1932

Abstract

As the professional antigen-presenting cells of the immune system, dendritic cells (DCs) sense the microenvironment and shape the ensuing adaptive immune response. DCs can induce both immune activation and immune tolerance according to the peripheral cues. Recent work has established that DCs comprise several phenotypically and functionally heterogeneous subsets that differentially regulate T lymphocyte differentiation. This review summarizes both mouse and human DC subset phenotypes, development, diversification, and function. We focus on advances in our understanding of how different DC subsets regulate distinct CD4+ T helper (Th) cell differentiation outcomes, including Th1, Th2, Th17, T follicular helper, and T regulatory cells. We review DC subset intrinsic properties, local tissue microenvironments, and other immune cells that together determine Th cell differentiation during homeostasis and inflammation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101819-025146
2021-04-26
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-101819-025146.html?itemId=/content/journals/10.1146/annurev-immunol-101819-025146&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Merad M, Sathe P, Helft J, Miller J, Mortha A. 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563–604
    [Google Scholar]
  2. 2. 
    Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis e Sousa C. 2021. Dendritic cells revisited. Annu. Rev. Immunol. 39:131–66
    [Google Scholar]
  3. 3. 
    Zhu J, Yamane H, Paul WE. 2010. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28:445–89
    [Google Scholar]
  4. 4. 
    Worbs T, Hammerschmidt SI, Forster R. 2017. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 17:30–48
    [Google Scholar]
  5. 5. 
    Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N et al. 2014. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14:571–78
    [Google Scholar]
  6. 6. 
    Crozat K, Guiton R, Guilliams M, Henri S, Baranek T et al. 2010. Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol. Rev. 234:177–98
    [Google Scholar]
  7. 7. 
    Leylek R, Alcantara-Hernandez M, Lanzar Z, Ludtke A, Perez OA et al. 2019. Integrated cross-species analysis identifies a conserved transitional dendritic cell population. Cell Rep 29:3736–50.e8
    [Google Scholar]
  8. 8. 
    Liu K, Nussenzweig MC. 2010. Origin and development of dendritic cells. Immunol. Rev. 234:45–54
    [Google Scholar]
  9. 9. 
    Lee J, Breton G, Oliveira TY, Zhou YJ, Aljoufi A et al. 2015. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J. Exp. Med. 212:385–99
    [Google Scholar]
  10. 10. 
    Breton G, Lee J, Zhou YJ, Schreiber JJ, Keler T et al. 2015. Circulating precursors of human CD1c+ and CD141+ dendritic cells. J. Exp. Med. 212:401–13
    [Google Scholar]
  11. 11. 
    Schlitzer A, Sivakamasundari V, Chen J 2015. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16:718–28
    [Google Scholar]
  12. 12. 
    Grajales-Reyes GE, Iwata A, Albring J, Wu X, Tussiwand R et al. 2015. Batf3 maintains autoactivation of Irf8 for commitment of a CD8α+ conventional DC clonogenic progenitor. Nat. Immunol. 16:708–17
    [Google Scholar]
  13. 13. 
    Breton G, Zheng S, Valieris R, Tojal da Silva I, Satija R, Nussenzweig MC 2016. Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. J. Exp. Med. 213:2861–70
    [Google Scholar]
  14. 14. 
    Satpathy AT, Wumesh KC, Albring JC, Edelson BT, Kretzer NM et al. 2012. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209:1135–52
    [Google Scholar]
  15. 15. 
    Meredith MM, Liu K, Darrasse-Jeze G, Kamphorst AO, Schreiber HA et al. 2012. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209:1153–65
    [Google Scholar]
  16. 16. 
    Wu X, Briseno CG, Durai V, Albring JC, Haldar M et al. 2016. Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells. J. Exp. Med. 213:2553–65
    [Google Scholar]
  17. 17. 
    Eisenbarth SC. 2019. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19:89–103
    [Google Scholar]
  18. 18. 
    Edelson BT, Wumesh KC, Juang R, Kohyama M, Benoit LA et al. 2010. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207:823–36
    [Google Scholar]
  19. 19. 
    Guilliams M, Dutertre CA, Scott CL, McGovern N, Sichien D et al. 2016. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45:669–84
    [Google Scholar]
  20. 20. 
    Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA et al. 2010. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J. Exp. Med. 207:1283–92
    [Google Scholar]
  21. 21. 
    Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D et al. 2012. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood 119:6052–62
    [Google Scholar]
  22. 22. 
    Bachem A, Güttler S, Hartung E, Ebstein F, Schaefer M et al. 2010. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 207:1273–81
    [Google Scholar]
  23. 23. 
    Anderson DA 3rd, Murphy KM, Briseno CG 2018. Development, diversity, and function of dendritic cells in mouse and human. Cold Spring Harb. Perspect. Biol. 10:11a028613
    [Google Scholar]
  24. 24. 
    Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C et al. 2007. Differential antigen processing by dendritic cell subsets in vivo. Science 315:107–11
    [Google Scholar]
  25. 25. 
    Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H et al. 2008. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322:1097–100
    [Google Scholar]
  26. 26. 
    Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L et al. 2010. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med. 207:1261–71
    [Google Scholar]
  27. 27. 
    Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X et al. 2010. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207:1247–60
    [Google Scholar]
  28. 28. 
    Haniffa M, Shin A, Bigley V, McGovern N, Teo P et al. 2012. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37:60–73
    [Google Scholar]
  29. 29. 
    Nizzoli G, Krietsch J, Weick A, Steinfelder S, Facciotti F et al. 2013. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood 122:932–42
    [Google Scholar]
  30. 30. 
    Segura E, Durand M, Amigorena S. 2013. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J. Exp. Med. 210:1035–47
    [Google Scholar]
  31. 31. 
    Joffre OP, Segura E, Savina A, Amigorena S 2012. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12:557–69
    [Google Scholar]
  32. 32. 
    Alcantara-Hernandez M, Leylek R, Wagar LE, Engleman EG, Keler T et al. 2017. High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization. Immunity 47:1037–50.e6
    [Google Scholar]
  33. 33. 
    Brown CC, Gudjonson H, Pritykin Y, Deep D, Lavallee VP et al. 2019. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell 179:846–63.e24
    [Google Scholar]
  34. 34. 
    Mansouri S, Katikaneni DS, Gogoi H, Pipkin M, Machuca TN et al. 2020. Lung IFNAR1hi TNFR2+ cDC2 promotes lung regulatory T cells induction and maintains lung mucosal tolerance at steady state. Mucosal Immunol 13:4595–608
    [Google Scholar]
  35. 35. 
    Mansouri S, Patel S, Katikaneni DS, Blaauboer SM, Wang W et al. 2019. Immature lung TNFR2 conventional DC 2 subpopulation activates moDCs to promote cyclic di-GMP mucosal adjuvant responses in vivo. Mucosal Immunol 12:277–89
    [Google Scholar]
  36. 36. 
    Bosteels C, Neyt K, Vanheerswynghels M, van Helden MJ, Sichien D et al. 2020. Inflammatory type 2 cDCs acquire features of cDC1s and macrophages to orchestrate immunity to respiratory virus infection. Immunity 52:61039–56.e9
    [Google Scholar]
  37. 37. 
