1932

Abstract

Intracellular pathogens pose a significant threat to animals. In defense, innate immune sensors attempt to detect these pathogens using pattern recognition receptors that either directly detect microbial molecules or indirectly detect their pathogenic activity. These sensors trigger different forms of regulated cell death, including pyroptosis, apoptosis, and necroptosis, which eliminate the infected host cell niche while simultaneously promoting beneficial immune responses. These defenses force intracellular pathogens to evolve strategies to minimize or completely evade the sensors. In this review, we discuss recent advances in our understanding of the cytosolic pattern recognition receptors that drive cell death, including NLRP1, NLRP3, NLRP6, NLRP9, NLRC4, AIM2, IFI16, and ZBP1.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101320-011235
2022-04-26
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/40/1/annurev-immunol-101320-011235.html?itemId=/content/journals/10.1146/annurev-immunol-101320-011235&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Van Valen L. 1973. A new evolutionary law. Evol. Theory. 1:1–30
    [Google Scholar]
  2. 2. 
    Lacey CA, Miao EA. 2020. Programmed cell death in the evolutionary race against bacterial virulence factors. Cold Spring Harb. Perspect. Biol. 12:2a036459
    [Google Scholar]
  3. 3. 
    Davis BK, Wen H, Ting JP-Y. 2011. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29:707–35
    [Google Scholar]
  4. 4. 
    Ting JP-Y, Lovering RC, Alnemri ES, Bertin J, Boss JM et al. 2008. The NLR gene family: a standard nomenclature. Immunity 28:3285–87
    [Google Scholar]
  5. 5. 
    Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK et al. 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:61193–206
    [Google Scholar]
  6. 6. 
    Cai X, Chen J, Xu H, Liu S, Jiang Q-X et al. 2014. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156:61207–22
    [Google Scholar]
  7. 7. 
    Shi J, Zhao Y, Wang K, Shi X, Wang Y et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:7575660–65
    [Google Scholar]
  8. 8. 
    Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:7575666–71
    [Google Scholar]
  9. 9. 
    Ding J, Wang K, Liu W, She Y, Sun Q et al. 2016. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:7610111–16
    [Google Scholar]
  10. 10. 
    Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG et al. 2016. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535:7610153–58
    [Google Scholar]
  11. 11. 
    Kayagaki N, Kornfeld OS, Lee BL, Stowe IB, O'Rourke K et al. 2021. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591:7848131–36
    [Google Scholar]
  12. 12. 
    Monteleone M, Stanley AC, Chen KW, Brown DL, Bezbradica JS et al. 2018. Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep 24:61425–33
    [Google Scholar]
  13. 13. 
    Schneider KS, Groß CJ, Dreier RF, Saller BS, Mishra R et al. 2017. The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of caspase-1 protease activity. Cell Rep 21:133846–59
    [Google Scholar]
  14. 14. 
    Xia S, Zhang Z, Magupalli VG, Pablo JL, Dong Y et al. 2021. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593:7860607–11
    [Google Scholar]
  15. 15. 
    von Moltke J, Trinidad NJ, Moayeri M, Kintzer AF, Wang SB et al. 2012. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490:7418107–11
    [Google Scholar]
  16. 16. 
    Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M et al. 2010. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11:121136–42
    [Google Scholar]
  17. 17. 
    Jorgensen I, Rayamajhi M, Miao EA 2017. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 17:3151–64
    [Google Scholar]
  18. 18. 
    Martinon F, Burns K, Tschopp J. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10:2417–26
    [Google Scholar]
  19. 19. 
    Finger JN, Lich JD, Dare LC, Cook MN, Brown KK et al. 2012. Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J. Biol. Chem. 287:3025030–37
    [Google Scholar]
  20. 20. 
    Frew BC, Joag VR, Mogridge J. 2012. Proteolytic processing of Nlrp1b is required for inflammasome activity. PLOS Pathog 8:4e1002659
    [Google Scholar]
  21. 21. 
    D'Osualdo A, Weichenberger CX, Wagner RN, Godzik A, Wooley J, Reed JC. 2011. CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like domain. PLOS ONE 6:11e27396
    [Google Scholar]
  22. 22. 
    Boyden ED, Dietrich WF. 2006. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38:2240–44
    [Google Scholar]
  23. 23. 
    Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR et al. 1998. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280:5364734–37
    [Google Scholar]
  24. 24. 
    Tang G, Leppla SH. 1999. Proteasome activity is required for anthrax lethal toxin to kill macrophages. Infect. Immun. 67:63055–60
    [Google Scholar]
  25. 25. 
    Fink SL, Bergsbaken T, Cookson BT. 2008. Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. PNAS 105:114312–17
    [Google Scholar]
  26. 26. 
    Wickliffe KE, Leppla SH, Moayeri M. 2008. Killing of macrophages by anthrax lethal toxin: involvement of the N-end rule pathway. Cell. Microbiol. 10:61352–62
    [Google Scholar]
  27. 27. 
    Varshavsky A. 2011. The N-end rule pathway and regulation by proteolysis. Protein Sci 20:81298–345
    [Google Scholar]
  28. 28. 
    Sandstrom A, Mitchell PS, Goers L, Mu EW, Lesser CF, Vance RE. 2019. Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science 364:6435eaau1330
    [Google Scholar]
  29. 29. 
    Chui AJ, Okondo MC, Rao SD, Gai K, Griswold AR et al. 2019. N-terminal degradation activates the NLRP1B inflammasome. Science 364:643582–85
    [Google Scholar]
  30. 30. 
    Xu H, Shi J, Gao H, Liu Y, Yang Z et al. 2019. The N-end rule ubiquitin ligase UBR2 mediates NLRP1B inflammasome activation by anthrax lethal toxin. EMBO J 38:13e101996
    [Google Scholar]
  31. 31. 
    Robinson KS, Teo DET, Tan KS, Toh GA, Ong HH et al. 2020. Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia. Science 370:6521eaay2002
    [Google Scholar]
  32. 32. 
