1932

Abstract

Immune cells are characterized by diversity, specificity, plasticity, and adaptability—properties that enable them to contribute to homeostasis and respond specifically and dynamically to the many threats encountered by the body. Single-cell technologies, including the assessment of transcriptomics, genomics, and proteomics at the level of individual cells, are ideally suited to studying these properties of immune cells. In this review we discuss the benefits of adopting single-cell approaches in studying underappreciated qualities of immune cells and highlight examples where these technologies have been critical to advancing our understanding of the immune system in health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-090419-020340
2020-04-26
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/immunol/38/1/annurev-immunol-090419-020340.html?itemId=/content/journals/10.1146/annurev-immunol-090419-020340&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Julius MH, Masuda T, Herzenberg LA 1972. Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter. PNAS 69:71934–38
    [Google Scholar]
  2. 2. 
    Hulett HR, Bonner WA, Barrett J, Herzenberg LA 1969. Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science 166:3906747–49
    [Google Scholar]
  3. 3. 
    Kasten FH. 1989. The origins of modern fluorescence microscopy and fluorescent probes. Cell Structure and Function by Microspectrofluorometry E Kohen 3–50 San Diego, CA: Academic
    [Google Scholar]
  4. 4. 
    Parrott DM, De Sousa M 1971. Thymus-dependent and thymus-independent populations: origin, migratory patterns and lifespan. Clin. Exp. Immunol. 8:5663–84
    [Google Scholar]
  5. 5. 
    Chieppa M, Rescigno M, Huang AYC, Germain RN 2006. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203:132841–52
    [Google Scholar]
  6. 6. 
    Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M et al. 2005. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLOS Biol 3:4e113
    [Google Scholar]
  7. 7. 
    Method of the Year 2013 2014. Nat. Methods 11:12014
  8. 8. 
    Grimbergen AJ, Siebring J, Solopova A, Kuipers OP 2015. Microbial bet-hedging: the power of being different. Curr. Opin. Microbiol. 25:67–72
    [Google Scholar]
  9. 9. 
    Durlanik S, Thiel A. 2015. Requirement of immune system heterogeneity for protective immunity. Vaccine 33:405308–12
    [Google Scholar]
  10. 10. 
    Dagogo-Jack I, Shaw AT. 2018. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15:281–94
    [Google Scholar]
  11. 11. 
    Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F et al. 2018. Somatic mutant clones colonize the human esophagus with age. Science 362:6417911–17
    [Google Scholar]
  12. 12. 
    Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L et al. 2015. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348:6237910–14
    [Google Scholar]
  13. 13. 
    Chen X, Miragaia RJ, Natarajan KN, Teichmann SA 2018. A rapid and robust method for single cell chromatin accessibility profiling. Nat. Commun. 9:15345
    [Google Scholar]
  14. 14. 
    Satpathy AT, Saligrama N, Buenrostro JD, Wei Y, Wu B et al. 2018. Transcript-indexed ATAC-seq for precision immune profiling. Nat. Med. 24:5580–90
    [Google Scholar]
  15. 15. 
    Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R 2013. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10:111096–98
    [Google Scholar]
  16. 16. 
    Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R 2014. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9:1171–81
    [Google Scholar]
  17. 17. 
    Hashimshony T, Wagner F, Sher N, Yanai I 2012. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2:3666–73
    [Google Scholar]
  18. 18. 
    Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y et al. 2016. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol 17:77
    [Google Scholar]
  19. 19. 
    Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F et al. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:6172776–79
    [Google Scholar]
  20. 20. 
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:51202–14
    [Google Scholar]
  21. 21. 
    Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A et al. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:51187–201
    [Google Scholar]
  22. 22. 
    Zilionis R, Nainys J, Veres A, Savova V, Zemmour D et al. 2017. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12:144–73
    [Google Scholar]
  23. 23. 
    Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW et al. 2017. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8:14049
    [Google Scholar]
  24. 24. 
    Gierahn TM, Wadsworth MH 2nd, Hughes TK, Bryson BD, Butler A et al. 2017. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14:4395–98
    [Google Scholar]
  25. 25. 
    Luecken MD, Theis FJ. 2019. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15:6e8746
    [Google Scholar]
  26. 26. 
    van den Brink SC, Sage F, Vértesy Á, Spanjaard B, Peterson-Maduro J et al. 2017. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14:935–36
    [Google Scholar]
  27. 27. 
    Wolock SL, Lopez R, Klein AM 2019. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst 8:4281–91.e9
    [Google Scholar]
  28. 28. 
    McGinnis CS, Murrow LM, Gartner ZJ 2019. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 8:4329–37.e4
    [Google Scholar]
  29. 29. 
    Butler A, Hoffman P, Smibert P, Papalexi E, Satija R 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36:5411–20
    [Google Scholar]
  30. 30. 
    Wolf FA, Angerer P, Theis FJ 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19:115
    [Google Scholar]
  31. 31. 