    Min J, Yang D, Kim M, Haam K, Yoo A et al. 2018. Inflammation induces two types of inflammatory dendritic cells in inflamed lymph nodes. Exp. Mol. Med. 50:e458
    [Google Scholar]
  38. 38. 
    Cytlak U, Resteu A, Pagan S, Green K, Milne P et al. 2020. Differential IRF8 transcription factor requirement defines two pathways of dendritic cell development in humans. Immunity 53:2353–70.e8
    [Google Scholar]
  39. 39. 
    Bourdely P, Anselmi G, Vaivode K, Ramos RN, Missolo-Kousso Y et al. 2020. Transcriptional and functional analysis of CD1c+ human dendritic cells identifies a CD163+ subset priming CD8+CD103+ T cells. Immunity 53:2335–52.e8
    [Google Scholar]
  40. 40. 
    Yin X, Yu H, Jin X, Li J, Guo H et al. 2017. Human blood CD1c+ dendritic cells encompass CD5high and CD5low subsets that differ significantly in phenotype, gene expression, and functions. J. Immunol. 198:1553–64
    [Google Scholar]
  41. 41. 
    Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K et al. 2017. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:6335eaah4573
    [Google Scholar]
  42. 42. 
    Dutertre C-A, Becht E, Irac SE, Khalilnezhad A, Narang V et al. 2019. Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. Immunity 51:3573–89.e8
    [Google Scholar]
  43. 43. 
    Lewis KL, Caton ML, Bogunovic M, Greter M, Grajkowska LT et al. 2011. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35:780–91
    [Google Scholar]
  44. 44. 
    Scott CL, Bain CC, Wright PB, Sichien D, Kotarsky K et al. 2015. CCR2+CD103 intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunol 8:327–39
    [Google Scholar]
  45. 45. 
    Bajana S, Turner S, Paul J, Ainsua-Enrich E, Kovats S. 2016. IRF4 and IRF8 act in CD11c+ cells to regulate terminal differentiation of lung tissue dendritic cells. J. Immunol. 196:1666–77
    [Google Scholar]
  46. 46. 
    Persson EK, Uronen-Hansson H, Semmrich M, Rivollier A, Hagerbrand K et al. 2013. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38:958–69
    [Google Scholar]
  47. 47. 
    Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K et al. 2013. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38:970–83
    [Google Scholar]
  48. 48. 
    Calabro S, Gallman A, Gowthaman U, Liu D, Chen P et al. 2016. Bridging channel dendritic cells induce immunity to transfused red blood cells. J. Exp. Med. 213:887–96
    [Google Scholar]
  49. 49. 
    Bajana S, Roach K, Turner S, Paul J, Kovats S 2012. IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. J. Immunol. 189:3368–77
    [Google Scholar]
  50. 50. 
    Satpathy AT, Briseno CG, Lee JS, Ng D, Manieri NA et al. 2013. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14:937–48
    [Google Scholar]
  51. 51. 
    Tussiwand R, Everts B, Grajales-Reyes GE, Kretzer NM, Iwata A et al. 2015. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 42:916–28
    [Google Scholar]
  52. 52. 
    Boulet S, Daudelin JF, Odagiu L, Pelletier AN, Yun TJ et al. 2019. The orphan nuclear receptor NR4A3 controls the differentiation of monocyte-derived dendritic cells following microbial stimulation. PNAS 116:15150–59
    [Google Scholar]
  53. 53. 
    Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:59–70
    [Google Scholar]
  54. 54. 
    Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D et al. 2013. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39:925–38
    [Google Scholar]
  55. 55. 
    Cheong C, Matos I, Choi JH, Dandamudi DB, Shrestha E et al. 2010. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell 143:416–29
    [Google Scholar]
  56. 56. 
    Bonnardel J, Da Silva C, Henri S, Tamoutounour S, Chasson L et al. 2015. Innate and adaptive immune functions of Peyer's patch monocyte-derived cells. Cell Rep 11:5770–84
    [Google Scholar]
  57. 57. 
    Menezes S, Melandri D, Anselmi G, Perchet T, Loschko J et al. 2016. The heterogeneity of Ly6Chi monocytes controls their differentiation into iNOS+ macrophages or monocyte-derived dendritic cells. Immunity 45:1205–18
    [Google Scholar]
  58. 58. 
    Segura E, Touzot M, Bohineust A, Cappuccio A, Chiocchia G et al. 2013. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38:336–48
    [Google Scholar]
  59. 59. 
    Greter M, Helft J, Chow A, Hashimoto D, Mortha A et al. 2012. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36:1031–46
    [Google Scholar]
  60. 60. 
    Nakano H, Lin KL, Yanagita M, Charbonneau C, Cook DN et al. 2009. Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat. Immunol. 10:394–402
    [Google Scholar]
  61. 61. 
    Helft J, Bottcher J, Chakravarty P, Zelenay S, Huotari J et al. 2015. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCII+ macrophages and dendritic cells. Immunity 42:1197–211
    [Google Scholar]
  62. 62. 
    Briseno CG, Haldar M, Kretzer NM, Wu X, Theisen DJ et al. 2016. Distinct transcriptional programs control cross-priming in classical and monocyte-derived dendritic cells. Cell Rep 15:2462–74
    [Google Scholar]
  63. 63. 
    Sander J, Schmidt SV, Cirovic B, McGovern N, Papantonopoulou O et al. 2017. Cellular differentiation of human monocytes is regulated by time-dependent interleukin-4 signaling and the transcriptional regulator NCOR2. Immunity 47:1051–66.e12
    [Google Scholar]
  64. 64. 
    Goudot C, Coillard A, Villani AC, Gueguen P, Cros A et al. 2017. Aryl hydrocarbon receptor controls monocyte differentiation into dendritic cells versus macrophages. Immunity 47:582–96.e6
    [Google Scholar]
  65. 65. 
    Schlitzer A, McGovern N, Ginhoux F. 2015. Dendritic cells and monocyte-derived cells: two complementary and integrated functional systems. Semin. Cell Dev. Biol. 41:9–22
    [Google Scholar]
  66. 66. 
    Tang-Huau TL, Segura E 2019. Human in vivo-differentiated monocyte-derived dendritic cells. Semin. Cell Dev. Biol. 86:44–49
    [Google Scholar]
  67. 67. 
    Lehtonen A, Veckman V, Nikula T, Lahesmaa R, Kinnunen L et al. 2005. Differential expression of IFN regulatory factor 4 gene in human monocyte-derived dendritic cells and macrophages. J. Immunol. 175:6570–79
    [Google Scholar]
  68. 68. 
    Dyer DP, Medina-Ruiz L, Bartolini R, Schuette F, Hughes CE et al. 2019. Chemokine receptor redundancy and specificity are context dependent. Immunity 50:378–89.e5
    [Google Scholar]
  69. 69. 
    Serbina NV, Pamer EG. 2006. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7:311–17
    [Google Scholar]
  70. 70. 
    Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira F et al. 2013. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38:322–35
    [Google Scholar]
  71. 71. 