    Tsu BV, Beierschmitt C, Ryan AP, Agarwal R, Mitchell PS, Daugherty MD 2021. Diverse viral proteases activate the NLRP1 inflammasome. eLife 10:e60609
    [Google Scholar]
  33. 33. 
    Jones JDG, Vance RE, Dangl JL 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:6316aaf6395
    [Google Scholar]
  34. 34. 
    Bauernfried S, Scherr MJ, Pichlmair A, Duderstadt KE, Hornung V. 2021. Human NLRP1 is a sensor for double-stranded RNA. Science 371:6528eabd0811
    [Google Scholar]
  35. 35. 
    Okondo MC, Johnson DC, Sridharan R, Go EB, Chui AJ et al. 2017. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat. Chem. Biol. 13:146–53
    [Google Scholar]
  36. 36. 
    Okondo MC, Rao SD, Taabazuing CY, Chui AJ, Poplawski SE et al. 2018. Inhibition of Dpp8/9 activates the Nlrp1b inflammasome. Cell Chem. Biol. 25:3262–67.e5
    [Google Scholar]
  37. 37. 
    Geiss-Friedlander R, Parmentier N, Möller U, Urlaub H, Van den Eynde BJ, Melchior F. 2009. The cytoplasmic peptidase DPP9 is rate-limiting for degradation of proline-containing peptides. J. Biol. Chem. 284:4027211–19
    [Google Scholar]
  38. 38. 
    Zhong FL, Robinson K, Teo DET, Tan K-Y, Lim C et al. 2018. Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding. J. Biol. Chem. 293:4918864–78
    [Google Scholar]
  39. 39. 
    Hollingsworth LR, Sharif H, Griswold AR, Fontana P, Mintseris J et al. 2021. DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation. Nature 592:7856778–83
    [Google Scholar]
  40. 40. 
    Huang M, Zhang X, Toh GA, Gong Q, Wang J et al. 2021. Structural and biochemical mechanisms of NLRP1 inhibition by DPP9. Nature 592:7856773–77
    [Google Scholar]
  41. 41. 
    Tonello F, Zornetta I. 2012. Bacillus anthracis factors for phagosomal escape. Toxins 4:7536–53
    [Google Scholar]
  42. 42. 
    Chavarría-Smith J, Vance RE 2015. The NLRP1 inflammasomes. Immunol. Rev. 265:122–34
    [Google Scholar]
  43. 43. 
    Jorgensen I, Zhang Y, Krantz BA, Miao EA. 2016. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J. Exp. Med. 213:102113–28
    [Google Scholar]
  44. 44. 
    Zell R. 2018. Picornaviridae—the ever-growing virus family. Arch. Virol. 163:2299–317
    [Google Scholar]
  45. 45. 
    Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. 2010. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect. Dis. 10:11778–90
    [Google Scholar]
  46. 46. 
    Sun D, Chen S, Cheng A, Wang M 2016. Roles of the picornaviral 3C proteinase in the viral life cycle and host cells. Viruses 8:382
    [Google Scholar]
  47. 47. 
    Mitchell PS, Roncaioli JL, Turcotte EA, Goers L, Chavez RA et al. 2020. NAIP-NLRC4-deficient mice are susceptible to shigellosis. eLife 9:e59022
    [Google Scholar]
  48. 48. 
    Medeiros PHQS, Ledwaba SE, Bolick DT, Giallourou N, Yum LK et al. 2019. A murine model of diarrhea, growth impairment and metabolic disturbances with Shigella flexneri infection and the role of zinc deficiency. Gut Microbes 10:5615–30
    [Google Scholar]
  49. 49. 
    Singer M, Sansonetti PJ. 2004. IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis. J. Immunol. 173:64197–206
    [Google Scholar]
  50. 50. 
    Gorfu G, Cirelli KM, Melo MB, Mayer-Barber K, Crown D et al. 2014. Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to Toxoplasma gondii. mBio 5:101117
    [Google Scholar]
  51. 51. 
    Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD et al. 2018. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 24:81151–56
    [Google Scholar]
  52. 52. 
    Swanson KV, Deng M, Ting JP-Y. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19:8477–89
    [Google Scholar]
  53. 53. 
    Andreeva L, David L, Rawson S, Shen C, Pasricha T et al. 2021. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell 184:6299–312.e22
    [Google Scholar]
  54. 54. 
    Nozaki K, Miao EA. 2019. A licence to kill during inflammation. Nature 570:7761316–17
    [Google Scholar]
  55. 55. 
    He Y, Zeng MY, Yang D, Motro B, Núñez G 2016. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530:7590354–57
    [Google Scholar]
  56. 56. 
    Shi H, Wang Y, Li X, Zhan X, Tang M et al. 2015. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 17:3250–58
    [Google Scholar]
  57. 57. 
    Schmid-Burgk JL, Chauhan D, Schmidt T, Ebert TS, Reinhardt J et al. 2016. A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J. Biol. Chem. 291:1103–9
    [Google Scholar]
  58. 58. 
    Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L et al. 2019. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570:7761338–43
    [Google Scholar]
  59. 59. 
    Li X, Thome S, Ma X, Amrute-Nayak M, Finigan A et al. 2017. MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism. Nat. Commun. 8:15986
    [Google Scholar]
  60. 60. 
    Chen J, Chen ZJ 2018. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564:773471–76
    [Google Scholar]
  61. 61. 
    Magupalli VG, Negro R, Tian Y, Hauenstein AV, Di Caprio G et al. 2020. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science 369:6510eaas8995
    [Google Scholar]
  62. 62. 
    Maltez VI, Miao EA. 2016. Reassessing the evolutionary importance of inflammasomes. J. Immunol. 196:3956–62
    [Google Scholar]
  63. 63. 
    Mitoma H, Hanabuchi S, Kim T, Bao M, Zhang Z et al. 2013. The DHX33 RNA helicase senses cytosolic RNA and activates the NLRP3 inflammasome. Immunity 39:1123–35
    [Google Scholar]
  64. 64. 
