1932

Abstract

Infection with causes >1.5 million deaths worldwide annually. Innate immune cells are the first to encounter , and their response dictates the course of infection. Dendritic cells (DCs) activate the adaptive response and determine its characteristics. Macrophages are responsible both for exerting cell-intrinsic antimicrobial control and for initiating and maintaining inflammation. The inflammatory response to infection is a double-edged sword. While cytokines such as TNF-α and IL-1 are important for protection, either excessive or insufficient cytokine production results in progressive disease. Furthermore, neutrophils—cells normally associated with control of bacterial infection—are emerging as key drivers of a hyperinflammatory response that results in host mortality. The roles of other innate cells, including natural killer cells and innate-like T cells, remain enigmatic. Understanding the nuances of both cell-intrinsic control of infection and regulation of inflammation will be crucial for the successful development of host-targeted therapeutics and vaccines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-093019-010426
2021-04-26
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-093019-010426.html?itemId=/content/journals/10.1146/annurev-immunol-093019-010426&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Reiling N, Hölscher C, Fehrenbach A, Kröger S, Kirschning CJ et al. 2002. Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J. Immunol. 169:73480–84
    [Google Scholar]
  2. 2. 
    Sugawara I, Yamada H, Li C, Mizuno S, Takeuchi O, Akira S. 2003. Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol. Immunol. 47:5327–36
    [Google Scholar]
  3. 3. 
    Feng CG, Scanga CA, Collazo-Custodio CM, Cheever AW, Hieny S et al. 2003. Mice lacking myeloid differentiation factor 88 display profound defects in host resistance and immune responses to Mycobacterium avium infection not exhibited by Toll-like receptor 2 (TLR2)- and TLR4-deficient animals. J. Immunol. 171:94758–64
    [Google Scholar]
  4. 4. 
    Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A. 2005. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 202:121715–24
    [Google Scholar]
  5. 5. 
    Scanga CA, Bafica A, Feng CG, Cheever AW, Hieny S, Sher A 2004. MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect. Immun. 72:42400–4
    [Google Scholar]
  6. 6. 
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. 1993. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178:62249–54
    [Google Scholar]
  7. 7. 
    Maeda N, Nigou J, Herrmann J-L, Jackson M, Amara A et al. 2003. The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J. Biol. Chem. 278:85513–16
    [Google Scholar]
  8. 8. 
    Kang PB, Azad AK, Torrelles JB, Kaufman TM, Beharka A et al. 2005. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J. Exp. Med. 202:7987–99
    [Google Scholar]
  9. 9. 
    Doz E, Rose S, Nigou J, Gilleron M, Puzo G et al. 2007. Acylation determines the Toll-like receptor (TLR)-dependent positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative regulation of pro-inflammatory cytokines by mycobacterial lipomannan. J. Biol. Chem. 282:3626014–25
    [Google Scholar]
  10. 10. 
    Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E et al. 2014. Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 41:3402–13
    [Google Scholar]
  11. 11. 
    Bowdish DME, Sakamoto K, Kim M-J, Kroos M, Mukhopadhyay S et al. 2009. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLOS Pathog 5:6e1000474
    [Google Scholar]
  12. 12. 
    Marakalala MJ, Guler R, Matika L, Murray G, Jacobs M et al. 2011. The Syk/CARD9-coupled receptor Dectin-1 is not required for host resistance to Mycobacterium tuberculosis in mice. Microbes Infect 13:2198–201
    [Google Scholar]
  13. 13. 
    Heitmann L, Schoenen H, Ehlers S, Lang R, Hölscher C 2013. Mincle is not essential for controlling Mycobacterium tuberculosis infection. Immunobiology 218:4506–16
    [Google Scholar]
  14. 14. 
    Court N, Vasseur V, Vacher R, Frémond C, Shebzukhov Y et al. 2010. Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection. J. Immunol. 184:127057–70
    [Google Scholar]
  15. 15. 
    Yang Y, Yin C, Pandey A, Abbott D, Sassetti C, Kelliher MA. 2007. NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2. J. Biol. Chem. 282:5036223–29
    [Google Scholar]
  16. 16. 
    Coulombe F, Divangahi M, Veyrier F, de Léséleuc L, Gleason JL et al. 2009. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J. Exp. Med. 206:81709–16
    [Google Scholar]
  17. 17. 
    Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F et al. 2009. NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLOS Pathog 5:7e1000500
    [Google Scholar]
  18. 18. 
    Juárez E, Carranza C, Hernández-Sánchez F, León-Contreras JC, Hernández-Pando R et al. 2012. NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans. Eur. J. Immunol. 42:4880–89
    [Google Scholar]
  19. 19. 
    Gandotra S, Jang S, Murray PJ, Salgame P, Ehrt S. 2007. Nucleotide-binding oligomerization domain protein 2-deficient mice control infection with Mycobacterium tuberculosis. Infect. Immun. 75:115127–34
    [Google Scholar]
  20. 20. 
    Ferwerda G, Girardin SE, Kullberg B-J, Le Bourhis L, de Jong DJ et al. 2005. NOD2 and Toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLOS Pathog 1:3279–85
    [Google Scholar]
  21. 21. 
    Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A et al. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278:118869–72
    [Google Scholar]
  22. 22. 
    Divangahi M, Mostowy S, Coulombe F, Kozak R, Guillot L et al. 2008. NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J. Immunol. 181:107157–65
    [Google Scholar]
  23. 23. 
    Wu J, Sun L, Chen X, Du F, Shi H et al. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:6121826–30
    [Google Scholar]
  24. 24. 
    Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G et al. 2013. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498:7454380–84
    [Google Scholar]
  25. 25. 
    Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B et al. 2011. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:7370515–18
    [Google Scholar]
  26. 26. 
    Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA et al. 2013. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3:51355–61
    [Google Scholar]
  27. 27. 
    Woodward JJ, Iavarone AT, Portnoy DA. 2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:59861703–5
    [Google Scholar]
  28. 28. 
    Stanley SA, Johndrow JE, Manzanillo P, Cox JS. 2007. The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J. Immunol. 178:53143–52
    [Google Scholar]
  29. 29. 
    Manca C, Tsenova L, Freeman S, Barczak AK, Tovey M et al. 2005. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J. Interferon Cytokine Res. 25:11694–701
    [Google Scholar]
  30. 30. 
    Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG et al. 2011. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35:61023–34
    [Google Scholar]
  31. 31. 
    Ji DX, Yamashiro LH, Chen KJ, Mukaida N, Kramnik I et al. 2019. Type I interferon-driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra. Nat. Microbiol. 4:122128–35
    [Google Scholar]
  32. 32. 
    Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS. 2012. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11:5469–80
    [Google Scholar]
  33. 33. 
    Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ et al. 2015. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17:6811–19
    [Google Scholar]
  34. 34. 
    Wassermann R, Gulen MF, Sala C, Perin SG, Lou Y et al. 2015. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe 17:6799–810
    [Google Scholar]
  35. 35. 