    Nakano H, Burgents JE, Nakano K, Whitehead GS, Cheong C et al. 2012. Migratory properties of pulmonary dendritic cells are determined by their developmental lineage. Mucosal Immunol 6:678–91
    [Google Scholar]
  72. 72. 
    Chow KV, Lew AM, Sutherland RM, Zhan Y. 2016. Monocyte-derived dendritic cells promote Th polarization, whereas conventional dendritic cells promote Th proliferation. J. Immunol. 196:624–36
    [Google Scholar]
  73. 73. 
    León B, López-Bravo M, Ardavín C. 2007. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. . Immunity 26:519–31
    [Google Scholar]
  74. 74. 
    Ko HJ, Brady JL, Ryg-Cornejo V, Hansen DS, Vremec D et al. 2014. GM-CSF-responsive monocyte-derived dendritic cells are pivotal in Th17 pathogenesis. J. Immunol. 192:2202–9
    [Google Scholar]
  75. 75. 
    Colonna M, Trinchieri G, Liu YJ. 2004. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5:1219–26
    [Google Scholar]
  76. 76. 
    Reizis B. 2019. Plasmacytoid dendritic cells: development, regulation, and function. Immunity 50:37–50
    [Google Scholar]
  77. 77. 
    Cisse B, Caton ML, Lehner M, Maeda T, Scheu S et al. 2008. Transcription factor E2–2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135:37–48
    [Google Scholar]
  78. 78. 
    Nagasawa M, Schmidlin H, Hazekamp MG, Schotte R, Blom B. 2008. Development of human plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor E2–2 and the Ets factor Spi-B. Eur. J. Immunol. 38:2389–400
    [Google Scholar]
  79. 79. 
    Grajkowska LT, Ceribelli M, Lau CM, Warren ME, Tiniakou I et al. 2017. Isoform-specific expression and feedback regulation of E protein TCF4 control dendritic cell lineage specification. Immunity 46:65–77
    [Google Scholar]
  80. 80. 
    Liu YJ. 2005. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23:275–306
    [Google Scholar]
  81. 81. 
    Zhang H, Gregorio JD, Iwahori T, Zhang X, Choi O et al. 2017. A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes. PNAS 114:1988–93
    [Google Scholar]
  82. 82. 
    Leylek R, Alcántara-Hernández M, Granja JM, Chavez M, Perez K et al. 2020. Chromatin landscape underpinning human dendritic cell heterogeneity. Cell Rep 32:12108180
    [Google Scholar]
  83. 83. 
    Abbas A, Vu Manh TP, Valente M, Collinet N, Attaf N et al. 2020. The activation trajectory of plasmacytoid dendritic cells in vivo during a viral infection. Nat. Immunol. 21:9983–97
    [Google Scholar]
  84. 84. 
    Soni C, Perez OA, Voss WN, Pucella JN, Serpas L et al. 2020. Plasmacytoid dendritic cells and type I interferon promote extrafollicular B cell responses to extracellular self-DNA. Immunity 52:61022–38.e7
    [Google Scholar]
  85. 85. 
    Brewitz A, Eickhoff S, Dahling S, Quast T, Bedoui S et al. 2017. CD8+ T cells orchestrate pDC-XCR1+ dendritic cell spatial and functional cooperativity to optimize priming. Immunity 46:205–19
    [Google Scholar]
  86. 86. 
    Cervantes-Barragan L, Lewis KL, Firner S, Thiel V, Hugues S et al. 2012. Plasmacytoid dendritic cells control T-cell response to chronic viral infection. PNAS 109:3012–17
    [Google Scholar]
  87. 87. 
    Yu H, Zhang P, Yin X, Yin Z, Shi Q et al. 2015. Human BDCA2+CD123+CD56+ dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset. Protein Cell 6:297–306
    [Google Scholar]
  88. 88. 
    See P, Dutertre CA, Chen JM, Gunther P, McGovern N et al. 2017. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356:6342eaag3009
    [Google Scholar]
  89. 89. 
    Bar-On L, Birnberg T, Lewis KL, Edelson BT, Bruder D et al. 2010. CX3CR1+ CD8α+ dendritic cells are a steady-state population related to plasmacytoid dendritic cells. PNAS 107:14745–50
    [Google Scholar]
  90. 90. 
    Kashem SW, Haniffa M, Kaplan DH. 2017. Antigen-presenting cells in the skin. Annu. Rev. Immunol. 35:469–99
    [Google Scholar]
  91. 91. 
    Schulz C, Perdiguero EG, Chorro L, Szabo-Rogers H, Cagnard N et al. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90
    [Google Scholar]
  92. 92. 
    Hoeffel G, Wang YL, Greter M, See P, Teo P et al. 2012. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209:1167–81
    [Google Scholar]
  93. 93. 
    Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M et al. 2006. Langerhans cells arise from monocytes in vivo. Nat. Immunol. 7:265–73
    [Google Scholar]
  94. 94. 
    Ray JP, Staron MM, Shyer JA, Ho PC, Marshall HD et al. 2015. The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells. Immunity 43:690–702
    [Google Scholar]
  95. 95. 
    Helbig C, Amsen D. 2015. Notch signaling: piercing a harness of simplicity. Immunity 43:831–33
    [Google Scholar]
  96. 96. 
    Amsen D, Helbig C, Backer RA. 2015. Notch in T cell differentiation: all things considered. Trends Immunol 36:802–14
    [Google Scholar]
  97. 97. 
    Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D et al. 1999. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. PNAS 96:1036–41
    [Google Scholar]
  98. 98. 
    Maldonado-Lopez R, De Smedt T, Michel P, Godfroid J, Pajak B et al. 1999. CD8α+ and CD8α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189:587–92
    [Google Scholar]
  99. 99. 
    King IL, Kroenke MA, Segal BM. 2010. GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J. Exp. Med. 207:953–61
    [Google Scholar]
  100. 100. 
    Arnold IC, Zhang X, Artola-Boran M, Fallegger A, Sander P et al. 2019. BATF3-dependent dendritic cells drive both effector and regulatory T-cell responses in bacterially infected tissues. PLOS Pathog 15:e1007866
    [Google Scholar]
  101. 101. 
    Martinez-Lopez M, Iborra S, Conde-Garrosa R, Sancho D 2015. Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice. Eur. J. Immunol. 45:119–29
    [Google Scholar]
  102. 102. 
    Harpur CM, Kato Y, Dewi ST, Stankovic S, Johnson DN et al. 2019. Classical type 1 dendritic cells dominate priming of Th1 responses to herpes simplex virus type 1 skin infection. J. Immunol. 202:653–63
    [Google Scholar]
  103. 103. 
    Mashayekhi M, Sandau MM, Dunay IR, Frickel EM, Khan A et al. 2011. CD8α+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35:249–59
    [Google Scholar]
  104. 104. 
    Krishnaswamy JK, Gowthaman U, Zhang B, Mattsson J, Szeponik L et al. 2017. Migratory CD11b+ conventional dendritic cells induce T follicular helper cell-dependent antibody responses. Sci. Immunol. 2:18eaam9169
    [Google Scholar]
  105. 105. 