    Ramos HJ, Lanteri MC, Blahnik G, Negash A, Suthar MS et al. 2012. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLOS Pathog 8:11e1003039
    [Google Scholar]
  65. 65. 
    Rajan JV, Rodriguez D, Miao EA, Aderem A. 2011. The NLRP3 inflammasome detects encephalomyocarditis virus and vesicular stomatitis virus infection. J. Virol. 85:94167–72
    [Google Scholar]
  66. 66. 
    Chakrabarti A, Banerjee S, Franchi L, Loo Y-M, Gale M Jr. et al. 2015. RNase L activates the NLRP3 inflammasome during viral infections. Cell Host Microbe 17:4466–77
    [Google Scholar]
  67. 67. 
    Ichinohe T, Pang IK, Iwasaki A. 2010. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol. 11:5404–10
    [Google Scholar]
  68. 68. 
    Chung W-C, Kang H-R, Yoon H, Kang S-J, Ting JP-Y, Song MJ. 2015. Influenza A virus NS1 protein inhibits the NLRP3 inflammasome. PLOS ONE 10:5e0126456
    [Google Scholar]
  69. 69. 
    Moriyama M, Chen I-Y, Kawaguchi A, Koshiba T, Nagata K et al. 2016. The RNA- and TRIM25-binding domains of influenza virus NS1 protein are essential for suppression of NLRP3 inflammasome–mediated interleukin-1β secretion. J. Virol. 90:84105–14
    [Google Scholar]
  70. 70. 
    Allen IC, Scull MA, Moore CB, Holl EK, McElvania-TeKippe E et al. 2009. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:4556–65
    [Google Scholar]
  71. 71. 
    Thomas PG, Dash P, Aldridge JR Jr., Ellebedy AH, Reynolds C et al. 2009. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30:4566–75
    [Google Scholar]
  72. 72. 
    Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A 2009. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 206:179–87
    [Google Scholar]
  73. 73. 
    Pillai PS, Molony RD, Martinod K, Dong H, Pang IK et al. 2016. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science 352:6284463–66
    [Google Scholar]
  74. 74. 
    Wang H, Lei X, Xiao X, Yang C, Lu W et al. 2015. Reciprocal regulation between enterovirus 71 and the NLRP3 inflammasome. Cell Rep 12:142–48
    [Google Scholar]
  75. 75. 
    Shil NK, Pokharel SM, Banerjee AK, Hoffman M, Bose S. 2018. Inflammasome antagonism by human parainfluenza virus type 3C protein. J. Virol. 92:4e01776
    [Google Scholar]
  76. 76. 
    Noritaka K, Takeshi I, Minako I, Yusuke Y. 2011. Measles virus V protein inhibits NLRP3 inflammasome-mediated interleukin-1β secretion. J. Virol. 85:2413019–26
    [Google Scholar]
  77. 77. 
    Komatsu T, Tanaka Y, Kitagawa Y, Koide N, Naiki Y et al. 2018. Sendai virus V protein inhibits the secretion of interleukin-1β by preventing NLRP3 inflammasome assembly. J. Virol. 92:19e00842
    [Google Scholar]
  78. 78. 
    Yoshizumi T, Ichinohe T, Sasaki O, Otera H, Kawabata S-I et al. 2014. Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nat. Commun. 5:4713
    [Google Scholar]
  79. 79. 
    McAuley JL, Tate MD, MacKenzie-Kludas CJ, Pinar A, Zeng W et al. 2013. Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease. PLOS Pathog 9:5e1003392
    [Google Scholar]
  80. 80. 
    Solbak SMØ, Sharma A, Bruns K, Röder R, Mitzner D et al. 2013. Influenza A virus protein PB1-F2 from different strains shows distinct structural signatures. Biochim. Biophys. Acta Proteins Proteom. 1834:2568–82
    [Google Scholar]
  81. 81. 
    Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW et al. 2006. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 7:6569–75
    [Google Scholar]
  82. 82. 
    Franchi L, Amer A, Body-Malapel M, Kanneganti T-D, Özören N et al. 2006. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in Salmonella-infected macrophages. Nat. Immunol. 7:6576–82
    [Google Scholar]
  83. 83. 
    Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG et al. 2010. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. PNAS 107:73076–80
    [Google Scholar]
  84. 84. 
    Zhao Y, Yang J, Shi J, Gong Y-N, Lu Q et al. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:7366596–600
    [Google Scholar]
  85. 85. 
    Kofoed EM, Vance RE. 2011. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:7366592–95
    [Google Scholar]
  86. 86. 
    Rayamajhi M, Zak DE, Chavarria-Smith J, Vance RE, Miao EA 2013. Mouse NAIP1 detects the type III secretion system needle protein. J. Immunol. 191:83986–89
    [Google Scholar]
  87. 87. 
    Yang J, Zhao Y, Shi J, Shao F. 2013. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. PNAS 110:3514408–13
    [Google Scholar]
  88. 88. 
    Kortmann J, Brubaker SW, Monack DM. 2015. Inflammasome activation in primary human macrophages is dependent on flagellin. J. Immunol. 195:3815–19
    [Google Scholar]
  89. 89. 
    Reyes Ruiz VM, Ramirez J, Naseer N, Palacio NM, Siddarthan IJ et al. 2017. Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. PNAS 114:5013242–47
    [Google Scholar]
  90. 90. 
    Hu Z, Yan C, Liu P, Huang Z, Ma R et al. 2013. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341:6142172–75
    [Google Scholar]
  91. 91. 
    Zhang L, Chen S, Ruan J, Wu J, Tong AB et al. 2015. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350:6259404–9
    [Google Scholar]
  92. 92. 
    Hu Z, Zhou Q, Zhang C, Fan S, Cheng W et al. 2015. Structural and biochemical basis for induced self-propagation of NLRC4. Science 350:6259399–404
    [Google Scholar]
  93. 93. 
