, Jin SW, Verkade H et al. 2008. The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Curr. Biol. 18:1882–88
    [Google Scholar]
  178. 178. 
    Hisano Y, Kobayashi N, Kawahara A, Yamaguchi A, Nishi T 2011. The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. J. Biol. Chem. 286:1758–66
    [Google Scholar]
  179. 179. 
    Zhang QX, Pilquil CS, Dewald J, Berthiaume LG, Brindley DN 2000. Identification of structurally important domains of lipid phosphate phosphatase-1: implications for its sites of action. Biochem. J. 345:Part 2181–84
    [Google Scholar]
  180. 180. 
    Blaho VA, Galvani S, Engelbrecht E, Liu C, Swendeman SL et al. 2015. HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature 523:342–46
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-081519-083952
Loading
/content/journals/10.1146/annurev-immunol-081519-083952
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error