    Chapuy L, Bsat M, Sarkizova S, Rubio M, Therrien A et al. 2019. Two distinct colonic CD14 subsets characterized by single-cell RNA profiling in Crohn's disease. Mucosal Immunol 12:3703–19
    [Google Scholar]
  32. 32. 
    Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K et al. 2017. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:6335eaah4573
    [Google Scholar]
  33. 33. 
    See P, Dutertre C-A, Chen J, Günther P, McGovern N et al. 2017. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356:6342eaag3009
    [Google Scholar]
  34. 34. 
    Mass E, Ballesteros I, Farlik M, Halbritter F, Günther P et al. 2016. Specification of tissue-resident macrophages during organogenesis. Science 353:6304aaf4238
    [Google Scholar]
  35. 35. 
    Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR et al. 2019. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22:61021–35
    [Google Scholar]
  36. 36. 
    Mould KJ, Jackson ND, Henson PM, Seibold M, Janssen WJ 2019. Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets. JCI Insight 4:5aaf4238
    [Google Scholar]
  37. 37. 
    Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M et al. 2018. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563:7731347–53
    [Google Scholar]
  38. 38. 
    Crinier A, Milpied P, Escalière B, Piperoglou C, Galluso J et al. 2018. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity 49:5971–86.e5
    [Google Scholar]
  39. 39. 
    Vieira Braga FA, Kar G, Berg M, Carpaij OA, Polanski K et al. 2019. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25:71153–63
    [Google Scholar]
  40. 40. 
    Ciucci T, Vacchio MS, Gao Y, Tomassoni Ardori F, Candia J et al. 2019. The emergence and functional fitness of memory CD4 T cells require the transcription factor Thpok. Immunity 50:191–105.e4
    [Google Scholar]
  41. 41. 
    Patil VS, Madrigal A, Schmiedel BJ, Clarke J, O'Rourke P et al. 2018. Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Sci. Immunol. 3:19eaan8664
    [Google Scholar]
  42. 42. 
    Yu Y, Tsang JCH, Wang C, Clare S, Wang J et al. 2016. Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature 539:7627102–6
    [Google Scholar]
  43. 43. 
    Perfetto SP, Chattopadhyay PK, Roederer M 2004. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4:8648–55
    [Google Scholar]
  44. 44. 
    Ornatsky O, Baranov VI, Bandura DR, Tanner SD, Dick J 2006. Multiple cellular antigen detection by ICP-MS. J. Immunol. Methods 308:1–268–76
    [Google Scholar]
  45. 45. 
    Shahi P, Kim SC, Haliburton JR, Gartner ZJ, Abate AR 2017. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci. Rep. 7:44447
    [Google Scholar]
  46. 46. 
    Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK et al. 2017. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14:9865–68
    [Google Scholar]
  47. 47. 
    Peterson VM, Zhang KX, Kumar N, Wong J, Li L et al. 2017. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35:10936–39
    [Google Scholar]
  48. 48. 
    Saelens W, Cannoodt R, Todorov H, Saeys Y 2019. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37:5547–54
    [Google Scholar]
  49. 49. 
    Tritschler S, Büttner M, Fischer DS, Lange M, Bergen V et al. 2019. Concepts and limitations for learning developmental trajectories from single cell genomics. Development 146:12dev170506
    [Google Scholar]
  50. 50. 
    Lönnberg T, Svensson V, James KR, Fernandez-Ruiz D, Sebina I 2017. Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria. Sci. Immunol 2:9eaal2192 Erratum. 2018. Sci. Immunol. 3(21):eaat1469
    [Google Scholar]
  51. 51. 
    Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HRB, Schreuder J et al. 2015. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16:7718–28
    [Google Scholar]
  52. 52. 
    Nerlov C, Drissen R, Buza-Vidas N, Woll P, Thongjuea S et al. 2016. Distinct myeloid progenitor differentiation pathways identified through single cell RNA sequencing. Nat. Immunol. 17:6666–76
    [Google Scholar]
  53. 53. 
    Psaila B, Barkas N, Iskander D, Roy A, Anderson S et al. 2016. Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biol 17:83
    [Google Scholar]
  54. 54. 
    Miragaia RJ, Gomes T, Chomka A, Jardine L, Riedel A et al. 2019. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50:2493–504.e7
    [Google Scholar]
  55. 55. 
    DiSpirito JR, Zemmour D, Ramanan D, Cho J, Zilionis R et al. 2018. Molecular diversification of regulatory T cells in nonlymphoid tissues. Sci. Immunol. 3:27eaat5861
    [Google Scholar]
  56. 56. 
    Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E et al. 2015. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163:71663–77 Correction. 2016. Cell 164(1–2):325
    [Google Scholar]
  57. 57. 
    Zheng C, Zheng L, Yoo J-K, Guo H, Zhang Y et al. 2017. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169:71342–56.e16
    [Google Scholar]
  58. 58. 