    Tenthorey JL, Haloupek N, López-Blanco JR, Grob P, Adamson E et al. 2017. The structural basis of flagellin detection by NAIP5: a strategy to limit pathogen immune evasion. Science 358:6365888–93
    [Google Scholar]
  94. 94. 
    Yang X, Yang F, Wang W, Lin G, Hu Z et al. 2017. Structural basis for specific flagellin recognition by the NLR protein NAIP5. Cell Res 28:135–47
    [Google Scholar]
  95. 95. 
    Karki R, Lee E, Place D, Samir P, Mavuluri J et al. 2018. IRF8 regulates transcription of Naips for NLRC4 inflammasome activation. Cell 173:4920–33.e13
    [Google Scholar]
  96. 96. 
    Dong X, Hu X, Bao Y, Li G, Yang X-D et al. 2021. Brd4 regulates NLRC4 inflammasome activation by facilitating IRF8-mediated transcription of Naips. J. Cell Biol. 220:3e202005148
    [Google Scholar]
  97. 97. 
    Qu Y, Misaghi S, Izrael-Tomasevic A, Newton K, Gilmour LL et al. 2012. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490:7421539–42
    [Google Scholar]
  98. 98. 
    Matusiak M, Van Opdenbosch N, Vande Walle L, Sirard J-C, Kanneganti T-D, Lamkanfi M 2015. Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5. PNAS 112:51541–46
    [Google Scholar]
  99. 99. 
    Liu W, Liu X, Li Y, Zhao J, Liu Z et al. 2017. LRRK2 promotes the activation of NLRC4 inflammasome during Salmonella typhimurium infection. J. Exp. Med. 214:103051–66
    [Google Scholar]
  100. 100. 
    Tenthorey JL, Chavez RA, Thompson TW, Deets KA, Vance RE, Rauch I. 2020. NLRC4 inflammasome activation is NLRP3- and phosphorylation-independent during infection and does not protect from melanoma. J. Exp. Med. 217:7e20191736
    [Google Scholar]
  101. 101. 
    Maltez VI, Tubbs AL, Cook KD, Aachoui Y, Liana Falcone E et al. 2015. Inflammasomes coordinate pyroptosis and natural killer cell cytotoxicity to clear infection by a ubiquitous environmental bacterium. Immunity 43:5987–97
    [Google Scholar]
  102. 102. 
    Aachoui Y, Kajiwara Y, Leaf IA, Mao D, Ting JP-Y et al. 2015. Canonical inflammasomes drive IFN-γ to prime caspase-11 in defense against a cytosol-invasive bacterium. Cell Host Microbe 18:3320–32
    [Google Scholar]
  103. 103. 
    Carvalho FA, Nalbantoglu I, Aitken JD, Uchiyama R, Su Y et al. 2012. Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunol 5:3288–98
    [Google Scholar]
  104. 104. 
    Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P et al. 2012. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13:5449–56
    [Google Scholar]
  105. 105. 
    Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit VM, Monack DM. 2010. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207:81745–55
    [Google Scholar]
  106. 106. 
    Pereira MSF, Morgantetti GF, Massis LM, Horta CV, Hori JI, Zamboni DS. 2011. Activation of NLRC4 by flagellated bacteria triggers caspase-1-dependent and -independent responses to restrict Legionella pneumophila replication in macrophages and in vivo. J. Immunol 187:126447–55
    [Google Scholar]
  107. 107. 
    Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F. 2011. Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1β is deleterious. PLOS Pathog 7:12e1002452
    [Google Scholar]
  108. 108. 
    LaRock DL, Chaudhary A, Miller SI. 2015. Salmonellae interactions with host processes. Nat. Rev. Microbiol. 13:4191–205
    [Google Scholar]
  109. 109. 
    Cummings LA, Wilkerson WD, Bergsbaken T, Cookson BT. 2006. In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol. Microbiol. 61:3795–809
    [Google Scholar]
  110. 110. 
    Laughlin RC, Knodler LA, Barhoumi R, Payne HR, Wu J et al. 2014. Spatial segregation of virulence gene expression during acute enteric infection with Salmonella enterica serovar Typhimurium. mBio 5:1e00946
    [Google Scholar]
  111. 111. 
    Miao EA, Rajan JV. 2011. Salmonella and caspase-1: a complex interplay of detection and evasion. Front. Microbiol. 2:85
    [Google Scholar]
  112. 112. 
    Sauer J-D, Pereyre S, Archer KA, Burke TP, Hanson B et al. 2011. Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity. PNAS 108:3012419–24
    [Google Scholar]
  113. 113. 
    Warren SE, Duong H, Mao DP, Armstrong A, Rajan J et al. 2011. Generation of a Listeria vaccine strain by enhanced caspase-1 activation. Eur. J. Immunol. 41:71934–40
    [Google Scholar]
  114. 114. 
    Tourlomousis P, Wright JA, Bittante AS, Hopkins LJ, Webster SJ et al. 2020. Modifying bacterial flagellin to evade Nod-like receptor CARD 4 recognition enhances protective immunity against Salmonella. Nat. Microbiol. 5:121588–97
    [Google Scholar]
  115. 115. 
    Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA. 2007. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 204:133235–45
    [Google Scholar]
  116. 116. 
    Grenier JM, Wang L, Manji GA, Huang WJ, Al-Garawi A et al. 2002. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-κB and caspase-1. FEBS Lett 530:1–373–78
    [Google Scholar]
  117. 117. 
    Levy M, Thaiss CA, Zeevi D, Dohnalová L, Zilberman-Schapira G et al. 2015. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163:61428–43
    [Google Scholar]
  118. 118. 
    Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA et al. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:5745–57
    [Google Scholar]
  119. 119. 
    Hara H, Seregin SS, Yang D, Fukase K, Chamaillard M et al. 2018. The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection. Cell 175:61651–64.e14
    [Google Scholar]
  120. 120. 
    Leng F, Yin H, Qin S, Zhang K, Guan Y et al. 2020. NLRP6 self-assembles into a linear molecular platform following LPS binding and ATP stimulation. Sci. Rep. 10:198
    [Google Scholar]
  121. 121. 