    Collins AC, Cai H, Li T, Franco LH, Li X-D et al. 2015. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17:6820–28
    [Google Scholar]
  36. 36. 
    Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H et al. 2015. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat. Med. 21:4401–6
    [Google Scholar]
  37. 37. 
    Dorhoi A, Kaufmann SHE. 2014. Tumor necrosis factor alpha in mycobacterial infection. Semin. Immunol. 26:3203–9
    [Google Scholar]
  38. 38. 
    Roach DR, Bean AGD, Demangel C, France MP, Briscoe H, Britton WJ. 2002. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J. Immunol. 168:94620–27
    [Google Scholar]
  39. 39. 
    Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K et al. 1995. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:6561–72
    [Google Scholar]
  40. 40. 
    Bean AG, Roach DR, Briscoe H, France MP, Korner H et al. 1999. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J. Immunol. 162:63504–11
    [Google Scholar]
  41. 41. 
    Kaneko H, Yamada H, Mizuno S, Udagawa T, Kazumi Y et al. 1999. Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice. Lab. Investig. 79:4379–86
    [Google Scholar]
  42. 42. 
    Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J et al. 2001. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med. 345:151098–104
    [Google Scholar]
  43. 43. 
    Galloway JB, Mercer LK, Moseley A, Dixon WG, Ustianowski AP et al. 2013. Risk of skin and soft tissue infections (including shingles) in patients exposed to anti-tumour necrosis factor therapy: results from the British Society for Rheumatology Biologics Register. Ann. Rheum. Dis. 72:2229–34
    [Google Scholar]
  44. 44. 
    Xie X, Li F, Chen J-W, Wang J 2014. Risk of tuberculosis infection in anti-TNF-α biological therapy: from bench to bedside. J. Microbiol. Immunol. Infect. 47:4268–74
    [Google Scholar]
  45. 45. 
    Kindler V, Sappino AP, Grau GE, Piguet PF, Vassalli P. 1989. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56:5731–40
    [Google Scholar]
  46. 46. 
    Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A, Germain RN 2008. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28:2271–84
    [Google Scholar]
  47. 47. 
    Reece ST, Loddenkemper C, Askew DJ, Zedler U, Schommer-Leitner S et al. 2010. Serine protease activity contributes to control of Mycobacterium tuberculosis in hypoxic lung granulomas in mice. J. Clin. Investig. 120:93365–76
    [Google Scholar]
  48. 48. 
    Myllymäki H, Bäuerlein CA, Rämet M. 2016. The zebrafish breathes new life into the study of tuberculosis. Front. Immunol. 7:196
    [Google Scholar]
  49. 49. 
    Tobin DM, Vary JC, Ray JP, Walsh GS, Dunstan SJ et al. 2010. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140:5717–30
    [Google Scholar]
  50. 50. 
    Clay H, Volkman HE, Ramakrishnan L. 2008. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29:2283–94
    [Google Scholar]
  51. 51. 
    Di Paolo NC, Shafiani S, Day T, Papayannopoulou T, Russell DW et al. 2015. Interdependence between interleukin-1 and tumor necrosis factor regulates TNF-dependent control of Mycobacterium tuberculosis infection. Immunity 43:61125–36
    [Google Scholar]
  52. 52. 
    Roca FJ, Whitworth LJ, Redmond S, Jones AA, Ramakrishnan L. 2019. TNF induces pathogenic programmed macrophage necrosis in tuberculosis through a mitochondrial-lysosomal-endoplasmic reticulum circuit. Cell 178:61344–61.e11
    [Google Scholar]
  53. 53. 
    Roca FJ, Ramakrishnan L. 2013. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 153:3521–34
    [Google Scholar]
  54. 54. 
    Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L et al. 2013. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210:101977–92
    [Google Scholar]
  55. 55. 
    Dranoff G, Crawford AD, Sadelain M, Ream B, Rashid A et al. 1994. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 264:5159713–16
    [Google Scholar]
  56. 56. 
    Gonzalez-Juarrero M, Hattle JM, Izzo A, Junqueira-Kipnis AP, Shim TS et al. 2005. Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control Mycobacterium tuberculosis infection. J. Leukoc. Biol. 77:6914–22
    [Google Scholar]
  57. 57. 
    Rothchild AC, Stowell B, Goyal G, Nunes-Alves C, Yang Q et al. 2017. Role of granulocyte-macrophage colony-stimulating factor production by T cells during Mycobacterium tuberculosis infection. mBio 8:5e01514–17
    [Google Scholar]
  58. 58. 
    Rothchild AC, Jayaraman P, Nunes-Alves C, Behar SM. 2014. iNKT cell production of GM-CSF controls Mycobacterium tuberculosis. PLOS Pathog 10:1e1003805
    [Google Scholar]
  59. 59. 
    Benmerzoug S, Marinho FV, Rose S, Mackowiak C, Gosset D et al. 2018. GM-CSF targeted immunomodulation affects host response to M. tuberculosis infection. Sci. Rep. 8:18652
    [Google Scholar]
  60. 60. 
    Chroneos ZC, Midde K, Sever-Chroneos Z, Jagannath C. 2009. Pulmonary surfactant and tuberculosis. Tuberculosis 89:S10–14
    [Google Scholar]
  61. 61. 
    Bryson BD, Rosebrock TR, Tafesse FG, Itoh CY, Nibasumba A et al. 2019. Heterogeneous GM-CSF signaling in macrophages is associated with control of Mycobacterium tuberculosis. Nat. Commun. 10:12329
    [Google Scholar]
  62. 62. 
    Juffermans NP, Florquin S, Camoglio L, Verbon A, Kolk AH et al. 2000. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J. Infect. Dis. 182:3902–8
    [Google Scholar]
  63. 63. 
    Guler R, Parihar SP, Spohn G, Johansen P, Brombacher F, Bachmann MF. 2011. Blocking IL-1α but not IL-1β increases susceptibility to chronic Mycobacterium tuberculosis infection in mice. Vaccine 29:61339–46
    [Google Scholar]
  64. 64. 
    Bourigault M-L, Segueni N, Rose S, Court N, Vacher R et al. 2013. Relative contribution of IL-1α, IL-1β and TNF to the host response to Mycobacterium tuberculosis and attenuated M. bovis BCG. Immun. Inflamm. Dis. 1:147–62
    [Google Scholar]
  65. 65. 
    Mayer-Barber KD, Barber DL, Shenderov K, White SD, Wilson MS et al. 2010. Caspase-1 independent IL-1β production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J. Immunol. 184:73326–30
    [Google Scholar]
  66. 66. 
    Bohrer AC, Tocheny C, Assmann M, Ganusov VV, Mayer-Barber KD. 2018. Cutting edge: IL-1R1 mediates host resistance to Mycobacterium tuberculosis by trans-protection of infected cells. J. Immunol. 201:61645–50
    [Google Scholar]
  67. 67. 