    Zhang L, Yu X, Zheng L, Zhang Y, Li Y et al. 2018. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564:7735268–72
    [Google Scholar]
  59. 59. 
    Plitas G, Konopacki C, Wu K, Bos PD, Morrow M et al. 2016. Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45:51122–34
    [Google Scholar]
  60. 60. 
    Woodworth MB, Girskis KM, Walsh CA 2017. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat. Rev. Genet. 18:4230–44
    [Google Scholar]
  61. 61. 
    Kimmerling RJ, Lee Szeto G, Li JW, Genshaft AS, Kazer SW et al. 2016. A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages. Nat. Commun. 7:10220
    [Google Scholar]
  62. 62. 
    Frieda KL, Linton JM, Hormoz S, Choi J, Chow K-HK et al. 2017. Synthetic recording and in situ readout of lineage information in single cells. Nature 541:7635107–11
    [Google Scholar]
  63. 63. 
    Spanjaard B, Hu B, Mitic N, Olivares-Chauvet P, Janjuha S et al. 2018. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat. Biotechnol. 36:5469–73
    [Google Scholar]
  64. 64. 
    Raj B, Wagner DE, McKenna A, Pandey S, Klein AM et al. 2018. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 36:5442–50
    [Google Scholar]
  65. 65. 
    Alemany A, Florescu M, Baron CS, Peterson-Maduro J, van Oudenaarden A 2018. Whole-organism clone tracing using single-cell sequencing. Nature 556:7699108–12
    [Google Scholar]
  66. 66. 
    Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C et al. 2019. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176:61325–39.e22
    [Google Scholar]
  67. 67. 
    Xu J, Nuno K, Litzenburger UM, Qi Y, Corces MR et al. 2019. Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. eLife 8:e45105
    [Google Scholar]
  68. 68. 
    Kester L, van Oudenaarden A 2018. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 23:2166–79
    [Google Scholar]
  69. 69. 
    Guo M, Wang H, Potter SS, Whitsett JA, Xu Y 2015. SINCERA: A pipeline for single-cell RNA-seq profiling analysis. PLOS Comput. Biol. 11:11e1004575
    [Google Scholar]
  70. 70. 
    Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H et al. 2017. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14:111083–86
    [Google Scholar]
  71. 71. 
    Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH et al. 2017. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics 33:152314–21
    [Google Scholar]
  72. 72. 
    Li J, Luo H, Wang R, Lang J, Zhu S et al. 2016. Systematic reconstruction of molecular cascades regulating GP development using single-cell RNA-seq. Cell Rep 15:71467–80
    [Google Scholar]
  73. 73. 
    Matsumoto H, Kiryu H. 2016. SCOUP: a probabilistic model based on the Ornstein-Uhlenbeck process to analyze single-cell expression data during differentiation. BMC Bioinform 17:1232
    [Google Scholar]
  74. 74. 
    Ocone A, Haghverdi L, Mueller NS, Theis FJ 2015. Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics 31:12i89–96
    [Google Scholar]
  75. 75. 
    Cordero P, Stuart JM. 2017. Tracing co-regulatory network dynamics in noisy, single-cell transcriptome trajectories. Pac. Symp. Biocomput. 22:576–87
    [Google Scholar]
  76. 76. 
    Fiers MWEJ, Minnoye L, Aibar S, Bravo González-Blas C, Kalender Atak Z, Aerts S 2018. Mapping gene regulatory networks from single-cell omics data. Brief. Funct. Genom. 17:4246–54
    [Google Scholar]
  77. 77. 
    Todorov H, Cannoodt R, Saelens W, Saeys Y 2019. Network inference from single-cell transcriptomic data. Methods Mol. Biol. 1883:235–49
    [Google Scholar]
  78. 78. 
    Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML et al. 2015. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:7561486–90
    [Google Scholar]
  79. 79. 
    Lareau CA, Duarte FM, Chew JG, Kartha VK, Burkett ZD et al. 2019. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37:8916–24
    [Google Scholar]
  80. 80. 
    Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E et al. 2013. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:746959–64
    [Google Scholar]
  81. 81. 
    Kind J, Pagie L, de Vries SS, Nahidiazar L, Dey SS et al. 2015. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163:1134–47
    [Google Scholar]
  82. 82. 
    Rotem A, Ram O, Shoresh N, Sperling RA, Goren A et al. 2015. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33:111165–72
    [Google Scholar]
  83. 83. 
    Guo H, Zhu P, Wu X, Li X, Wen L, Tang F 2013. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res 23:122126–35
    [Google Scholar]
  84. 84. 
    Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G 2017. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat. Protoc. 12:3534–47
    [Google Scholar]
  85. 85. 
    Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schönegger A et al. 2015. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep 10:81386–97
    [Google Scholar]
  86. 86. 