    Wang P, Zhu S, Yang L, Cui S, Pan W et al. 2015. Nlrp6 regulates intestinal antiviral innate immunity. Science 350:6262826–30
    [Google Scholar]
  122. 122. 
    Shen C, Li R, Negro R, Cheng J, Vora SM et al. 2021. Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell 184:5759–74.e20
    [Google Scholar]
  123. 123. 
    Mukherjee S, Kumar R, Lenou ET, Basrur V, Kontoyiannis DL et al. 2020. Deubiquitination of NLRP6 inflammasome by Cyld critically regulates intestinal inflammation. Nat. Immunol. 21:6626–35
    [Google Scholar]
  124. 124. 
    Jorgensen I, Miao EA. 2015. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 265:1130–42
    [Google Scholar]
  125. 125. 
    Tsuji NM, Tsutsui H, Seki E, Kuida K, Okamura H et al. 2004. Roles of caspase-1 in Listeria infection in mice. Int. Immunol. 16:2335–43
    [Google Scholar]
  126. 126. 
    Mueller NJ, Wilkinson RA, Fishman JA. 2002. Listeria monocytogenes infection in caspase-11-deficient mice. Infect. Immun. 70:52657–64
    [Google Scholar]
  127. 127. 
    Clark SE, Schmidt RL, McDermott DS, Lenz LL. 2018. A Batf3/Nlrp3/IL-18 axis promotes natural killer cell IL-10 production during Listeria monocytogenes infection. Cell Rep 23:92582–94
    [Google Scholar]
  128. 128. 
    Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang J-P et al. 2014. NLRP6 inflammasome orchestrates the colonic host–microbial interface by regulating goblet cell mucus secretion. Cell 156:51045–59
    [Google Scholar]
  129. 129. 
    Gálvez EJC, Iljazovic A, Gronow A, Flavell R, Strowig T. 2017. Shaping of intestinal microbiota in Nlrp6- and Rag2-deficient mice depends on community structure. Cell Rep 21:133914–26
    [Google Scholar]
  130. 130. 
    Mamantopoulos M, Ronchi F, Van Hauwermeiren F, Vieira-Silva S, Yilmaz B et al. 2017. Nlrp6- and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition. Immunity 47:2339–48.e4
    [Google Scholar]
  131. 131. 
    Lemire P, Robertson SJ, Maughan H, Tattoli I, Streutker CJ et al. 2017. The NLR protein NLRP6 does not impact gut microbiota composition. Cell Rep 21:133653–61
    [Google Scholar]
  132. 132. 
    Tian X, Pascal G, Monget P 2009. Evolution and functional divergence of NLRP genes in mammalian reproductive systems. BMC Evol. Biol. 9:202
    [Google Scholar]
  133. 133. 
    Kufer TA, Sansonetti PJ. 2011. NLR functions beyond pathogen recognition. Nat. Immunol. 12:2121–28
    [Google Scholar]
  134. 134. 
    Zhu S, Ding S, Wang P, Wei Z, Pan W et al. 2017. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546:7660667–70
    [Google Scholar]
  135. 135. 
    Kanzaki S, Tamura S, Ito T, Wakabayashi M, Saito K et al. 2020. Involvement of Nlrp9a/b/c in mouse preimplantation development. Reproduction 160:2181–91
    [Google Scholar]
  136. 136. 
    Jin T, Perry A, Jiang J, Smith P, Curry JA et al. 2012. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36:4561–71
    [Google Scholar]
  137. 137. 
    Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM et al. 2009. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323:59171057–60
    [Google Scholar]
  138. 138. 
    Wang P-H, Ye Z-W, Deng J-J, Siu K-L, Gao W-W et al. 2018. Inhibition of AIM2 inflammasome activation by a novel transcript isoform of IFI16. EMBO Rep 19:10e45737
    [Google Scholar]
  139. 139. 
    Khare S, Ratsimandresy RA, de Almeida L, Cuda CM, Rellick SL et al. 2014. The PYRIN domain–only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat. Immunol. 15:4343–53
    [Google Scholar]
  140. 140. 
    Meunier E, Wallet P, Dreier RF, Costanzo S, Anton L et al. 2015. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat. Immunol. 16:5476–84
    [Google Scholar]
  141. 141. 
    Man SM, Karki R, Malireddi RKS, Neale G, Vogel P et al. 2015. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat. Immunol. 16:5467–75
    [Google Scholar]
  142. 142. 
    Man SM, Karki R, Sasai M, Place DE, Kesavardhana S et al. 2016. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes. Cell 167:2382–96.e17
    [Google Scholar]
  143. 143. 
    Fernandes-Alnemri T, Yu J-W, Juliana C, Solorzano L, Kang S et al. 2010. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11:5385–93
    [Google Scholar]
  144. 144. 
    Rathinam VAK, Jiang Z, Waggoner SN, Sharma S, Cole LE et al. 2010. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11:5395–402
    [Google Scholar]
  145. 145. 
    Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G et al. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:7237514–18
    [Google Scholar]
  146. 146. 
    Fernandes-Alnemri T, Yu J-W, Datta P, Wu J, Alnemri ES 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:7237509–13
    [Google Scholar]
  147. 147. 
    Reinholz M, Kawakami Y, Salzer S, Kreuter A, Dombrowski Y et al. 2013. HPV16 activates the AIM2 inflammasome in keratinocytes. Arch. Dermatol. Res. 305:8723–32
    [Google Scholar]
  148. 148. 
    Yogarajah T, Ong KC, Perera D, Wong KT 2017. AIM2 inflammasome–mediated pyroptosis in enterovirus A71–infected neuronal cells restricts viral replication. Sci. Rep. 7:5845
    [Google Scholar]
  149. 149. 
    Karki R, Man SM, Malireddi RKS, Gurung P, Vogel P et al. 2015. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe 17:3357–68
    [Google Scholar]
  150. 150. 