    Settas LD, Tsimirikas G, Vosvotekas G, Triantafyllidou E, Nicolaides P. 2007. Reactivation of pulmonary tuberculosis in a patient with rheumatoid arthritis during treatment with IL-1 receptor antagonists (anakinra). J. Clin. Rheumatol. 13:4219–20
    [Google Scholar]
  68. 68. 
    Brassard P, Kezouh A, Suissa S. 2006. Antirheumatic drugs and the risk of tuberculosis. Clin. Infect. Dis. 43:6717–22
    [Google Scholar]
  69. 69. 
    Mishra BB, Moura-Alves P, Sonawane A, Hacohen N, Griffiths G et al. 2010. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol 12:81046–63
    [Google Scholar]
  70. 70. 
    Carlsson F, Kim J, Dumitru C, Barck KH, Carano RAD et al. 2010. Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLOS Pathog 6:5e1000895
    [Google Scholar]
  71. 71. 
    Wong K-W, Jacobs WR. 2011. Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cell Microbiol 13:91371–84
    [Google Scholar]
  72. 72. 
    Dorhoi A, Nouailles G, Jörg S, Hagens K, Heinemann E et al. 2012. Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis. Eur. J. Immunol. 42:2374–84
    [Google Scholar]
  73. 73. 
    Abdalla H, Srinivasan L, Shah S, Mayer-Barber KD, Sher A et al. 2012. Mycobacterium tuberculosis infection of dendritic cells leads to partially caspase-1/11-independent IL-1β and IL-18 secretion but not to pyroptosis. PLOS ONE 7:7e40722
    [Google Scholar]
  74. 74. 
    McElvania TeKippe E, Allen IC, Hulseberg PD, Sullivan JT, McCann JR et al. 2010. Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PLOS ONE 5:8e12320
    [Google Scholar]
  75. 75. 
    Walter K, Hölscher C, Tschopp J, Ehlers S. 2010. NALP3 is not necessary for early protection against experimental tuberculosis. Immunobiology 215:9–10804–11
    [Google Scholar]
  76. 76. 
    Fremond CM, Togbe D, Doz E, Rose S, Vasseur V et al. 2007. IL-1 receptor-mediated signal is an essential component of Myd88-dependent innate response to Mycobacterium tuberculosis infection. J. Immunol. 179:21178–89
    [Google Scholar]
  77. 77. 
    Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuyama M et al. 2012. Critical role of AIM2 in Mycobacterium tuberculosis infection. Int. Immunol. 24:10637–44
    [Google Scholar]
  78. 78. 
    Greten FR, Arkan MC, Bollrath J, Hsu L-C, Goode J et al. 2007. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell 130:5918–31
    [Google Scholar]
  79. 79. 
    Guma M, Ronacher L, Liu-Bryan R, Takai S, Karin M, Corr M 2009. Caspase 1-independent activation of interleukin-1β in neutrophil-predominant inflammation. Arthritis Rheum 60:123642–50
    [Google Scholar]
  80. 80. 
    Joosten LAB, Netea MG, Fantuzzi G, Koenders MI, Helsen MMA et al. 2009. Inflammatory arthritis in caspase 1 gene–deficient mice: contribution of proteinase 3 to caspase 1–independent production of bioactive interleukin-1β. Arthritis Rheum 60:123651–62
    [Google Scholar]
  81. 81. 
    Karmakar M, Sun Y, Hise AG, Rietsch A, Pearlman E. 2012. Cutting edge: IL-1β processing during Pseudomonas aeruginosa infection is mediated by neutrophil serine proteases and is independent of NLRC4 and caspase-1. J. Immunol. 189:94231–35
    [Google Scholar]
  82. 82. 
    Mishra BB, Rathinam VAK, Martens GW, Martinot AJ, Kornfeld H et al. 2013. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat. Immunol. 14:152–60
    [Google Scholar]
  83. 83. 
    Watson RO, Manzanillo PS, Cox JS. 2012. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150:4803–15
    [Google Scholar]
  84. 84. 
    Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA et al. 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:7309973–77
    [Google Scholar]
  85. 85. 
    Maertzdorf J, Repsilber D, Parida SK, Stanley K, Roberts T et al. 2011. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun 12:115–22
    [Google Scholar]
  86. 86. 
    Moreira-Teixeira L, Tabone O, Graham CM, Singhania A, Stavropoulos E et al. 2020. Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis. Nat. Immunol. 21:4464–76
    [Google Scholar]
  87. 87. 
    Singhania A, Verma R, Graham CM, Lee J, Tran T et al. 2018. A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection. Nat. Commun. 9:12308
    [Google Scholar]
  88. 88. 
    Zak DE, Penn-Nicholson A, Scriba TJ, Thompson E, Suliman S et al. 2016. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387:100352312–22
    [Google Scholar]
  89. 89. 
    Scriba TJ, Penn-Nicholson A, Shankar S, Hraha T, Thompson EG et al. 2017. Sequential inflammatory processes define human progression from M. tuberculosis infection to tuberculosis disease. PLOS Pathog 13:11e1006687
    [Google Scholar]
  90. 90. 
    Cooper AM, Pearl JE, Brooks JV, Ehlers S, Orme IM. 2000. Expression of the nitric oxide synthase 2 gene is not essential for early control of Mycobacterium tuberculosis in the murine lung. Infect. Immun. 68:126879–82
    [Google Scholar]
  91. 91. 
    Dorhoi A, Yeremeev V, Nouailles G, Weiner J, Jörg S et al. 2014. Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. Eur. J. Immunol. 44:82380–93
    [Google Scholar]
  92. 92. 
    Desvignes L, Wolf AJ, Ernst JD. 2012. Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J. Immunol. 188:126205–15
    [Google Scholar]
  93. 93. 
    Yamashiro LH, Wilson SC, Morrison HM, Karalis V, Chung J-YJ et al. 2019. STING controls herpes simplex virus in vivo independent of type I interferon induction. bioRxiv 2019.12.12.874792
  94. 94. 
    Antonelli LRV, Gigliotti Rothfuchs A, Gonçalves R, Roffê E, Cheever AW et al. 2010. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J. Clin. Investig. 120:51674–82
    [Google Scholar]
  95. 95. 
    Novikov A, Cardone M, Thompson R, Shenderov K, Kirschman KD et al. 2011. Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1β production in human macrophages. J. Immunol. 187:52540–47
    [Google Scholar]
  96. 96. 
    McNab FW, Ewbank J, Howes A, Moreira-Teixeira L, Martirosyan A et al. 2014. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. J. Immunol. 193:73600–12
    [Google Scholar]
  97. 97. 
    Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL et al. 2014. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511:750799–103
    [Google Scholar]
  98. 98. 
    Moreira-Teixeira L, Mayer-Barber K, Sher A, O'Garra A. 2018. Type I interferons in tuberculosis: foe and occasionally friend. J. Exp. Med. 215:51273–85
    [Google Scholar]
  99. 99. 
    Olobo JO, Geletu M, Demissie A, Eguale T, Hiwot K et al. 2001. Circulating TNF-α, TGF-β, and IL-10 in tuberculosis patients and healthy contacts. Scand. J. Immunol. 53:185–91
    [Google Scholar]
  100. 100. 