    Igyarto BZ, Haley K, Ortner D, Bobr A, Gerami-Nejad M et al. 2011. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35:260–72
    [Google Scholar]
  106. 106. 
    Luda KM, Joeris T, Persson EK, Rivollier A, Demiri M et al. 2016. IRF8 transcription-factor-dependent classical dendritic cells are essential for intestinal T cell homeostasis. Immunity 44:860–74
    [Google Scholar]
  107. 107. 
    Yamazaki C, Sugiyama M, Ohta T, Hemmi H, Hamada E et al. 2013. Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1. J. Immunol. 190:6071–82
    [Google Scholar]
  108. 108. 
    Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J et al. 2014. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat. Immunol. 15:98–108
    [Google Scholar]
  109. 109. 
    Lai R, Jeyanathan M, Afkhami S, Zganiacz A, Hammill JA et al. 2018. CD11b+ dendritic cell-mediated anti-Mycobacterium tuberculosis Th1 activation is counterregulated by CD103+ dendritic cells via IL-10. J. Immunol. 200:1746–60
    [Google Scholar]
  110. 110. 
    Nakano H, Free ME, Whitehead GS, Maruoka S, Wilson RH et al. 2012. Pulmonary CD103+ dendritic cells prime Th2 responses to inhaled allergens. Mucosal Immunol 5:53–65
    [Google Scholar]
  111. 111. 
    Leon B, Ballesteros-Tato A, Browning JL, Dunn R, Randall TD, Lund FE. 2012. Regulation of TH2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nat. Immunol. 13:681–90
    [Google Scholar]
  112. 112. 
    Groom JR, Richmond J, Murooka TT, Sorensen EW, Sung JH et al. 2012. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37:1091–103
    [Google Scholar]
  113. 113. 
    Stoltzfus CR, Filipek J, Gern BH, Olin BE, Leal JM et al. 2020. CytoMAP: A spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues. Cell Rep 31:107523
    [Google Scholar]
  114. 114. 
    Everts B, Tussiwand R, Dreesen L, Fairfax KC, Huang SC et al. 2016. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J. Exp. Med. 213:35–51
    [Google Scholar]
  115. 115. 
    Conejero L, Khouili SC, Martinez-Cano S, Izquierdo HM, Brandi P, Sancho D. 2017. Lung CD103+ dendritic cells restrain allergic airway inflammation through IL-12 production. JCI Insight 2:10e90420
    [Google Scholar]
  116. 116. 
    Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. 2005. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6:769–76
    [Google Scholar]
  117. 117. 
    Akbari M, Honma K, Kimura D, Miyakoda M, Kimura K et al. 2014. IRF4 in dendritic cells inhibits IL-12 production and controls Th1 immune responses against Leishmania major. J. Immunol. 192:2271–79
    [Google Scholar]
  118. 118. 
    Li H, Burgueno-Bucio E, Xu S, Das S, Olguin-Alor R et al. 2019. CD5 on dendritic cells regulates CD4+ and CD8+ T cell activation and induction of immune responses. PLOS ONE 14:e0222301
    [Google Scholar]
  119. 119. 
    Lauterbach H, Bathke B, Gilles S, Traidl-Hoffmann C, Luber CA et al. 2010. Mouse CD8α+ DCs and human BDCA3+ DCs are major producers of IFN-λ in response to poly IC. J. Exp. Med. 207:2703–17
    [Google Scholar]
  120. 120. 
    Hubert M, Gobbini E, Couillault C, Manh T-PV, Doffin A-C et al. 2020. IFN-III is selectively produced by cDC1 and predicts good clinical outcome in breast cancer. Sci. Immunol. 5:46eaav3942
    [Google Scholar]
  121. 121. 
    Davey GM, Wojtasiak M, Proietto AI, Carbone FR, Heath WR, Bedoui S. 2010. Cutting edge: Priming of CD8 T cell immunity to herpes simplex virus type 1 requires cognate TLR3 expression in vivo. J. Immunol. 184:2243–46
    [Google Scholar]
  122. 122. 
    Edwards AD, Diebold SS, Slack EMC, Tomizawa H, Hemmi H et al. 2003. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8α+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 33:827–33
    [Google Scholar]
  123. 123. 
    Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN et al. 2005. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:1626–29
    [Google Scholar]
  124. 124. 
    Fujimoto K, Karuppuchamy T, Takemura N, Shimohigoshi M, Machida T et al. 2011. A new subset of CD103+CD8α+ dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity. J. Immunol. 186:6287–95
    [Google Scholar]
  125. 125. 
    Hemont C, Neel A, Heslan M, Braudeau C, Josien R. 2013. Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness. J. Leukoc. Biol. 93:599–609
    [Google Scholar]
  126. 126. 
    Gerosa F, Baldani-Guerra B, Lyakh LA, Batoni G, Esin S et al. 2008. Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J. Exp. Med. 205:1447–61
    [Google Scholar]
  127. 127. 
    Walsh KP, Mills KHG. 2013. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol 34:521–30
    [Google Scholar]
  128. 128. 
    Yoneyama H, Narumi S, Zhang Y, Murai M, Baggiolini M et al. 2002. Pivotal role of dendritic cell-derived CXCL10 in the retention of T helper cell 1 lymphocytes in secondary lymph nodes. J. Exp. Med. 195:1257–66
    [Google Scholar]
  129. 129. 
    Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M et al. 2004. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat. Immunol. 5:1260–65
    [Google Scholar]
  130. 130. 
    Kastenmüller W, Torabi-Parizi P, Subramanian N, Lämmermann T, Germain RN. 2012. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell 150:1235–48
    [Google Scholar]
  131. 131. 
    Blecher-Gonen R, Bost P, Hilligan KL, David E, Salame TM et al. 2019. Single-cell analysis of diverse pathogen responses defines a molecular roadmap for generating antigen-specific immunity. Cell Syst 8:109–21.e6
    [Google Scholar]
  132. 132. 
    Schreiber HA, Loschko J, Karssemeijer RA, Escolano A, Meredith MM et al. 2013. Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J. Exp. Med. 210:2025–39
    [Google Scholar]
  133. 133. 
    De Koker S, Van Hoecke L, De Beuckelaer A, Roose K, Deswarte K et al. 2017. Inflammatory monocytes regulate Th1 oriented immunity to CpG adjuvanted protein vaccines through production of IL-12. Sci. Rep. 7:5986
    [Google Scholar]
  134. 134. 
    van Panhuys N. 2016. TCR signal strength alters T-DC activation and interaction times and directs the outcome of differentiation. Front. Immunol. 7:6
    [Google Scholar]
  135. 135. 
    Vander Lugt B, Khan AA, Hackney JA, Agrawal S, Lesch J et al. 2014. Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation. Nat. Immunol. 15:161–67
    [Google Scholar]
  136. 136. 
    van Panhuys N, Klauschen F, Germain RN. 2014. T-cell-receptor-dependent signal intensity dominantly controls CD4+ T cell polarization in vivo. Immunity 41:63–74
    [Google Scholar]
  137. 137. 
    Tubo NJ, Pagan AJ, Taylor JJ, Nelson RW, Linehan JL et al. 2013. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153:785–96
    [Google Scholar]
  138. 138. 