    Maruzuru Y, Ichinohe T, Sato R, Miyake K, Okano T et al. 2018. Herpes simplex virus 1 VP22 inhibits AIM2-dependent inflammasome activation to enable efficient viral replication. Cell Host Microbe 23:2254–65.e7
    [Google Scholar]
  151. 151. 
    Huang Y, Ma D, Huang H, Lu Y, Liao Y et al. 2017. Interaction between HCMV pUL83 and human AIM2 disrupts the activation of the AIM2 inflammasome. Virol. J. 14:134
    [Google Scholar]
  152. 152. 
    Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S et al. 2011. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma–associated herpesvirus infection. Cell Host Microbe 9:5363–75
    [Google Scholar]
  153. 153. 
    Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G et al. 2014. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343:6169428–32
    [Google Scholar]
  154. 154. 
    Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S et al. 2011. Non-canonical inflammasome activation targets caspase-11. Nature 479:7371117–21
    [Google Scholar]
  155. 155. 
    Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA 2013. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:61511250–53
    [Google Scholar]
  156. 156. 
    Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC et al. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341:61511246–49
    [Google Scholar]
  157. 157. 
    Shi J, Zhao Y, Wang Y, Gao W, Ding J et al. 2014. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:7521187–92
    [Google Scholar]
  158. 158. 
    Lee BL, Stowe IB, Gupta A, Kornfeld OS, Roose-Girma M et al. 2018. Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J. Exp. Med. 215:92279–88
    [Google Scholar]
  159. 159. 
    Ross C, Chan AH, Von Pein J, Boucher D, Schroder K. 2018. Dimerization and auto-processing induce caspase-11 protease activation within the non-canonical inflammasome. Life Sci. Alliance 1:6e201800237
    [Google Scholar]
  160. 160. 
    Aachoui Y, Leaf IA, Hagar JA, Fontana MF, Campos CG et al. 2013. Caspase-11 protects against bacteria that escape the vacuole. Science 339:6122975–78
    [Google Scholar]
  161. 161. 
    Meunier E, Dick MS, Dreier RF, Schürmann N, Kenzelmann Broz D et al. 2014. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509:7500366–70
    [Google Scholar]
  162. 162. 
    Schauvliege R, Vanrobaeys J, Schotte P, Beyaert R. 2002. Caspase-11 gene expression in response to lipopolysaccharide and interferon-γ requires nuclear factor-κB and signal transducer and activator of transcription (STAT) 1. J. Biol. Chem. 277:4441624–30
    [Google Scholar]
  163. 163. 
    Rathinam VAK, Vanaja SK, Waggoner L, Sokolovska A, Becker C et al. 2012. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150:3606–19
    [Google Scholar]
  164. 164. 
    Olszewski MA, Gray J, Vestal DJ 2006. In silico genomic analysis of the human and murine guanylate-binding protein (GBP) gene clusters. J. Interferon Cytokine Res. 26:5328–52
    [Google Scholar]
  165. 165. 
    Wandel MP, Kim B-H, Park E-S, Boyle KB, Nayak K et al. 2020. Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nat. Immunol. 21:8880–91
    [Google Scholar]
  166. 166. 
    Santos JC, Boucher D, Schneider LK, Demarco B, Dilucca M et al. 2020. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat. Commun. 11:3276
    [Google Scholar]
  167. 167. 
    Kutsch M, Sistemich L, Lesser CF, Goldberg MB, Herrmann C, Coers J 2020. Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions. EMBO J 39:13e104926
    [Google Scholar]
  168. 168. 
    Wiersinga WJ, van der Poll T, White NJ, Day NP, Peacock SJ. 2006. Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat. Rev. Microbiol. 4:4272–82
    [Google Scholar]
  169. 169. 
    Wang J, Deobald K, Re F 2019. Gasdermin D protects from melioidosis through pyroptosis and direct killing of bacteria. J. Immunol. 202:123468–73
    [Google Scholar]
  170. 170. 
    Kovacs SB, Oh C, Maltez VI, McGlaughon BD, Verma A et al. 2020. Neutrophil caspase-11 is essential to defend against a cytosol-invasive bacterium. Cell Rep 32:4107967
    [Google Scholar]
  171. 171. 
    Chen KW, Groß CJ, Sotomayor FV, Stacey KJ, Tschopp J et al. 2014. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep 8:2570–82
    [Google Scholar]
  172. 172. 
    Karmakar M, Minns M, Greenberg EN, Diaz-Aponte J, Pestonjamasp K et al. 2020. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat. Commun. 11:2212
    [Google Scholar]
  173. 173. 
    Balakrishnan A, Karki R, Berwin B, Yamamoto M, Kanneganti T-D. 2018. Guanylate binding proteins facilitate caspase-11-dependent pyroptosis in response to type 3 secretion system–negative Pseudomonas aeruginosa. Cell Death Discov 4:66
    [Google Scholar]
  174. 174. 
    Garai P, Berry L, Moussouni M, Bleves S, Blanc-Potard A-B. 2019. Killing from the inside: intracellular role of T3SS in the fate of Pseudomonas aeruginosa within macrophages revealed by mgtC and oprF mutants. PLOS Pathog 15:6e1007812
    [Google Scholar]
  175. 175. 
    Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N et al. 2012. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490:7419288–91
    [Google Scholar]
  176. 176. 
    Chen KW, Monteleone M, Boucher D, Sollberger G, Ramnath D et al. 2018. Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps. Sci. Immunol. 3:26eaar6676
    [Google Scholar]
  177. 177. 
    Akhter A, Caution K, Abu Khweek A, Tazi M, Abdulrahman BA et al. 2012. Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity 37:135–47
    [Google Scholar]
  178. 178. 
    Case CL, Kohler LJ, Lima JB, Strowig T, de Zoete MR et al. 2013. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. PNAS 110:51851–56
    [Google Scholar]
  179. 179. 
    Casson CN, Copenhaver AM, Zwack EE, Nguyen HT, Strowig T et al. 2013. Caspase-11 activation in response to bacterial secretion systems that access the host cytosol. PLOS Pathog 9:6e1003400
    [Google Scholar]
  180. 180. 