    Harling K, Adankwah E, Güler A, Afum-Adjei Awuah A, Adu-Amoah L et al. 2018. Constitutive STAT3 phosphorylation and IL-6/IL-10 co-expression are associated with impaired T-cell function in tuberculosis patients. Cell Mol. Immunol. 16:3275–87
    [Google Scholar]
  101. 101. 
    Higgins DM, Sanchez-Campillo J, Rosas-Taraco AG, Lee EJ, Orme IM, Gonzalez-Juarrero M. 2009. Lack of IL-10 alters inflammatory and immune responses during pulmonary Mycobacterium tuberculosis infection. Tuberculosis 89:2149–57
    [Google Scholar]
  102. 102. 
    Redford PS, Boonstra A, Read S, Pitt J, Graham C et al. 2010. Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung. Eur. J. Immunol. 40:82200–10
    [Google Scholar]
  103. 103. 
    Cyktor JC, Carruthers B, Kominsky RA, Beamer GL, Stromberg P, Turner J. 2013. IL-10 inhibits mature fibrotic granuloma formation during Mycobacterium tuberculosis infection. J. Immunol. 190:62778–90
    [Google Scholar]
  104. 104. 
    Beamer GL, Flaherty DK, Assogba BD, Stromberg P, Gonzalez-Juarrero M et al. 2008. Interleukin-10 promotes Mycobacterium tuberculosis disease progression in CBA/J mice. J. Immunol. 181:85545–50
    [Google Scholar]
  105. 105. 
    Batlle E, Massagué J. 2019. Transforming growth factor-β signaling in immunity and cancer. Immunity 50:924–40
    [Google Scholar]
  106. 106. 
    Bonecini-Almeida MG, Ho JL, Boéchat N, Huard RC, Chitale S et al. 2004. Down-modulation of lung immune responses by interleukin-10 and transforming growth factor β (TGF-β) and analysis of TGF-β receptors I and II in active tuberculosis. Infect. Immun. 72:2628–34
    [Google Scholar]
  107. 107. 
    Toossi Z, Gogate P, Shiratsuchi H, Young T, Ellner JJ 1995. Enhanced production of TGF-beta by blood monocytes from patients with active tuberculosis and presence of TGF-beta in tuberculous granulomatous lung lesions. J. Immunol. 154:465–73
    [Google Scholar]
  108. 108. 
    Fiorenza G, Rateni L, Farroni MA, Bogué C, Dlugovitzky DG. 2005. TNF-α, TGF-β and NO relationship in sera from tuberculosis (TB) patients of different severity. Immunol. Lett. 98:45–48
    [Google Scholar]
  109. 109. 
    Rook GA, Lowrie DB, Hernández-Pando R. 2007. Immunotherapeutics for tuberculosis in experimental animals: Is there a common pathway activated by effective protocols?. J. Infect. Dis. 196:191–98
    [Google Scholar]
  110. 110. 
    DiFazio RM, Mattila JT, Klein EC, Cirrincione LR, Howard M et al. 2016. Active transforming growth factor-β is associated with phenotypic changes in granulomas after drug treatment in pulmonary tuberculosis. Fibrogenesis Tissue Repair 9:6
    [Google Scholar]
  111. 111. 
    Hernández-Pando R, Orozco-Esteves H, Maldonado HA, Aguilar-León D, Vilchis-Landeros MM et al. 2006. A combination of a transforming growth factor-β antagonist and an inhibitor of cyclooxygenase is an effective treatment for murine pulmonary tuberculosis. Clin. Exp. Immunol. 144:264–72
    [Google Scholar]
  112. 112. 
    Jayaswal S, Kamal MA, Dua R, Gupta S, Majumdar T et al. 2010. Identification of host-dependent survival factors for intracellular Mycobacterium tuberculosis through an siRNA screen. PLOS Pathog. 6:e1000839
    [Google Scholar]
  113. 113. 
    Gern B, Adams K, Plumlee C, Gerner M, Urdahl K. 2018. TGF-β restricts T-cell IFNg production in pulmonary tuberculous granulomas. Open Forum Infect. Dis. 5:Suppl. 1S16
    [Google Scholar]
  114. 114. 
    Li H, Wang X-X, Wang B, Fu L, Liu G et al. 2017. Latently and uninfected healthcare workers exposed to TB make protective antibodies against Mycobacterium tuberculosis. PNAS 114:195023–28
    [Google Scholar]
  115. 115. 
    Cadena AM, Flynn JL, Fortune SM. 2016. The importance of first impressions: Early events in Mycobacterium tuberculosis infection influence outcome. mBio 7:2e00342–16
    [Google Scholar]
  116. 116. 
    Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. 2001. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J. Exp. Med. 193:3271–80
    [Google Scholar]
  117. 117. 
    Gallegos AM, van Heijst JWJ, Samstein M, Su X, Pamer EG, Glickman MS. 2011. A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLOS Pathog 7:5e1002052
    [Google Scholar]
  118. 118. 
    Bah A, Vergne I. 2017. Macrophage autophagy and bacterial infections. Front. Immunol. 8:1483
    [Google Scholar]
  119. 119. 
    Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. 2004. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:6753–66
    [Google Scholar]
  120. 120. 
    Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G et al. 2013. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501:7468512–16
    [Google Scholar]
  121. 121. 
    Franco LH, Nair VR, Scharn CR, Xavier RJ, Torrealba JR et al. 2017. The ubiquitin ligase Smurf1 functions in selective autophagy of Mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe 21:159–72
    [Google Scholar]
  122. 122. 
    Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N et al. 2012. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. PNAS 109:46E3168–76
    [Google Scholar]
  123. 123. 
    Kimmey JM, Huynh JP, Weiss LA, Park S, Kambal A et al. 2015. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528:7583565–69
    [Google Scholar]
  124. 124. 
    Aibana O, Huang C-C, Aboud S, Arnedo-Pena A, Becerra MC et al. 2019. Vitamin D status and risk of incident tuberculosis disease: a nested case-control study, systematic review, and individual-participant data meta-analysis. PLOS Med 16:9e1002907
    [Google Scholar]
  125. 125. 
    Wilkinson RJ, Llewelyn M, Toossi Z, Patel P, Pasvol G et al. 2000. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet 355:9204618–21
    [Google Scholar]
  126. 126. 
    Wu H-X, Xiong X-F, Zhu M, Wei J, Zhuo K-Q, Cheng D-Y. 2018. Effects of vitamin D supplementation on the outcomes of patients with pulmonary tuberculosis: a systematic review and meta-analysis. BMC Pulm. Med. 18:1108
    [Google Scholar]
  127. 127. 
    Jolliffe DA, Ganmaa D, Wejse C, Raqib R, Haq MA et al. 2019. Adjunctive vitamin D in tuberculosis treatment: meta-analysis of individual participant data. Eur. Respir. J. 53:31802003
    [Google Scholar]
  128. 128. 