    Binnewies M, Mujal AM, Pollack JL, Combes AJ, Hardison EA et al. 2019. Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177:556–71.e16
    [Google Scholar]
  139. 139. 
    Walker JA, McKenzie ANJ. 2018. TH2 cell development and function. Nat. Rev. Immunol. 18:121–33
    [Google Scholar]
  140. 140. 
    Maier E, Duschl A, Horejs-Hoeck J. 2012. STAT6-dependent and -independent mechanisms in Th2 polarization. Eur. J. Immunol. 42:2827–33
    [Google Scholar]
  141. 141. 
    Paul WE, Zhu J. 2010. How are TH2-type immune responses initiated and amplified?. Nat. Rev. Immunol. 10:225–35
    [Google Scholar]
  142. 142. 
    Chu DK, Mohammed-Ali Z, Jimenez-Saiz R, Walker TD, Goncharova S et al. 2014. T helper cell IL-4 drives intestinal Th2 priming to oral peanut antigen, under the control of OX40L and independent of innate-like lymphocytes. Mucosal Immunol 7:1395–404
    [Google Scholar]
  143. 143. 
    Pelly VS, Kannan Y, Coomes SM, Entwistle LJ, Ruckerl D et al. 2016. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol 9:1407–17
    [Google Scholar]
  144. 144. 
    Sokol CL, Chu N-Q, Yu S, Nish SA, Laufer TM, Medzhitov R. 2009. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat. Immunol. 10:713–20
    [Google Scholar]
  145. 145. 
    Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA. 2004. Instruction of distinct CD4 T helper cell fates by different Notch ligands on antigen-presenting cells. Cell 117:515–26
    [Google Scholar]
  146. 146. 
    Okamoto M, Matsuda H, Joetham A, Lucas JJ, Domenico J et al. 2009. Jagged1 on dendritic cells and Notch on CD4+ T cells initiate lung allergic responsiveness by inducing IL-4 production. J. Immunol. 183:2995–3003
    [Google Scholar]
  147. 147. 
    Tindemans I, Lukkes M, de Bruijn MJW, Li BWS, van Nimwegen M et al. 2017. Notch signaling in T cells is essential for allergic airway inflammation, but expression of the Notch ligands Jagged 1 and Jagged 2 on dendritic cells is dispensable. J. Allergy Clin. Immunol. 140:1079–89
    [Google Scholar]
  148. 148. 
    Krawczyk CM, Sun J, Pearce EJ. 2008. Th2 differentiation is unaffected by Jagged2 expression on dendritic cells. J. Immunol. 180:7931–37
    [Google Scholar]
  149. 149. 
    van Rijt LS, Jung S, Kleinjan A, Vos N, Willart M et al. 2005. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med. 201:981–91
    [Google Scholar]
  150. 150. 
    Lim H, Kim YU, Yun K, Drouin SM, Chung Y. 2013. Distinct regulation of Th2 and Th17 responses to allergens by pulmonary antigen presenting cells in vivo. Immunol. Lett. 156:140–48
    [Google Scholar]
  151. 151. 
    Smith KA, Hochweller K, Hämmerling GJ, Boon L, MacDonald AS, Maizels RM. 2011. Chronic helminth infection promotes immune regulation in vivo through dominance of CD11cloCD103 dendritic cells. J. Immunol 186:7098–109
    [Google Scholar]
  152. 152. 
    Chu DK, Jimenez-Saiz R, Verschoor CP, Walker TD, Goncharova S et al. 2014. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. J. Exp. Med. 211:1657–72
    [Google Scholar]
  153. 153. 
    Zhou Q, Ho AW, Schlitzer A, Tang Y, Wong KH et al. 2014. GM-CSF-licensed CD11b+ lung dendritic cells orchestrate Th2 immunity to Blomia tropicalis. J. Immunol. 193:496–509
    [Google Scholar]
  154. 154. 
    Gao Y, Nish SA, Jiang R, Hou L, Licona-Limon P et al. 2013. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 39:722–32
    [Google Scholar]
  155. 155. 
    Mayer JU, Demiri M, Agace WW, MacDonald AS, Svensson-Frej M, Milling SW. 2017. Different populations of CD11b+ dendritic cells drive Th2 responses in the small intestine and colon. Nat. Commun. 8:15820
    [Google Scholar]
  156. 156. 
    Williams JW, Tjota MY, Clay BS, Vander Lugt B, Bandukwala HS et al. 2013. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. Nat. Commun. 4:2990
    [Google Scholar]
  157. 157. 
    Deckers J, Sichien D, Plantinga M, Van Moorleghem J, Vanheerswynghels M et al. 2017. Epicutaneous sensitization to house dust mite allergen requires interferon regulatory factor 4-dependent dermal dendritic cells. J. Allergy Clin. Immunol. 140:1364–77.e2
    [Google Scholar]
  158. 158. 
    Li J, Lu E, Yi T, Cyster JG 2016. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature 533:110–14
    [Google Scholar]
  159. 159. 
    Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. 2013. CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39:733–43
    [Google Scholar]
  160. 160. 
    Lee J, Zhang J, Chung YJ, Kim JH, Kook CM et al. 2020. Inhibition of IRF4 in dendritic cells by PRR-independent and -dependent signals inhibit Th2 and promote Th17 responses. eLife 9:e49416
    [Google Scholar]
  161. 161. 
    Kumamoto Y, Hirai T, Wong PW, Kaplan DH, Iwasaki A. 2016. CD301b+ dendritic cells suppress T follicular helper cells and antibody responses to protein antigens. eLife 5:e17979
    [Google Scholar]
  162. 162. 
    Chun IY, Becker C, Metang P, Marches F, Wang Y et al. 2014. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J. Immunol. 193:94335–43
    [Google Scholar]
  163. 163. 
    Furuhashi K, Suda T, Hasegawa H, Suzuki Y, Hashimoto D et al. 2012. Mouse lung CD103+ and CD11bhigh dendritic cells preferentially induce distinct CD4+ T-cell responses. Am. J. Respir. Cell Mol. Biol. 46:2165–72
    [Google Scholar]
  164. 164. 
    Ito T, Amakawa R, Inaba M, Hori T, Ota M et al. 2004. Plasmacytoid dendritic cells regulate Th cell responses through OX40 ligand and type I IFNs. J. Immunol. 172:4253–59
    [Google Scholar]
  165. 165. 
    Lin JY, Wu WH, Chen JS, Liu IL, Chiu HL et al. 2020. Plasmacytoid dendritic cells suppress Th2 responses induced by epicutaneous sensitization. Immunol. Cell Biol. 98:215–28
    [Google Scholar]
  166. 166. 
    Lynch JP, Werder RB, Loh Z, Sikder MAA, Curren B et al. 2018. Plasmacytoid dendritic cells protect from viral bronchiolitis and asthma through semaphorin 4a–mediated T reg expansion. J. Exp. Med. 215:537–57
    [Google Scholar]
  167. 167. 
    Klechevsky E, Morita R, Liu M, Cao Y, Coquery S et al. 2008. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29:497–510
    [Google Scholar]
  168. 168. 