    Cerqueira DM, Pereira MSF, Silva ALN, Cunha LD, Zamboni DS. 2015. Caspase-1 but not caspase-11 is required for NLRC4-mediated pyroptosis and restriction of infection by flagellated Legionella species in mouse macrophages and in vivo. J. Immunol 195:52303–11
    [Google Scholar]
  181. 181. 
    Krause K, Caution K, Badr A, Hamilton K, Saleh A et al. 2018. CASP4/caspase-11 promotes autophagosome formation in response to bacterial infection. Autophagy 14:111928–42
    [Google Scholar]
  182. 182. 
    Estfanous S, Krause K, Anne MNK, Eltobgy M, Caution K et al. 2021. Gasdermin D restricts Burkholderia cenocepacia infection in vitro and in vivo. Sci. Rep. 11:12447
    [Google Scholar]
  183. 183. 
    Xu H, Yang J, Gao W, Li L, Li P et al. 2014. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:7517237–41
    [Google Scholar]
  184. 184. 
    Kobayashi T, Ogawa M, Sanada T, Mimuro H, Kim M et al. 2013. The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe 13:5570–83
    [Google Scholar]
  185. 185. 
    Li Z, Liu W, Fu J, Cheng S, Xu Y et al. 2021. Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11. Nature 599:290–95
    [Google Scholar]
  186. 186. 
    Oh C, Verma A, Hafeez M, Hogland B, Aachoui Y 2021. Shigella OspC3 suppresses murine cytosolic LPS sensing. iScience 24:102910
    [Google Scholar]
  187. 187. 
    Papayannopoulos V. 2017. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18:2134–47
    [Google Scholar]
  188. 188. 
    Jorgensen I, Lopez JP, Laufer SA, Miao EA. 2016. IL-1β, IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis. Eur. J. Immunol. 46:122761–66
    [Google Scholar]
  189. 189. 
    Sollberger G, Choidas A, Burn GL, Habenberger P, Di Lucrezia R et al. 2018. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 3:26eaar6689
    [Google Scholar]
  190. 190. 
    Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL et al. 2017. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity 46:4649–59
    [Google Scholar]
  191. 191. 
    Sellin ME, Müller AA, Felmy B, Dolowschiak T, Diard M et al. 2014. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16:2237–48
    [Google Scholar]
  192. 192. 
    Knodler LA, Crowley SM, Sham HP, Yang H, Wrande M et al. 2014. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16:2249–56
    [Google Scholar]
  193. 193. 
    Lammert CR, Frost EL, Bellinger CE, Bolte AC, McKee CA et al. 2020. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580:7805647–52
    [Google Scholar]
  194. 194. 
    Heneka MT, McManus RM, Latz E. 2018. Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci. 19:10610–21
    [Google Scholar]
  195. 195. 
    Li H, Saucedo-Cuevas L, Regla-Nava JA, Chai G, Sheets N et al. 2016. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell 19:5593–98
    [Google Scholar]
  196. 196. 
    Tang H, Hammack C, Ogden SC, Wen Z, Qian X et al. 2016. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18:5587–90
    [Google Scholar]
  197. 197. 
    He Z, An S, Chen J, Zhang S, Tan C et al. 2020. Neural progenitor cell pyroptosis contributes to Zika virus–induced brain atrophy and represents a therapeutic target. PNAS 117:3823869–78
    [Google Scholar]
  198. 198. 
    Sun L, Wang H, Wang Z, He S, Chen S et al. 2012. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:1/2213–27
    [Google Scholar]
  199. 199. 
    Galluzzi L, Kepp O, Chan FK-M, Kroemer G. 2017. Necroptosis: mechanisms and relevance to disease. Annu. Rev. Pathol. Mech. Dis. 12:103–30
    [Google Scholar]
  200. 200. 
    Maelfait J, Liverpool L, Rehwinkel J. 2020. Nucleic acid sensors and programmed cell death. J. Mol. Biol. 432:2552–68
    [Google Scholar]
  201. 201. 
    Liu G, Gack MU. 2020. Distinct and orchestrated functions of RNA sensors in innate immunity. Immunity 53:26–42
    [Google Scholar]
  202. 202. 
    Potaman VN, Sinden RR. 2013. DNA: Alternative Conformations and Biology Austin, TX: Landes Biosci.
  203. 203. 
    Wittig B, Dorbic T, Rich A 1991. Transcription is associated with Z-DNA formation in metabolically active permeabilized mammalian cell nuclei. PNAS 88:62259–63
    [Google Scholar]
  204. 204. 
    Upton JW, Kaiser WJ, Mocarski ES. 2010. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7:4302–13
    [Google Scholar]
  205. 205. 
    Lin J, Kumari S, Kim C, Van T-M, Wachsmuth L et al. 2016. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature 540:7631124–28
    [Google Scholar]
  206. 206. 
    Newton K, Wickliffe KE, Maltzman A, Dugger DL, Strasser A et al. 2016. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 540:7631129–33
    [Google Scholar]
  207. 207. 
    Thapa RJ, Ingram JP, Ragan KB, Nogusa S, Boyd DF et al. 2016. DAI senses influenza A virus genomic RNA and activates RIPK3-dependent cell death. Cell Host Microbe 20:5674–81
    [Google Scholar]
  208. 208. 
    Zhang T, Yin C, Boyd DF, Quarato G, Ingram JP et al. 2020. Influenza virus Z-RNAs induce ZBP1-mediated necroptosis. Cell 180:61115–29.e13
    [Google Scholar]
  209. 209. 
    Sridharan H, Ragan KB, Guo H, Gilley RP, Landsteiner VJ et al. 2017. Murine cytomegalovirus IE3-dependent transcription is required for DAI/ZBP1-mediated necroptosis. EMBO Rep 18:81429–41
    [Google Scholar]
  210. 210. 