    Liu PT, Stenger S, Li H, Wenzel L, Tan BH et al. 2006. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:57681770–73
    [Google Scholar]
  129. 129. 
    Campbell GR, Spector SA. 2012. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLOS Pathog 8:5e1002689
    [Google Scholar]
  130. 130. 
    Rao Muvva J, Parasa VR, Lerm M, Svensson M, Brighenti S. 2019. Polarization of human monocyte-derived cells with vitamin D promotes control of Mycobacterium tuberculosis infection. Front. Immunol. 10:3157
    [Google Scholar]
  131. 131. 
    Rivas-Santiago B, Rivas Santiago CE, Castañeda-Delgado JE, León-Contreras JC, Hancock REW, Hernandez-Pando R 2013. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis. Int. J. Antimicrob. Agents 41:2143–48
    [Google Scholar]
  132. 132. 
    Gupta S, Winglee K, Gallo R, Bishai WR. 2017. Bacterial subversion of cAMP signalling inhibits cathelicidin expression, which is required for innate resistance to Mycobacterium tuberculosis. J. Pathol. 242:152–61
    [Google Scholar]
  133. 133. 
    Fabri M, Stenger S, Shin D-M, Yuk J-M, Liu PT et al. 2011. Vitamin D is required for IFN-γ-mediated antimicrobial activity of human macrophages. Sci. Transl. Med. 3:104104ra102
    [Google Scholar]
  134. 134. 
    Vogt G, Nathan C. 2011. In vitro differentiation of human macrophages with enhanced antimycobacterial activity. J. Clin. Investig. 121:103889–901
    [Google Scholar]
  135. 135. 
    Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB et al. 2011. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat. Immunol. 12:3213–21
    [Google Scholar]
  136. 136. 
    Khan TA, Kalsoom K, Iqbal A, Asif H, Rahman H et al. 2016. A novel missense mutation in the NADPH binding domain of CYBB abolishes the NADPH oxidase activity in a male patient with increased susceptibility to infections. Microb. Pathog. 100:163–69
    [Google Scholar]
  137. 137. 
    Cooper AM, Segal BH, Frank AA, Holland SM, Orme IM. 2000. Transient loss of resistance to pulmonary tuberculosis in p47phox−/− mice. Infect. Immun. 68:31231–34
    [Google Scholar]
  138. 138. 
    Olive AJ, Smith CM, Kiritsy MC, Sassetti CM. 2018. The phagocyte oxidase controls tolerance to Mycobacterium tuberculosis infection. J. Immunol. 201:61705–16
    [Google Scholar]
  139. 139. 
    MacMicking J, Xie QW, Nathan C. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15:323–50
    [Google Scholar]
  140. 140. 
    Nicholson S, Bonecini-Almeida M da G, Lapa e Silva JR, Nathan C, Xie QW et al. 1996. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J. Exp. Med. 183:52293–302
    [Google Scholar]
  141. 141. 
    Nathan C. 2002. Inducible nitric oxide synthase in the tuberculous human lung. Am. J. Respir. Crit. Care Med. 166:2130–31
    [Google Scholar]
  142. 142. 
    Idh J, Westman A, Elias D, Moges F, Getachew A et al. 2008. Nitric oxide production in the exhaled air of patients with pulmonary tuberculosis in relation to HIV co-infection. BMC Infect. Dis. 8:146
    [Google Scholar]
  143. 143. 
    MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. PNAS 94:105243–48
    [Google Scholar]
  144. 144. 
    Mishra BB, Lovewell RR, Olive AJ, Zhang G, Wang W et al. 2017. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat. Microbiol. 2:17072
    [Google Scholar]
  145. 145. 
    Braverman J, Stanley SA. 2017. Nitric oxide modulates macrophage responses to Mycobacterium tuberculosis infection through activation of HIF-1α and repression of NF-κB. J. Immunol. 199:51805–16
    [Google Scholar]
  146. 146. 
    Darwin KH, Ehrt S, Gutierrez-Ramos J-C, Weich N, Nathan CF. 2003. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302:56521963–66
    [Google Scholar]
  147. 147. 
    Kim B-H, Shenoy AR, Kumar P, Das R, Tiwari S, MacMicking JD. 2011. A family of IFN-γ-inducible 65-kD GTPases protects against bacterial infection. Science 332:6030717–21
    [Google Scholar]
  148. 148. 
    Ahmed M, Thirunavukkarasu S, Rosa BA, Thomas KA, Das S et al. 2020. Immune correlates of tuberculosis disease and risk translate across species. Sci. Transl. Med. 12:528eaay0233
    [Google Scholar]
  149. 149. 
    Plumlee CR, Duffy FJ, Gern BH, Delahaye JL, Cohen SB et al. 2020. A blood RNA signature in a novel murine model predicts human tuberculosis risk. SSRN. https://doi.org/10.2139/ssrn.3541362
    [Crossref]
  150. 150. 
    MacMicking JD, Taylor GA, McKinney JD. 2003. Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302:5645654–59
    [Google Scholar]
  151. 151. 
    Hunn JP, Howard JC. 2010. The mouse resistance protein Irgm1 (LRG-47): a regulator or an effector of pathogen defense?. PLOS Pathog 6:7e1001008
    [Google Scholar]
  152. 152. 
    Kim B-H, Shenoy AR, Kumar P, Bradfield CJ, MacMicking JD. 2012. IFN-inducible GTPases in host cell defense. Cell Host Microbe 12:4432–44
    [Google Scholar]
  153. 153. 
    Gleeson LE, Sheedy FJ, Palsson-McDermott EM, Triglia D, O'Leary SM et al. 2016. Cutting edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. J. Immunol. 196:62444–49
    [Google Scholar]
  154. 154. 
    Braverman J, Sogi KM, Benjamin D, Nomura DK, Stanley SA. 2016. HIF-1α is an essential mediator of IFN-γ-dependent immunity to Mycobacterium tuberculosis. J. Immunol. 197:41287–97
    [Google Scholar]
  155. 155. 
    Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF et al. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:7444238–42
    [Google Scholar]
  156. 156. 
    Lee J, Remold HG, Ieong MH, Kornfeld H. 2006. Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway. J. Immunol. 176:74267–74
    [Google Scholar]
  157. 157. 
    Duan L, Gan H, Arm J, Remold HG. 2001. Cytosolic phospholipase A2 participates with TNF-α in the induction of apoptosis of human macrophages infected with Mycobacterium tuberculosis H37Ra. J. Immunol. 166:127469–76
    [Google Scholar]
  158. 158. 
    Chen M, Gan H, Remold HG. 2006. A mechanism of virulence: Virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J. Immunol. 176:63707–16
    [Google Scholar]
  159. 159. 
    Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL et al. 2003. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat. Med. 9:81039–46
    [Google Scholar]
  160. 160. 
    Winau F, Weber S, Sad S, de Diego J, Hoops SL et al. 2006. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 24:1105–17
    [Google Scholar]
  161. 161. 
    Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM et al. 2007. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J. Clin. Investig. 117:82279–88
    [Google Scholar]
  162. 162. 