    Han L, Wu H-J, Zhu H, Kim K-Y, Marjani SL et al. 2017. Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells. Nucleic Acids Res 45:10e77
    [Google Scholar]
  87. 87. 
    Bravo González-Blas C, Minnoye L, Papasokrati D, Aibar S, Hulselmans G et al. 2019. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nat. Methods 16:5397–400
    [Google Scholar]
  88. 88. 
    Schep AN, Wu B, Buenrostro JD, Greenleaf WJ 2017. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14:10975–78
    [Google Scholar]
  89. 89. 
    de Boer CG, Regev A 2018. BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization. BMC Bioinform 19:1253
    [Google Scholar]
  90. 90. 
    Pliner HA, Packer JS, McFaline-Figueroa JL, Cusanovich DA, Daza RM et al. 2018. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol. Cell 71:5858–71.e8
    [Google Scholar]
  91. 91. 
    Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM et al. 2016. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48:101193–203
    [Google Scholar]
  92. 92. 
    Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN et al. 2018. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173:61535–48.e16
    [Google Scholar]
  93. 93. 
    Satpathy AT, Granja JM, Yost KE, Qi Y, Meschi F et al. 2019. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37:8925–36
    [Google Scholar]
  94. 94. 
    Scott-Browne JP, López-Moyado IF, Trifari S, Wong V, Chavez L et al. 2016. Dynamic changes in chromatin accessibility occur in CD8 T cells responding to viral infection. Immunity 45:61327–40
    [Google Scholar]
  95. 95. 
    Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ et al. 2016. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods 13:3229–32
    [Google Scholar]
  96. 96. 
    Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA et al. 2018. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361:64091380–85
    [Google Scholar]
  97. 97. 
    Clark SJ, Argelaguet R, Kapourani C-A, Stubbs TM, Lee HJ et al. 2018. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9:1781
    [Google Scholar]
  98. 98. 
    Frei AP, Bava F-A, Zunder ER, Hsieh EWY, Chen S-Y et al. 2016. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 13:3269–75
    [Google Scholar]
  99. 99. 
    Genshaft AS, Li S, Gallant CJ, Darmanis S, Prakadan SM et al. 2016. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol 17:1188
    [Google Scholar]
  100. 100. 
    Dixit A, Parnas O, Li B, Chen J, Fulco CP et al. 2016. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:71853–66.e17
    [Google Scholar]
  101. 101. 
    Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P et al. 2017. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14:3297–301
    [Google Scholar]
  102. 102. 
    Rubin AJ, Parker KR, Satpathy AT, Qi Y, Wu B et al. 2019. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks. Cell 176:1–2361–76.e17
    [Google Scholar]
  103. 103. 
    Rosati E, Dowds CM, Liaskou E, Henriksen EKK, Karlsen TH, Franke A 2017. Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol 17:161
    [Google Scholar]
  104. 104. 
    Greiff V, Miho E, Menzel U, Reddy ST 2015. Bioinformatic and statistical analysis of adaptive immune repertoires. Trends Immunol 36:11738–49
    [Google Scholar]
  105. 105. 
    Turchaninova MA, Britanova OV, Bolotin DA, Shugay M, Putintseva EV et al. 2013. Pairing of T-cell receptor chains via emulsion PCR. Eur. J. Immunol. 43:92507–15
    [Google Scholar]
  106. 106. 
    DeKosky BJ, Ippolito GC, Deschner RP, Lavinder JJ, Wine Y et al. 2013. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat. Biotechnol. 31:2166–69
    [Google Scholar]
  107. 107. 
    Han A, Glanville J, Hansmann L, Davis MM 2014. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32:7684–92
    [Google Scholar]
  108. 108. 
    Stubbington MJT, Lönnberg T, Proserpio V, Clare S, Speak AO et al. 2016. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13:4329–32
    [Google Scholar]
  109. 109. 
    Zemmour D, Zilionis R, Kiner E, Klein AM, Mathis D, Benoist C 2018. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19:3291–301
    [Google Scholar]
  110. 110. 
    Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C et al. 2018. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174:51293–1308.e36
    [Google Scholar]
  111. 111. 
    Grigaityte K, Carter JA, Goldfless SJ, Jeffery EW, Hause RJ et al. 2017. Single-cell sequencing reveals αβ chain pairing shapes the T cell repertoire. bioRxiv 213462. https://doi.org/10.1101/213462
    [Crossref]
  112. 112. 
    Carter J, Preall J, Grigaityte K, Goldfless S, Briggs A et al. 2019. Single T cell sequencing demonstrates the functional role of αβ TCR pairing in cell lineage and antigen specificity. Front. Immunol. 10:1516
    [Google Scholar]
  113. 113. 
    Briggs AW, Goldfless SJ, Timberlake S, Belmont BJ, Clouser CR et al. 2017. Tumor-infiltrating immune repertoires captured by single-cell barcoding in emulsion. bioRxiv 134841. https://doi.org/10.1101/134841
    [Crossref]
  114. 114. 