    Maelfait J, Liverpool L, Bridgeman A, Ragan KB, Upton JW, Rehwinkel J 2017. Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis. EMBO J 36:172529–43
    [Google Scholar]
  211. 211. 
    Cho YS, Challa S, Moquin D, Genga R, Ray TD et al. 2009. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:61112–23
    [Google Scholar]
  212. 212. 
    Koehler H, Cotsmire S, Langland J, Kibler KV, Kalman D et al. 2017. Inhibition of DAI-dependent necroptosis by the Z-DNA binding domain of the vaccinia virus innate immune evasion protein, E3. PNAS 114:4311506–11
    [Google Scholar]
  213. 213. 
    Koehler H, Cotsmire S, Zhang T, Balachandran S, Upton JW et al. 2021. Vaccinia virus E3 prevents sensing of Z-RNA to block ZBP1-dependent necroptosis. Cell Host Microbe 29:81266–76.e5
    [Google Scholar]
  214. 214. 
    Guo H, Gilley RP, Fisher A, Lane R, Landsteiner VJ et al. 2018. Species-independent contribution of ZBP1/DAI/DLM-1-triggered necroptosis in host defense against HSV1. Cell Death Dis 9:81–11
    [Google Scholar]
  215. 215. 
    Nogusa S, Thapa RJ, Dillon CP, Liedmann S, Oguin TH 3rd et al. 2016. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus. Cell Host Microbe 20:113–24
    [Google Scholar]
  216. 216. 
    Kuriakose T, Man SM, Malireddi RKS, Karki R, Kesavardhana S et al. 2016. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol 1:2aag2045
    [Google Scholar]
  217. 217. 
    Kesavardhana S, Kuriakose T, Guy CS, Samir P, Malireddi RKS et al. 2017. ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death. J. Exp. Med. 214:82217–29
    [Google Scholar]
  218. 218. 
    Kesavardhana S, Malireddi RKS, Burton AR, Porter SN, Vogel P et al. 2020. The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development. J. Biol. Chem. 295:248325–30
    [Google Scholar]
  219. 219. 
    Ishii KJ, Kawagoe T, Koyama S, Matsui K, Kumar H et al. 2008. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451:7179725–29
    [Google Scholar]
  220. 220. 
    Upton JW, Kaiser WJ, Mocarski ES. 2012. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11:3290–97
    [Google Scholar]
  221. 221. 
    Koehler HS, Feng Y, Mandal P, Mocarski ES 2020. Recognizing limits of Z-nucleic acid binding protein (ZBP1/DAI/DLM1) function. FEBS J 287:204362–69
    [Google Scholar]
  222. 222. 
    Liu Z, Nailwal H, Rector J, Rahman MM, Sam R et al. 2021. A class of viral inducer of degradation of the necroptosis adaptor RIPK3 regulates virus-induced inflammation. Immunity 54:2247–58.e7
    [Google Scholar]
  223. 223. 
    Guo H, Omoto S, Harris PA, Finger JN, Bertin J et al. 2015. Herpes simplex virus suppresses necroptosis in human cells. Cell Host Microbe 17:2243–51
    [Google Scholar]
  224. 224. 
    Huang Z, Wu S-Q, Liang Y, Zhou X, Chen W et al. 2015. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe 17:2229–42
    [Google Scholar]
  225. 225. 
    Lei X, Zhang Z, Xiao X, Qi J, He B, Wang J. 2017. Enterovirus 71 inhibits pyroptosis through cleavage of gasdermin D. J. Virol. 91:18e01069
    [Google Scholar]
  226. 226. 
    Tsuchiya K, Nakajima S, Hosojima S, Nguyen DT, Hattori T et al. 2019. Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat. Commun. 10:2091
    [Google Scholar]
  227. 227. 
    Doerflinger M, Deng Y, Whitney P, Salvamoser R, Engel S et al. 2020. Flexible usage and interconnectivity of diverse cell death pathways protect against intracellular infection. Immunity 53:3533–47.e7
    [Google Scholar]
  228. 228. 
    Pierini R, Juruj C, Perret M, Jones CL, Mangeot P et al. 2012. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ 19:101709–21
    [Google Scholar]
  229. 229. 
    Lee BL, Mirrashidi KM, Stowe IB, Kummerfeld SK, Watanabe C et al. 2018. ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages. Sci. Rep. 8:3788
    [Google Scholar]
  230. 230. 
    Taabazuing CY, Okondo MC, Bachovchin DA. 2017. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem. Biol. 24:4507–14.e4
    [Google Scholar]
  231. 231. 
    Chen KW, Demarco B, Heilig R, Shkarina K, Boettcher A et al. 2019. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J 38:10e101638
    [Google Scholar]
  232. 232. 
    Orning P, Lien E 2021. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. J. Leukoc. Biol. 109:1121–41
    [Google Scholar]
  233. 233. 
    Wang Y, Gao W, Shi X, Ding J, Liu W et al. 2017. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547:766199–103
    [Google Scholar]
  234. 234. 
    Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES 2017. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8:14128
    [Google Scholar]
  235. 235. 
    Orning P, Weng D, Starheim K, Ratner D, Best Z et al. 2018. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362:64181064–69
    [Google Scholar]
  236. 236. 
    Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R et al. 2018. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. PNAS 115:46E10888–97
    [Google Scholar]
  237. 237. 
    Zhou Z, He H, Wang K, Shi X, Wang Y et al. 2020. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368:6494eaaz7548
    [Google Scholar]
  238. 238. 
    Hansen JM, de Jong MF, Wu Q, Zhang L-S, Heisler DB et al. 2021. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell 184:123178–91.e18
    [Google Scholar]
  239. 239. 
    Luchetti G, Roncaioli JL, Chaves RA, Schubert AF, Kofoed EM et al. 2021. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe 29:1521–30.e10
    [Google Scholar]
  240. 240. 
    Zhang Z, Zhang Y, Xia S, Kong Q, Li S et al. 2020. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579:7799415–20
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101320-011235
Loading
/content/journals/10.1146/annurev-immunol-101320-011235
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error