    Divangahi M, Desjardins D, Nunes-Alves C, HG Remold, Behar SM. 2010. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat. Immunol. 11:8751–58
    [Google Scholar]
  163. 163. 
    Blomgran R, Desvignes L, Briken V, Ernst JD. 2012. Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 11:181–90
    [Google Scholar]
  164. 164. 
    Martin CJ, Booty MG, Rosebrock TR, Nunes-Alves C, Desjardins DM et al. 2012. Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 12:3289–300
    [Google Scholar]
  165. 165. 
    Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT et al. 2009. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat. Immunol. 10:8899–906
    [Google Scholar]
  166. 166. 
    Chang DJ, Ringold GM, Heller RA. 1992. Cell killing and induction of manganous superoxide dismutase by tumor necrosis factor-α is mediated by lipoxygenase metabolites of arachidonic acid. Biochem. Biophys. Res. Commun. 188:2538–46
    [Google Scholar]
  167. 167. 
    Chen M, Divangahi M, Gan H, Shin DSJ, Hong S et al. 2008. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J. Exp. Med. 205:122791–801
    [Google Scholar]
  168. 168. 
    Ricciotti E, FitzGerald GA. 2011. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 31:5986–1000
    [Google Scholar]
  169. 169. 
    Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN. 2001. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2:7612–19
    [Google Scholar]
  170. 170. 
    Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW et al. 2012. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148:3434–46
    [Google Scholar]
  171. 171. 
    Thuong NTT, Heemskerk D, Tram TTB, Thao LTP, Ramakrishnan L et al. 2017. Leukotriene A4 hydrolase genotype and HIV infection influence intracerebral inflammation and survival from tuberculous meningitis. J. Infect. Dis. 215:71020–28
    [Google Scholar]
  172. 172. 
    Segal AW. 2005. How neutrophils kill microbes. Annu. Rev. Immunol. 23:197–223
    [Google Scholar]
  173. 173. 
    Gopal R, Monin L, Torres D, Slight S, Mehra S et al. 2013. S100A8/A9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis. Am. J. Respir. Crit. Care Med. 188:91137–46
    [Google Scholar]
  174. 174. 
    Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J et al. 2014. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J. Clin. Investig. 124:31268–82
    [Google Scholar]
  175. 175. 
    Blomgran R, Ernst JD. 2011. Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. J. Immunol. 186:127110–19
    [Google Scholar]
  176. 176. 
    Lowe DM, Redford PS, Wilkinson RJ, O'Garra A, Martineau AR 2012. Neutrophils in tuberculosis: friend or foe?. Trends Immunol 33:114–25
    [Google Scholar]
  177. 177. 
    Eruslanov EB, Lyadova IV, Kondratieva TK, Majorov KB, Scheglov IV et al. 2005. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect. Immun. 73:31744–53
    [Google Scholar]
  178. 178. 
    Lovewell RR, Baer CE, Mishra BB, Smith CM, Sassetti CM. 2020. Granulocytes act as a niche for Mycobacterium tuberculosis growth. Mucosal Immunol 14:229–41
    [Google Scholar]
  179. 179. 
    Scott NR, Swanson RV, Al-Hammadi N, Domingo-Gonzalez R, Rangel-Moreno J et al. 2020. S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. J. Clin. Investig. 130:63098–112
    [Google Scholar]
  180. 180. 
    Hunter RL. 2011. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis 91:6497–509
    [Google Scholar]
  181. 181. 
    Nair S, Huynh JP, Lampropoulou V, Loginicheva E, Esaulova E et al. 2018. Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection. J. Exp. Med. 215:41035–45
    [Google Scholar]
  182. 182. 
    Dorhoi A, Desel C, Yeremeev V, Pradl L, Brinkmann V et al. 2010. The adaptor molecule CARD9 is essential for tuberculosis control. J. Exp. Med. 207:4777–92
    [Google Scholar]
  183. 183. 
    Puttur F, Gregory LG, Lloyd CM. 2019. Airway macrophages as the guardians of tissue repair in the lung. Immunol. Cell Biol. 97:3246–57
    [Google Scholar]
  184. 184. 
    Papp AC, Azad AK, Pietrzak M, Williams A, Handelman SK et al. 2018. AmpliSeq transcriptome analysis of human alveolar and monocyte-derived macrophages over time in response to Mycobacterium tuberculosis infection. PLOS ONE 13:5e0198221
    [Google Scholar]
  185. 185. 
    Cohen SB, Gern BH, Delahaye JL, Adams KN, Plumlee CR et al. 2018. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24:3439–46.e4
    [Google Scholar]
  186. 186. 
    Rothchild AC, Olson GS, Nemeth J, Amon LM, Mai D et al. 2019. Alveolar macrophages generate a noncanonical NRF2-driven transcriptional response to Mycobacterium tuberculosis in vivo. Sci. Immunol. 4:37eaaw6693
    [Google Scholar]
  187. 187. 
    Leemans JC, Juffermans NP, Florquin S, van Rooijen N, Vervoordeldonk MJ et al. 2001. Depletion of alveolar macrophages exerts protective effects in pulmonary tuberculosis in mice. J. Immunol. 166:74604–11
    [Google Scholar]
  188. 188. 
    Huang L, Nazarova EV, Tan S, Liu Y, Russell DG. 2018. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 215:41135–52
    [Google Scholar]
  189. 189. 
    Guirado E, Rajaram MV, Chawla A, Daigle J, La Perle KM et al. 2018. Deletion of PPARγ in lung macrophages provides an immunoprotective response against M. tuberculosis infection in mice. Tuberculosis 111:170–77
    [Google Scholar]
  190. 190. 
    Wolf AJ, Linas B, Trevejo-Nuñez GJ, Kincaid E, Tamura T et al. 2007. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J. Immunol. 179:42509–19
    [Google Scholar]
  191. 191. 
    Repasy T, Lee J, Marino S, Martinez N, Kirschner DE et al. 2013. Intracellular bacillary burden reflects a burst size for Mycobacterium tuberculosis in vivo. PLOS Pathog 9:2e1003190
    [Google Scholar]
  192. 192. 
    Lee J, Boyce S, Powers J, Baer C, Sassetti CM, Behar SM. 2020. CD11cHi monocyte-derived macrophages are a major cellular compartment infected by Mycobacterium tuberculosis. PLOS Pathog 16:6e1008621
    [Google Scholar]
  193. 193. 
    Norris BA, Ernst JD. 2018. Mononuclear cell dynamics in M. tuberculosis infection provide opportunities for therapeutic intervention. PLOS Pathog 14:10e1007154
    [Google Scholar]
  194. 194. 
    Marino S, Pawar S, Fuller CL, Reinhart TA, Flynn JL, Kirschner DE. 2004. Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J. Immunol. 173:1494–506
    [Google Scholar]
  195. 195. 
    Tian T, Woodworth J, Sköld M, Behar SM. 2005. In vivo depletion of CD11c+ cells delays the CD4+ T cell response to Mycobacterium tuberculosis and exacerbates the outcome of infection. J. Immunol. 175:53268–72
    [Google Scholar]
  196. 196. 