    Canzar S, Neu KE, Tang Q, Wilson PC, Khan AA 2017. BASIC: BCR assembly from single cells. Bioinformatics 33:3425–27
    [Google Scholar]
  115. 115. 
    Lindeman I, Emerton G, Mamanova L, Snir O, Polanski K et al. 2018. BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq. Nat. Methods 15:8563–65
    [Google Scholar]
  116. 116. 
    Afik S, Yates KB, Bi K, Darko S, Godec J et al. 2017. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state. Nucleic Acids Res 45:16e148
    [Google Scholar]
  117. 117. 
    Afik S, Raulet G, Yosef N 2019. Reconstructing B cell receptor sequences from short-read single cell RNA-sequencing with BRAPeS. Life Sci. Alliance 2:4e201900371
    [Google Scholar]
  118. 118. 
    Redmond D, Poran A, Elemento O 2016. Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq. Genome Med 8:180
    [Google Scholar]
  119. 119. 
    Vilches C, Parham P. 2002. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu. Rev. Immunol. 20:217–51
    [Google Scholar]
  120. 120. 
    Hiby SE, Walker JJ, O'Shaughnessy KM, Redman CWG, Carrington M et al. 2004. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 200:8957–65
    [Google Scholar]
  121. 121. 
    Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X et al. 2004. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305:5685872–74
    [Google Scholar]
  122. 122. 
    Svensson V, Vento-Tormo R, Teichmann SA 2018. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13:4599–604
    [Google Scholar]
  123. 123. 
    Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M et al. 2015. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat. Commun. 6:7866
    [Google Scholar]
  124. 124. 
    Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R 2019. CellPhoneDB v2.0: inferring cell-cell communication from combined expression of multi-subunit receptor-ligand complexes. bioRxiv 680926. https://doi.org/10.1101/680926
    [Crossref]
  125. 125. 
    Camp JG, Sekine K, Gerber T, Loeffler-Wirth H, Binder H et al. 2017. Multilineage communication regulates human liver bud development from pluripotency. Nature 546:7659533–38
    [Google Scholar]
  126. 126. 
    Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K et al. 2017. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171:71611–24.e24
    [Google Scholar]
  127. 127. 
    Cohen M, Giladi A, Gorki A-D, Solodkin DG, Zada M et al. 2018. Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175:41031–44.e18
    [Google Scholar]
  128. 128. 
    Boisset J-C, Vivié J, Grün D, Muraro MJ, Lyubimova A, van Oudenaarden A 2018. Mapping the physical network of cellular interactions. Nat. Methods 15:7547–53
    [Google Scholar]
  129. 129. 
    Halpern KB, Shenhav R, Massalha H, Toth B, Egozi A et al. 2018. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 36:10962–70
    [Google Scholar]
  130. 130. 
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A 2015. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33:5495–502
    [Google Scholar]
  131. 131. 
    Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D et al. 2017. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:7641352–56
    [Google Scholar]
  132. 132. 
    Achim K, Pettit J-B, Saraiva LR, Gavriouchkina D, Larsson T et al. 2015. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33:5503–9
    [Google Scholar]
  133. 133. 
    Moor AE, Harnik Y, Ben-Moshe S, Massasa EE, Rozenberg M et al. 2018. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175:41156–67.e15
    [Google Scholar]
  134. 134. 
    Nitzan M, Karaiskos N, Friedman N, Rajewsky N 2019. Gene expression cartography. Nature 576:132–37 https://doi.org/10.1038/s41586-019-1773-3
    [Crossref] [Google Scholar]
  135. 135. 
    Lein E, Borm LE, Linnarsson S 2017. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358:635964–69
    [Google Scholar]
  136. 136. 
    Moor AE, Itzkovitz S. 2017. Spatial transcriptomics: paving the way for tissue-level systems biology. Curr. Opin. Biotechnol. 46:126–33
    [Google Scholar]
  137. 137. 
    Mayr U, Serra D, Liberali P 2019. Exploring single cells in space and time during tissue development, homeostasis and regeneration. Development 146:12dev176727
    [Google Scholar]
  138. 138. 
    Femino AM, Fay FS, Fogarty K, Singer RH 1998. Visualization of single RNA transcripts in situ. Science 280:5363585–90
    [Google Scholar]
  139. 139. 
    Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S 2008. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5:10877–79
    [Google Scholar]
  140. 140. 
    Lubeck E, Cai L. 2012. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9:7743–48
    [Google Scholar]
  141. 141. 
    Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L 2014. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11:4360–61
    [Google Scholar]
  142. 142. 
    Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X 2015. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:6233aaa6090
    [Google Scholar]
  143. 143. 
    Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang X 2016. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. PNAS 113:3911046–51
    [Google Scholar]
  144. 144. 
    Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N et al. 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568:7751235–39
    [Google Scholar]
  145. 145. 
    Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J et al. 2013. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10:9857–60
    [Google Scholar]
  146. 146. 
    Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL et al. 2014. Highly multiplexed subcellular RNA sequencing in situ. Science 343:61771360–63
    [Google Scholar]
  147. 147. 
    Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N et al. 2018. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361:6400eaat5691
    [Google Scholar]
  148. 148. 
    Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF et al. 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:629478–82
    [Google Scholar]
  149. 149. 
    Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E et al. 2019. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363:64341463–67
    [Google Scholar]
  150. 150. 
    Vickovic S, Eraslan G, Salmen F, Klughammer J, Stenbeck L et al. 2019. High-density spatial transcriptomics arrays for in situ tissue profiling. Nat. Methods 16:987–90
    [Google Scholar]
  151. 151. 
    Weinstein JA, Regev A, Zhang F 2019. DNA microscopy: Optics-free spatio-genetic imaging by a stand-alone chemical reaction. Cell 178:1229–41.e16
    [Google Scholar]
  152. 152. 
    Bodenmiller B. 2016. Multiplexed epitope-based tissue imaging for discovery and healthcare applications. Cell Syst 2:4225–38
    [Google Scholar]
  153. 153. 
    Bendall SC, Simonds EF, Qiu P, Amir E-AD, Krutzik PO et al. 2011. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:6030687–96
    [Google Scholar]
  154. 154. 
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R et al. 2009. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81:166813–22
    [Google Scholar]
  155. 155. 
    Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M et al. 2018. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174:4968–81.e15
    [Google Scholar]
  156. 156. 
    Saka SK, Wang Y, Kishi JY, Zhu A, Zeng Y et al. 2019. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissue. Nat. Biotechnol. 37:1080–1090
    [Google Scholar]
  157. 157. 
    Stewart BJ, Ferdinand JR, Young DM, Mitchell TJ, Loudon KW et al. 2019. Spatiotemporal immune zonation of the human kidney. Science 365:64601461–66
    [Google Scholar]
  158. 158. 
    Szabo PA, Miron M, Farber DL 2019. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4:34eaas9673
    [Google Scholar]
  159. 159. 
    Ginhoux F, Guilliams M. 2016. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:3439–49
    [Google Scholar]
  160. 160. 
    Okabe Y, Medzhitov R. 2016. Tissue biology perspective on macrophages. Nat. Immunol. 17:19–17
    [Google Scholar]
  161. 161. 
    Tabula Muris Consort 2018. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. . Nature 562:7727367–72
    [Google Scholar]
  162. 162. 
    Han X, Wang R, Zhou Y, Fei L, Sun H et al. 2018. Mapping the mouse cell atlas by Microwell-seq. Cell 173:51307 Erratum. 2018. Cell 173(5):1307
    [Google Scholar]
  163. 163. 
    Tabula Muris Consort. Pisco AO, Schaum N, McGeever A, Karkanias J et al. 2019. A single cell transcriptomic atlas characterizes aging tissues in the mouse. bioRxiv 661728. https://doi.org/10.1101/661728
    [Crossref]
  164. 164. 
    Kimmel JC, Penland L, Rubinstein ND, Hendrickson DG, Kelley DR, Rosenthal AZ 2019. A murine aging cell atlas reveals cell identity and tissue-specific trajectories of aging. bioRxiv 657726. https://doi.org/10.1101/657726
    [Crossref]
  165. 165. 
    Regev A, Teichmann SA, Lander ES, Amit I, Benoist C et al. 2017. The Human Cell Atlas. eLife 6:e27041
    [Google Scholar]
  166. 166. 
    Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K et al. 2017. A single-cell survey of the small intestinal epithelium. Nature 551:7680333–39
    [Google Scholar]
  167. 167. 
    Dick SA, Macklin JA, Nejat S, Momen A, Clemente-Casares X et al. 2019. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20:129–39
    [Google Scholar]
  168. 168. 
    Jaitin DA, Adlung L, Thaiss CA, Weiner A, Li B et al. 2019. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178:3686–98.e14
    [Google Scholar]
  169. 169. 
    Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A et al. 2019. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50:1253–71.e6
    [Google Scholar]
  170. 170. 
    Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L et al. 2019. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:7744388–92
    [Google Scholar]
  171. 171. 
    Chakarov S, Lim HY, Tan L, Lim SY, See P et al. 2019. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363:6432eaau0964
    [Google Scholar]
  172. 172. 
    Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP et al. 2018. Innate lymphoid cells: 10 years on. Cell 174:51054–66
    [Google Scholar]
  173. 173. 
    Björklund ÅK, Forkel M, Picelli S, Konya V, Theorell J et al. 2016. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol. 17:4451–60
    [Google Scholar]
  174. 174. 