    Nakajima S, Igyarto BZ, Honda T, Egawa G, Otsuka A et al. 2012. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J. Allergy Clin. Immunol. 129:1048–55.e6
    [Google Scholar]
  169. 169. 
    Roan F, Obata-Ninomiya K, Ziegler SF. 2019. Epithelial cell-derived cytokines: more than just signaling the alarm. J. Clin. Investig. 129:1441–51
    [Google Scholar]
  170. 170. 
    Han H, Thelen TD, Comeau MR, Ziegler SF et al. 2014. Thymic stromal lymphopoietin-mediated epicutaneous inflammation promotes acute diarrhea and anaphylaxis. J. Clin. Investig. 124:125442–52
    [Google Scholar]
  171. 171. 
    Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ et al. 2005. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202:1213–23
    [Google Scholar]
  172. 172. 
    Pattarini L, Trichot C, Bogiatzi S, Grandclaudon M, Meller S et al. 2017. TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand. J. Exp. Med. 214:1529–46
    [Google Scholar]
  173. 173. 
    Besnard AG, Togbe D, Guillou N, Erard F, Quesniaux V, Ryffel B. 2011. IL-33-activated dendritic cells are critical for allergic airway inflammation. Eur. J. Immunol. 41:1675–86
    [Google Scholar]
  174. 174. 
    Burrows KE, Dumont C, Thompson CL, Catley MC, Dixon KL, Marshall D. 2015. OX40 blockade inhibits house dust mite driven allergic lung inflammation in mice and in vitro allergic responses in humans. Eur. J. Immunol. 45:41116–28
    [Google Scholar]
  175. 175. 
    Kaisar MMM, Ritter M, Del Fresno C, Jonasdottir HS, van der Ham AJ et al. 2018. Dectin-1/2-induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses. PLOS Biol 16:e2005504
    [Google Scholar]
  176. 176. 
    Jenkins SJ, Perona-Wright G, Worsley AG, Ishii N, MacDonald AS. 2007. Dendritic cell expression of OX40 ligand acts as a costimulatory, not polarizing, signal for optimal Th2 priming and memory induction in vivo. J. Immunol. 179:3515–23
    [Google Scholar]
  177. 177. 
    Korn T, Bettelli E, Oukka M, Kuchroo VK. 2009. IL-17 and Th17 cells. Annu. Rev. Immunol. 27:485–517
    [Google Scholar]
  178. 178. 
    Ciofani M, Madar A, Galan C, Sellars M, Mace K et al. 2012. A validated regulatory network for Th17 cell specification. Cell 151:289–303
    [Google Scholar]
  179. 179. 
    Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. 2006. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–89
    [Google Scholar]
  180. 180. 
    Iezzi G, Sonderegger I, Ampenberger F, Schmitz N, Marsland BJ, Kopf M 2009. CD40–CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4+ T cells. PNAS 106:3876–81 https://doi.org/10.1073/pnas.0810769106
    [Crossref] [Google Scholar]
  181. 181. 
    Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H et al. 2015. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity 42:756–66
    [Google Scholar]
  182. 182. 
    Kashem SW, Igyarto BZ, Gerami-Nejad M, Kumamoto Y, Mohammed JA et al. 2015. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42:356–66
    [Google Scholar]
  183. 183. 
    Haley K, Igyarto BZ, Ortner D, Bobr A, Kashem S et al. 2012. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration. J. Immunol. 188:4334–39
    [Google Scholar]
  184. 184. 
    Mathers AR, Janelsins BM, Rubin JP, Tkacheva OA, Shufesky WJ et al. 2009. Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses. J. Immunol. 182:921–33
    [Google Scholar]
  185. 185. 
    Bain CC, Montgomery J, Scott CL, Kel JM, Girard-Madoux MJH et al. 2017. TGFβR signalling controls CD103+CD11b+ dendritic cell development in the intestine. Nat. Commun. 8:620
    [Google Scholar]
  186. 186. 
    Scott CL, Zangerle Murray TFP, Beckham KS, Douce G, Mowat AM 2014. Signal regulatory protein alpha (SIRPα) regulates the homeostasis of CD103+ CD11b+ DCs in the intestinal lamina propria. Eur. J. Immunol. 44:3658–68
    [Google Scholar]
  187. 187. 
    Welty NE, Staley C, Ghilardi N, Sadowsky MJ, Igyarto BZ, Kaplan DH. 2013. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J. Exp. Med. 210:2011–24
    [Google Scholar]
  188. 188. 
    Liu H, Chen F, Wu W, Cao AT, Xue X et al. 2016. TLR5 mediates CD172α+ intestinal lamina propria dendritic cell induction of Th17 cells. Sci. Rep. 6:22040
    [Google Scholar]
  189. 189. 
    Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ et al. 2008. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 9:769–76
    [Google Scholar]
  190. 190. 
    Melton AC, Bailey-Bucktrout SL, Travis MA, Fife BT, Bluestone JA, Sheppard D 2010. Expression of αvβ8 integrin on dendritic cells regulates Th17 cell development and experimental autoimmune encephalomyelitis in mice. J. Clin. Investig. 120:4436–44
    [Google Scholar]
  191. 191. 
    Linehan JL, Dileepan T, Kashem SW, Kaplan DH, Cleary P, Jenkins MK 2015. Generation of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b+ dendritic cells. PNAS 112:12782–87
    [Google Scholar]
  192. 192. 
    Cerovic V, Houston SA, Scott CL, Aumeunier A, Yrlid U et al. 2013. Intestinal CD103 dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol 6:104–13
    [Google Scholar]
  193. 193. 
    Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KHG. 2009. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–41
    [Google Scholar]
  194. 194. 
    Do J-S, Visperas A, Dong C, Baldwin WM 3rd, Min B 2011. Cutting edge: Generation of colitogenic Th17 CD4 T cells is enhanced by IL-17+ γδ T cells. J. Immunol. 186:4546–50
    [Google Scholar]
  195. 195. 
    Trautwein-Weidner K, Gladiator A, Kirchner FR, Becattini S, Rulicke T et al. 2015. Antigen-specific Th17 cells are primed by distinct and complementary dendritic cell subsets in oropharyngeal candidiasis. PLOS Pathog 11:e1005164
    [Google Scholar]
  196. 196. 
    Song W, Craft J. 2019. T follicular helper cell heterogeneity: time, space, and function. Immunol. Rev. 288:85–96
    [Google Scholar]
  197. 197. 
    Crotty S. 2014. T follicular helper cell differentiation, function, and roles in disease. Immunity 41:529–42
    [Google Scholar]
  198. 198. 
    Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D et al. 2009. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325:1006–10
    [Google Scholar]
  199. 199. 
    Qi H. 2016. T follicular helper cells in space-time. Nat. Rev. Immunol. 16:612–25
    [Google Scholar]
  200. 200. 
    Benson RA, MacLeod MK, Hale BG, Patakas A, Garside P, Brewer JM 2015. Antigen presentation kinetics control T cell/dendritic cell interactions and follicular helper T cell generation in vivo. eLife 4:e06994
    [Google Scholar]
  201. 201. 