    Peters W, Scott HM, Chambers HF, Flynn JL, Charo IF, Ernst JD 2001. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. PNAS 98:147958–63
    [Google Scholar]
  197. 197. 
    Peters W, Cyster JG, Mack M, Schlöndorff D, Wolf AJ et al. 2004. CCR2-dependent trafficking of F4/80dim macrophages and CD11cdim/intermediate dendritic cells is crucial for T cell recruitment to lungs infected with Mycobacterium tuberculosis. J. Immunol. 172:127647–53
    [Google Scholar]
  198. 198. 
    Samstein M, Schreiber HA, Leiner IM, Susac B, Glickman MS, Pamer EG 2013. Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. eLife 2:e01086
    [Google Scholar]
  199. 199. 
    Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S et al. 2008. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28:5710–22
    [Google Scholar]
  200. 200. 
    Poulsen A. 1950. Some clinical features of tuberculosis. 1. Incubation period. Acta Tuberc. Scand. 24:3–4311–46
    [Google Scholar]
  201. 201. 
    Wallgren A. 1948. The time-table of tuberculosis. Tubercle 29:11245–51
    [Google Scholar]
  202. 202. 
    Madan-Lala R, Sia JK, King R, Adekambi T, Monin L et al. 2014. Mycobacterium tuberculosis impairs dendritic cell functions through the serine hydrolase Hip1. J. Immunol. 192:94263–72
    [Google Scholar]
  203. 203. 
    Garcia-Romo GS, Pedroza-Gonzalez A, Lambrecht BN, Aguilar-Leon D, Estrada-Garcia I et al. 2013. Mycobacterium tuberculosis manipulates pulmonary APCs subverting early immune responses. Immunobiology 218:3393–401
    [Google Scholar]
  204. 204. 
    Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T et al. 2008. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med. 205:1105–15
    [Google Scholar]
  205. 205. 
    Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J et al. 2007. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8:4369–77
    [Google Scholar]
  206. 206. 
    Griffiths KL, Ahmed M, Das S, Gopal R, Horne W et al. 2016. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat. Commun. 7:13894
    [Google Scholar]
  207. 207. 
    Gallegos AM, Pamer EG, Glickman MS. 2008. Delayed protection by ESAT-6-specific effector CD4+ T cells after airborne M. tuberculosis infection. J. Exp. Med. 205:102359–68
    [Google Scholar]
  208. 208. 
    Bozzano F, Costa P, Passalacqua G, Dodi F, Ravera S et al. 2009. Functionally relevant decreases in activatory receptor expression on NK cells are associated with pulmonary tuberculosis in vivo and persist after successful treatment. Int. Immunol. 21:7779–91
    [Google Scholar]
  209. 209. 
    Roy Chowdhury R, Vallania F, Yang Q, Lopez Angel CJ, Darboe F et al. 2018. A multi-cohort study of the immune factors associated with M. tuberculosis infection outcomes. Nature 560:7720644–48 Erratum. 2018. Nature 564:E5
    [Google Scholar]
  210. 210. 
    Vankayalapati R, Garg A, Porgador A, Griffith DE, Klucar P et al. 2005. Role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium. J. Immunol. 175:74611–17
    [Google Scholar]
  211. 211. 
    Brill KJ, Li Q, Larkin R, Canaday DH, Kaplan DR et al. 2001. Human natural killer cells mediate killing of intracellular Mycobacterium tuberculosis H37Rv via granule-independent mechanisms. Infect. Immun. 69:31755–65
    [Google Scholar]
  212. 212. 
    Lu C-C, Wu T-S, Hsu Y-J, Chang C-J, Lin C-S et al. 2014. NK cells kill mycobacteria directly by releasing perforin and granulysin. J. Leukoc. Biol. 96:61119–29
    [Google Scholar]
  213. 213. 
    Denis M. 1994. Interleukin-12 (IL-12) augments cytolytic activity of natural killer cells toward Mycobacterium tuberculosis-infected human monocytes. Cell Immunol 156:2529–36
    [Google Scholar]
  214. 214. 
    Junqueira-Kipnis AP, Kipnis A, Jamieson A, Juarrero MG, Diefenbach A et al. 2003. NK cells respond to pulmonary infection with Mycobacterium tuberculosis, but play a minimal role in protection. J. Immunol. 171:116039–45
    [Google Scholar]
  215. 215. 
    Feng CG, Kaviratne M, Rothfuchs AG, Cheever A, Hieny S et al. 2006. NK cell-derived IFN-gamma differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. J. Immunol. 177:107086–93
    [Google Scholar]
  216. 216. 
    Howson LJ, Salio M, Cerundolo V. 2015. MR1-restricted mucosal-associated invariant T cells and their activation during infectious diseases. Front. Immunol. 6:303
    [Google Scholar]
  217. 217. 
    Kauffman KD, Sallin MA, Hoft SG, Sakai S, Moore R et al. 2018. Limited pulmonary mucosal-associated invariant T cell accumulation and activation during Mycobacterium tuberculosis infection in rhesus macaques. Infect. Immun. 86:12e00431–18
    [Google Scholar]
  218. 218. 
    Ellis-Connell AL, Balgeman AJ, Larson EC, Rodgers MA, Ameel C et al. 2020. MAIT cells are minimally responsive to Mycobacterium tuberculosis within granulomas, but are functionally impaired by SIV in a macaque model of SIV and Mtb co-infection. bioRxiv 2020.01.07.897447. https://doi.org/10.1101/2020.01.07.897447
    [Crossref]
  219. 219. 
    Sakala IG, Kjer-Nielsen L, Eickhoff CS, Wang X, Blazevic A et al. 2015. Functional heterogeneity and antimycobacterial effects of mouse mucosal-associated invariant T cells specific for riboflavin metabolites. J. Immunol. 195:2587–601
    [Google Scholar]
  220. 220. 
    Suliman S, Murphy M, Musvosvi M, Gela A, Meermeier EW et al. 2019. MR1-independent activation of human mucosal-associated invariant T cells by mycobacteria. J. Immunol. 203:112917–27
    [Google Scholar]
  221. 221. 
    Greene JM, Dash P, Roy S, McMurtrey C, Awad W et al. 2017. MR1-restricted mucosal-associated invariant T (MAIT) cells respond to mycobacterial vaccination and infection in nonhuman primates. Mucosal Immunol 10:3802–13
    [Google Scholar]
  222. 222. 
    Chua W-J, Truscott SM, Eickhoff CS, Blazevic A, Hoft DF, Hansen TH. 2012. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect. Immun. 80:93256–67
    [Google Scholar]
  223. 223. 
    Janis EM, Kaufmann SH, Schwartz RH, Pardoll DM. 1989. Activation of gamma delta T cells in the primary immune response to Mycobacterium tuberculosis. Science 244:4905713–16
    [Google Scholar]
  224. 224. 