    Gury-BenAri M, Thaiss CA, Serafini N, Winter DR, Giladi A et al. 2016. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166:51231–46.e13
    [Google Scholar]
  175. 175. 
    Cella M, Gamini R, Sécca C, Collins PL, Zhao S et al. 2019. Subsets of ILC3-ILC1-like cells generate a diversity spectrum of innate lymphoid cells in human mucosal tissues. Nat. Immunol 20:8980–91 Erratum. 2019. Nat. Immunol. 20:1405
    [Google Scholar]
  176. 176. 
    Pfefferle A, Netskar H, Ask EH, Lorenz S, Goodridge JP et al. 2019. A temporal transcriptional map of human natural killer cell differentiation. bioRxiv 630657. https://doi.org/10.1101/630657
    [Crossref]
  177. 177. 
    Moffett A, Colucci F. 2014. Uterine NK cells: active regulators at the maternal-fetal interface. J. Clin. Investig. 124:51872–79
    [Google Scholar]
  178. 178. 
    Sojka DK, Yang L, Yokoyama WM 2019. Uterine natural killer cells. Front. Immunol. 10:960
    [Google Scholar]
  179. 178a. 
    James KR, Gomes T, Elmentaite R, Kumar N, Gulliver EL et al. 2019. Distinct microbial and immune niches of the human colon. bioRxiv 2019.12.12.871657. https:doi.org/10.1101/2019.12.12.871657
    [Crossref] [Google Scholar]
  180. 179. 
    Hashimoto K, Kouno T, Ikawa T, Hayatsu N, Miyajima Y et al. 2019. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. PNAS 116:24242–51 https://doi.org/10.1073/pnas.1907883116
    [Crossref] [Google Scholar]
  181. 180. 
    Dulken BW, Buckley MT, Navarro Negredo P, Saligrama N, Cayrol R et al. 2019. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571:7764205–10
    [Google Scholar]
  182. 181. 
    Tusi BK, Wolock SL, Weinreb C, Hwang Y, Hidalgo D et al. 2018. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555:769454–60
    [Google Scholar]
  183. 182. 
    Giladi A, Paul F, Herzog Y, Lubling Y, Weiner A et al. 2018. Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nat. Cell Biol. 20:7836–46
    [Google Scholar]
  184. 183. 
    Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N et al. 2019. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177:71915–32.e16
    [Google Scholar]
  185. 184. 
    Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S et al. 2017. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19:4271–81
    [Google Scholar]
  186. 185. 
    Dress RJ, Dutertre C-A, Giladi A, Schlitzer A, Low I et al. 2019. Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage. Nat. Immunol. 20:7852–64
    [Google Scholar]
  187. 186. 
    Rodrigues PF, Alberti-Servera L, Eremin A, Grajales-Reyes GE, Ivanek R, Tussiwand R 2018. Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat. Immunol. 19:7711–22
    [Google Scholar]
  188. 187. 
    Popescu D-M, Botting RA, Stephenson E, Green K, Jardine L et al. 2019. Decoding human fetal liver haematopoiesis. Nature 574:365–71
    [Google Scholar]
  189. 188. 
    Akpinar F, Timm A, Yin J 2015. High-throughput single-cell kinetics of virus infections in the presence of defective interfering particles. J. Virol. 90:31599–612
    [Google Scholar]
  190. 189. 
    Schulte MB, Andino R. 2014. Single-cell analysis uncovers extensive biological noise in poliovirus replication. J. Virol. 88:116205–12
    [Google Scholar]
  191. 190. 
    Guo F, Li S, Caglar MU, Mao Z, Liu W et al. 2017. Single-cell virology: on-chip investigation of viral infection dynamics. Cell Rep 21:61692–704
    [Google Scholar]
  192. 191. 
    Steuerman Y, Cohen M, Peshes-Yaloz N, Valadarsky L, Cohn O et al. 2018. Dissection of influenza infection in vivo by single-cell RNA sequencing. Cell Syst 6:6679–91.e4
    [Google Scholar]
  193. 192. 
    Strzelecka PM, Ranzoni AM, Cvejic A 2018. Dissecting human disease with single-cell omics: application in model systems and in the clinic. Dis. Model. Mech. 11:11dmm036525
    [Google Scholar]
  194. 193. 
    Martin-Gayo E, Yu XG. 2017. Dendritic cell immune responses in HIV-1 controllers. Curr. HIV/AIDS Rep. 14:11–7
    [Google Scholar]
  195. 194. 
    Mohammadi P, di Iulio J, Muñoz M, Martinez R, Bartha I et al. 2014. Dynamics of HIV latency and reactivation in a primary CD4 T cell model. PLOS Pathog 10:5e1004156
    [Google Scholar]
  196. 195. 
    Hagai T, Chen X, Miragaia RJ, Rostom R, Gomes T et al. 2018. Gene expression variability across cells and species shapes innate immunity. Nature 563:7730197–202
    [Google Scholar]
  197. 196. 