    Goenka R, Barnett LG, Silver JS, O'Neill PJ, Hunter CA et al. 2011. Cutting edge: dendritic cell-restricted antigen presentation initiates the follicular helper T cell program but cannot complete ultimate effector differentiation. J. Immunol. 187:1091–95
    [Google Scholar]
  202. 202. 
    Baumjohann D, Preite S, Reboldi A, Ronchi F, Ansel KM et al. 2013. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 38:596–605
    [Google Scholar]
  203. 203. 
    Poholek AC, Hansen K, Hernandez SG, Eto D, Chandele A et al. 2010. In vivo regulation of Bcl6 and T follicular helper cell development. J. Immunol. 185:313–26
    [Google Scholar]
  204. 204. 
    Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ et al. 2011. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34:932–46
    [Google Scholar]
  205. 205. 
    Deenick EK, Chan A, Ma CS, Gatto D, Schwartzberg PL et al. 2010. Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. Immunity 33:241–53
    [Google Scholar]
  206. 206. 
    Arroyo EN, Pepper M. 2020. B cells are sufficient to prime the dominant CD4+ Tfh response to Plasmodium infection. J. Exp. Med. 217:2e20190849
    [Google Scholar]
  207. 207. 
    Barnett LG, Simkins HM, Barnett BE, Korn LL, Johnson AL et al. 2014. B cell antigen presentation in the initiation of follicular helper T cell and germinal center differentiation. J. Immunol. 192:3607–17
    [Google Scholar]
  208. 208. 
    Dahlgren MW, Gustafsson-Hedberg T, Livingston M, Cucak H, Alsen S et al. 2015. T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J. Immunol. 194:5187–99
    [Google Scholar]
  209. 209. 
    Fazilleau N, McHeyzer-Williams LJ, Rosen H, McHeyzer-Williams MG. 2009. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10:375–84
    [Google Scholar]
  210. 210. 
    DiToro D, Winstead CJ, Pham D, Witte S, Andargachew R et al. 2018. Differential IL-2 expression defines developmental fates of follicular versus nonfollicular helper T cells. Science 361:eaao2933
    [Google Scholar]
  211. 211. 
    Weber JP, Fuhrmann F, Feist RK, Lahmann A, Al Baz MS et al. 2015. ICOS maintains the T follicular helper cell phenotype by down-regulating Kruppel-like factor 2. J. Exp. Med. 212:217–33
    [Google Scholar]
  212. 212. 
    Tahiliani V, Hutchinson TE, Abboud G, Croft M, Salek-Ardakani S. 2017. OX40 cooperates with ICOS to amplify follicular Th cell development and germinal center reactions during infection. J. Immunol. 198:218–28
    [Google Scholar]
  213. 213. 
    Fillatreau S, Gray D. 2003. T cell accumulation in B cell follicles is regulated by dendritic cells and is independent of B cell activation. J. Exp. Med. 197:195–206
    [Google Scholar]
  214. 214. 
    Shin C, Han JA, Koh H, Choi B, Cho Y et al. 2015. CD8α dendritic cells induce antigen-specific T follicular helper cells generating efficient humoral immune responses. Cell Rep 11:1929–40
    [Google Scholar]
  215. 215. 
    Perper SJ, Westmoreland SV, Karman J, Twomey R, Seagal J et al. 2019. Treatment with a CD40 antagonist antibody reverses severe proteinuria and loss of saliva production and restores glomerular morphology in murine systemic lupus erythematosus. J. Immunol. 203:58–75
    [Google Scholar]
  216. 216. 
    Watanabe M, Fujihara C, Radtke AJ, Chiang YJ, Bhatia S et al. 2017. Co-stimulatory function in primary germinal center responses: CD40 and B7 are required on distinct antigen-presenting cells. J. Exp. Med. 214:2795–810
    [Google Scholar]
  217. 217. 
    Chen X, Ma W, Zhang T, Wu L, Qi H. 2015. Phenotypic Tfh development promoted by CXCR5-controlled re-localization and IL-6 from radiation-resistant cells. Protein Cell 6:825–32
    [Google Scholar]
  218. 218. 
    Cannons JL, Qi H, Lu KT, Dutta M, Gomez-Rodriguez J et al. 2010. Optimal germinal center responses require a multistage T cell:B cell adhesion process involving integrins. SLAM-associated protein, and CD84. Immunity 32:253–65
    [Google Scholar]
  219. 219. 
    Qi H, Cannons JL, Klauschen F, Schwartzberg PL, Germain RN. 2008. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455:764–69
    [Google Scholar]
  220. 220. 
    Arkatkar T, Du SW, Jacobs HM, Dam EM, Hou B et al. 2017. B cell-derived IL-6 initiates spontaneous germinal center formation during systemic autoimmunity. J. Exp. Med. 214:3207–17
    [Google Scholar]
  221. 221. 
    Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS et al. 2008. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29:138–49
    [Google Scholar]
  222. 222. 
    Eto D, Lao C, DiToro D, Barnett B, Escobar TC et al. 2011. IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation. PLOS ONE 6:e17739
    [Google Scholar]
  223. 223. 
    Pepper M, Pagan AJ, Igyarto BZ, Taylor JJ, Jenkins MK. 2011. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35:583–95
    [Google Scholar]
  224. 224. 
    Papillion A, Powell MD, Chisolm DA, Bachus H, Fuller MJ et al. 2019. Inhibition of IL-2 responsiveness by IL-6 is required for the generation of GC-TFH cells. Sci. Immunol. 4:39eaaw7636
    [Google Scholar]
  225. 225. 
    Powell MD, Read KA, Sreekumar BK, Jones DM, Oestreich KJ. 2019. IL-12 signaling drives the differentiation and function of a TH1-derived TFH1-like cell population. Sci. Rep. 9:13991
    [Google Scholar]
  226. 226. 
    Nakayamada S, Kanno Y, Takahashi H, Jankovic D, Lu KT et al. 2011. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 35:919–31
    [Google Scholar]
  227. 227. 
    Ma CS, Suryani S, Avery DT, Chan A, Nanan R et al. 2009. Early commitment of naive human CD4+ T cells to the T follicular helper (TFH) cell lineage is induced by IL-12. Immunol. Cell Biol. 87:590–600
    [Google Scholar]
  228. 228. 
    Schmitt N, Morita R, Bourdery L, Bentebibel SE, Zurawski SM et al. 2009. Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity 31:158–69
    [Google Scholar]
  229. 229. 
    Schmitt N, Liu Y, Bentebibel SE, Munagala I, Bourdery L et al. 2014. The cytokine TGF-β co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells. Nat. Immunol. 15:856–65
    [Google Scholar]
  230. 230. 
    Nakayamada S, Poholek AC, Lu KT, Takahashi H, Kato M et al. 2014. Type I IFN induces binding of STAT1 to Bcl6: divergent roles of STAT family transcription factors in the T follicular helper cell genetic program. J. Immunol. 192:2156–66
    [Google Scholar]
  231. 231. 
    Riteau N, Radtke AJ, Shenderov K, Mittereder L, Oland SD et al. 2016. Water-in-oil-only adjuvants selectively promote T follicular helper cell polarization through a type I IFN and IL-6-dependent pathway. J. Immunol. 197:3884–93
    [Google Scholar]
  232. 232. 