    Vorkas CK, Wipperman MF, Li K, Bean J, Bhattarai SK et al. 2018. Mucosal-associated invariant and γδ T cell subsets respond to initial Mycobacterium tuberculosis infection. JCI Insight 3:19e121899
    [Google Scholar]
  225. 225. 
    Peng MY, Wang ZH, Yao CY, Jiang LN, Jin QL et al. 2008. Interleukin 17-producing γδ T cells increased in patients with active pulmonary tuberculosis. Cell Mol. Immunol. 5:3203–8
    [Google Scholar]
  226. 226. 
    Tanaka Y, Sano S, Nieves E, De Libero G, Rosa D et al. 1994. Nonpeptide ligands for human γδ T cells. PNAS 91:178175–79
    [Google Scholar]
  227. 227. 
    Balaji KN, Schwander SK, Rich EA, Boom WH. 1995. Alveolar macrophages as accessory cells for human gamma delta T cells activated by Mycobacterium tuberculosis. J. Immunol. 154:115959–68
    [Google Scholar]
  228. 228. 
    Tsukaguchi K, Balaji KN, Boom WH. 1995. CD4+ alpha beta T cell and gamma delta T cell responses to Mycobacterium tuberculosis: similarities and differences in Ag recognition, cytotoxic effector function, and cytokine production. J. Immunol. 154:41786–96
    [Google Scholar]
  229. 229. 
    Dieli F, Troye-Blomberg M, Ivanyi J, Fournié JJ, Krensky AM et al. 2001. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vγ9/Vδ2 T lymphocytes. J. Infect. Dis. 184:81082–85
    [Google Scholar]
  230. 230. 
    Ladel CH, Blum C, Dreher A, Reifenberg K, Kaufmann SH. 1995. Protective role of γ/δ T cells and α/β T cells in tuberculosis. Eur. J. Immunol. 25:102877–81
    [Google Scholar]
  231. 231. 
    De Libero G, Casorati G, Giachino C, Carbonara C, Migone N et al. 1991. Selection by two powerful antigens may account for the presence of the major population of human peripheral γ/δ T cells. J. Exp. Med. 173:61311–22
    [Google Scholar]
  232. 232. 
    Panchamoorthy G, McLean J, Modlin RL, Morita CT, Ishikawa S et al. 1991. A predominance of the T cell receptor V gamma 2/V delta 2 subset in human mycobacteria-responsive T cells suggests germline gene encoded recognition. J. Immunol. 147:103360–69
    [Google Scholar]
  233. 233. 
    Chen ZW. 2013. Multifunctional immune responses of HMBPP-specific Vγ2Vδ2 T cells in M. tuberculosis and other infections. Cell. Mol. Immunol. 10:158–64
    [Google Scholar]
  234. 234. 
    Shen Y, Zhou D, Qiu L, Lai X, Simon M et al. 2002. Adaptive immune response of Vγ2Vδ2+ T cells during mycobacterial infections. Science 295:55632255–58
    [Google Scholar]
  235. 235. 
    Shen L, Frencher J, Huang D, Wang W, Yang E et al. 2019. Immunization of Vγ2Vδ2 T cells programs sustained effector memory responses that control tuberculosis in nonhuman primates. PNAS 116:136371–78
    [Google Scholar]
  236. 236. 
    Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M et al. 2018. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N. Eng. J. Med. 379:171621–34
    [Google Scholar]
  237. 237. 
    Nanishi E, Dowling DJ, Levy O. 2020. Toward precision adjuvants: optimizing science and safety. Curr. Opin. Pediatr. 32:1125–38
    [Google Scholar]
  238. 238. 
    Stewart E, Triccas JA, Petrovsky N. 2019. Adjuvant strategies for more effective tuberculosis vaccine immunity. Microorganisms 7:8255
    [Google Scholar]
  239. 239. 
    Billeskov R, Lindenstrøm T, Woodworth J, Vilaplana C, Cardona P-J et al. 2017. High antigen dose is detrimental to post-exposure vaccine protection against tuberculosis. Front. Immunol. 8:1973
    [Google Scholar]
  240. 240. 
    Sallin MA, Sakai S, Kauffman KD, Young HA, Zhu J, Barber DL. 2017. Th1 differentiation drives the accumulation of intravascular, non-protective CD4 T cells during tuberculosis. Cell Rep 18:133091–104
    [Google Scholar]
  241. 241. 
    Van Dis E, Sogi KM, Rae CS, Sivick KE, Surh NH et al. 2018. STING-activating adjuvants elicit a Th17 immune response and protect against Mycobacterium tuberculosis infection. Cell Rep 23:51435–47
    [Google Scholar]
  242. 242. 
    Hart P, Copland A, Diogo GR, Harris S, Spallek R et al. 2018. Nanoparticle-fusion protein complexes protect against Mycobacterium tuberculosis infection. Mol. Ther. 26:3822–33
    [Google Scholar]
  243. 243. 
    Shann F. 2010. The non-specific effects of vaccines. Arch. Dis. Child. 95:9662–67
    [Google Scholar]
  244. 244. 
    Starr SE, Visintine AM, Tomeh MO, Nahmias AJ. 1976. Effects of immunostimulants on resistance of newborn mice to herpes simplex type 2 infection. Proc. Soc. Exp. Biol. Med. 152:157–60
    [Google Scholar]
  245. 245. 
    Spencer JC, Ganguly R, Waldman RH. 1977. Nonspecific protection of mice against influenza virus infection by local or systemic immunization with Bacille Calmette-Guérin. J. Infect. Dis. 136:2171–75
    [Google Scholar]
  246. 246. 
    O'Neill LAJ, Netea MG 2020. BCG-induced trained immunity: can it offer protection against COVID-19?. Nat. Rev. Immunol. 20:6335–37
    [Google Scholar]
  247. 247. 
    Kaufmann E, Sanz J, Dunn JL, Khan N, Mendonça LE et al. 2018. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172:1–2176–190.e19
    [Google Scholar]
  248. 248. 
    Darrah PA, Zeppa JJ, Maiello P, Hackney JA, Wadsworth MH et al. 2020. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577:778895–102
    [Google Scholar]
  249. 249. 
    Barclay WR, Anacker RL, Brehmer W, Leif W, Ribi E 1970. Aerosol-induced tuberculosis in subhuman primates and the course of the disease after intravenous BCG vaccination. Infect. Immun. 2:5574–82
    [Google Scholar]
  250. 250. 
    Joosten SA, van Meijgaarden KE, Arend SM, Prins C, Oftung F et al. 2018. Mycobacterial growth inhibition is associated with trained innate immunity. J. Clin. Investig. 128:51837–51
    [Google Scholar]
  251. 251. 
    Schutz C, Davis AG, Sossen B, Lai RP-J, Ntsekhe M et al. 2018. Corticosteroids as an adjunct to tuberculosis therapy. Expert Rev. Respir. Med. 12:10881–91
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-093019-010426
Loading
/content/journals/10.1146/annurev-immunol-093019-010426
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error