    Smillie CS, Biton M, Ordovas-Montanes J, Sullivan KM, Burgin G et al. 2019. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 173:3714–30.e22
    [Google Scholar]
  198. 197. 
    Der E, Suryawanshi H, Morozov P, Kustagi M, Goilav B et al. 2019. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20:7915–27
    [Google Scholar]
  199. 198. 
    Zhang F, Wei K, Slowikowski K, Fonseka CY, Rao DA et al. 2019. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20:7928–42
    [Google Scholar]
  200. 199. 
    Ashton MP, Eugster A, Dietz S, Loebel D, Lindner A et al. 2019. Association of dendritic cell signatures with autoimmune inflammation revealed by single-cell profiling. Arthritis Rheumatol 71:5817–28
    [Google Scholar]
  201. 200. 
    Culemann S, Grüneboom A, Nicolás-Ávila , Weidner D, Lämmle KF et al. 2019. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572:7771670–75
    [Google Scholar]
  202. 201. 
    Ahmed R, Omidian Z, Giwa A, Cornwell B, Majety N et al. 2019. A public BCR present in a unique dual-receptor-expressing lymphocyte from type 1 diabetes patients encodes a potent T cell autoantigen. Cell 177:61583–99.e16
    [Google Scholar]
  203. 202. 
    Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM et al. 2014. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:61901396–401
    [Google Scholar]
  204. 203. 
    Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D et al. 2016. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:6282189–96
    [Google Scholar]
  205. 204. 
    Li H, Courtois ET, Sengupta D, Tan Y, Chen KH et al. 2017. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49:5708–18
    [Google Scholar]
  206. 205. 
    Young MD, Mitchell TJ, Vieira Braga FA, Tran MGB, Stewart BJ et al. 2018. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361:6402594–99
    [Google Scholar]
  207. 206. 
    Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D et al. 2017. An immune atlas of clear cell renal cell carcinoma. Cell 169:4736–49.e18
    [Google Scholar]
  208. 207. 
    Savas P, Virassamy B, Ye C, Salim A, Mintoff CP et al. 2018. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 24:7986–93
    [Google Scholar]
  209. 208. 
    Lavin Y, Kobayashi S, Leader A, Amir E-AD, Elefant N et al. 2017. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169:4750–65.e17
    [Google Scholar]
  210. 209. 
    Zilionis R, Engblom C, Pfirschke C, Savova V, Zemmour D et al. 2019. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50:51317–34.e10
    [Google Scholar]
  211. 210. 
    Gawad C, Koh W, Quake SR 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17:3175–88
    [Google Scholar]
  212. 211. 
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:734190–94
    [Google Scholar]
  213. 212. 
    Wang Y, Waters J, Leung ML, Unruh A, Roh W et al. 2014. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512:7513155–60
    [Google Scholar]
  214. 213. 
    Xu X, Hou Y, Yin X, Bao L, Tang A et al. 2012. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:5886–95
    [Google Scholar]
  215. 214. 
    Li Y, Xu X, Song L, Hou Y, Li Z et al. 2012. Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. Gigascience 1:112
    [Google Scholar]
  216. 215. 
    Hou Y, Song L, Zhu P, Zhang B, Tao Y et al. 2012. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:5873–85
    [Google Scholar]
  217. 216. 
    Gawad C, Koh W, Quake SR 2014. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. PNAS 111:5017947–52
    [Google Scholar]
  218. 217. 
    Yu C, Yu J, Yao X, Wu WKK, Lu Y et al. 2014. Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res 24:6701–12
    [Google Scholar]
  219. 218. 
    Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB et al. 2018. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556:7702457–62
    [Google Scholar]
  220. 219. 
    Shintaku H, Nishikii H, Marshall LA, Kotera H, Santiago JG 2014. On-chip separation and analysis of RNA and DNA from single cells. Anal. Chem. 86:41953–57
    [Google Scholar]
  221. 220. 
    Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX et al. 2015. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12:6519–22
    [Google Scholar]
  222. 221. 
    Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A 2015. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 33:3285–89
    [Google Scholar]
  223. 222. 
    Ståhlberg A, Thomsen C, Ruff D, Åman P 2012. Quantitative PCR analysis of DNA, RNAs, and proteins in the same single cell. Clin. Chem. 58:121682–91
    [Google Scholar]
  224. 223. 
    Marconcini R, Spagnolo F, Stucci LS, Ribero S, Marra E et al. 2018. Current status and perspectives in immunotherapy for metastatic melanoma. Oncotarget 9:1512452–70
    [Google Scholar]
  225. 224. 
    Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su M-J et al. 2018. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175:4984–97.e24
    [Google Scholar]
  226. 225. 
    Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG et al. 2018. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175:4998–1013.e20
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-090419-020340
Loading
/content/journals/10.1146/annurev-immunol-090419-020340
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error