    Barbet G, Sander LE, Geswell M, Leonardi I, Cerutti A et al. 2018. Sensing microbial viability through bacterial RNA augments T follicular helper cell and antibody responses. Immunity 48:584–98.e5
    [Google Scholar]
  233. 233. 
    Cucak H, Yrlid U, Reizis B, Kalinke U, Johansson-Lindbom B. 2009. Type I interferon signaling in dendritic cells stimulates the development of lymph-node-resident T follicular helper cells. Immunity 31:491–501
    [Google Scholar]
  234. 234. 
    De Giovanni M, Cutillo V, Giladi A, Sala E, Maganuco CG et al. 2020. Spatiotemporal regulation of type I interferon expression determines the antiviral polarization of CD4+ T cells. Nat. Immunol. 21:321–30
    [Google Scholar]
  235. 235. 
    Ray JP, Marshall HD, Laidlaw BJ, Staron MM, Kaech SM, Craft J. 2014. Transcription factor STAT3 and type I interferons are corepressive insulators for differentiation of follicular helper and T helper 1 cells. Immunity 40:367–77
    [Google Scholar]
  236. 236. 
    Zander RA, Guthmiller JJ, Graham AC, Pope RL, Burke BE et al. 2016. Type I interferons induce T regulatory 1 responses and restrict humoral immunity during experimental malaria. PLOS Pathog 12:e1005945
    [Google Scholar]
  237. 237. 
    Briseno CG, Satpathy AT, Davidson JT 4th, Ferris ST, Durai V et al. 2018. Notch2-dependent DC2s mediate splenic germinal center responses. PNAS 115:10726–31
    [Google Scholar]
  238. 238. 
    Stebegg M, Bignon A, Hill DL, Silva-Cayetano A, Krueger C et al. 2020. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. eLife 9:e52473
    [Google Scholar]
  239. 239. 
    Durand M, Walter T, Pirnay T, Naessens T, Gueguen P et al. 2019. Human lymphoid organ cDC2 and macrophages play complementary roles in T follicular helper responses. J. Exp. Med. 216:1561–81
    [Google Scholar]
  240. 240. 
    Kato Y, Zaid A, Davey GM, Mueller SN, Nutt SL et al. 2015. Targeting antigen to Clec9A primes follicular Th cell memory responses capable of robust recall. J. Immunol. 195:1006–14
    [Google Scholar]
  241. 241. 
    Lahoud MH, Ahmet F, Kitsoulis S, Wan SS, Vremec D et al. 2011. Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. J. Immunol. 187:842–50
    [Google Scholar]
  242. 242. 
    Bouteau A, Kervevan J, Su Q, Zurawski SM, Contreras V et al. 2019. DC subsets regulate humoral immune responses by supporting the differentiation of distinct Tfh cells. Front. Immunol. 10:1134
    [Google Scholar]
  243. 243. 
    Yao C, Zurawski SM, Jarrett ES, Chicoine B, Crabtree J et al. 2015. Skin dendritic cells induce follicular helper T cells and protective humoral immune responses. J. Allergy Clin. Immunol. 136:1387–97.e7
    [Google Scholar]
  244. 244. 
    Levin C, Bonduelle O, Nuttens C, Primard C, Verrier B et al. 2017. Critical role for skin-derived migratory DCs and Langerhans cells in TFH and GC responses after intradermal immunization. J. Investig. Dermatol. 137:1905–13
    [Google Scholar]
  245. 245. 
    Zimara N, Florian C, Schmid M, Malissen B, Kissenpfennig A et al. 2014. Langerhans cells promote early germinal center formation in response to Leishmania-derived cutaneous antigens. Eur. J. Immunol. 44:2955–67
    [Google Scholar]
  246. 246. 
    Chakarov S, Fazilleau N. 2014. Monocyte-derived dendritic cells promote T follicular helper cell differentiation. EMBO Mol. Med. 6:590–603
    [Google Scholar]
  247. 247. 
    Yao C, Kaplan DH. 2018. Langerhans cells transfer targeted antigen to dermal dendritic cells and acquire major histocompatibility complex II in vivo. J. Investig. Dermatol. 138:1665–68
    [Google Scholar]
  248. 248. 
    Kato Y, Steiner TM, Park HY, Hitchcock RO, Zaid A et al. 2020. Display of native antigen on cDC1 that have spatial access to both T and B cells underlies efficient humoral vaccination. J. Immunol. 205:71842–45
    [Google Scholar]
  249. 249. 
    Josefowicz SZ, Lu LF, Rudensky AY. 2012. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30:531–64
    [Google Scholar]
  250. 250. 
    Savage PA, Klawon DEJ, Miller CH. 2020. Regulatory T cell development. Annu. Rev. Immunol. 38:421–53
    [Google Scholar]
  251. 251. 
    Hasegawa H, Matsumoto T. 2018. Mechanisms of tolerance induction by dendritic cells in vivo. Front. Immunol. 9:350
    [Google Scholar]
  252. 252. 
    Esterhazy D, Loschko J, London M, Jove V, Oliveira TY, Mucida D. 2016. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral Treg cells and tolerance. Nat. Immunol. 17:545–55
    [Google Scholar]
  253. 253. 
    Scheinecker C, McHugh R, Shevach EM, Germain RN. 2002. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196:1079–90
    [Google Scholar]
  254. 254. 
    Idoyaga J, Fiorese C, Zbytnuik L, Lubkin A, Miller J et al. 2013. Specialized role of migratory dendritic cells in peripheral tolerance induction. J. Clin. Investig. 123:844–54
    [Google Scholar]
  255. 255. 
    Vitali C, Mingozzi F, Broggi A, Barresi S, Zolezzi F et al. 2012. Migratory, and not lymphoid-resident, dendritic cells maintain peripheral self-tolerance and prevent autoimmunity via induction of iTreg cells. Blood 120:1237–45
    [Google Scholar]
  256. 256. 
    Baratin M, Foray C, Demaria O, Habbeddine M, Pollet E et al. 2015. Homeostatic NF-κB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance. Immunity 42:627–39
    [Google Scholar]
  257. 257. 
    Miller JC, Brown BD, Shay T, Gautier EL, Jojic V et al. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13:888–99
    [Google Scholar]
  258. 258. 
    Ardouin L, Luche H, Chelbi R, Carpentier S, Shawket A et al. 2016. Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity 45:305–18
    [Google Scholar]
  259. 259. 
    Maier B, Leader AM, Chen ST, Tung N, Chang C et al. 2020. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580:257–62 Erratum. 2020. Nature 582(7813):E17
    [Google Scholar]
  260. 260. 
    Scott CL, Aumeunier AM, Mowat AM. 2011. Intestinal CD103+ dendritic cells: master regulators of tolerance?. Trends Immunol 32:412–19
    [Google Scholar]
  261. 261. 
    Hall JA, Grainger JR, Spencer SP, Belkaid Y. 2011. The role of retinoic acid in tolerance and immunity. Immunity 35:13–22
    [Google Scholar]
  262. 262. 
    Worthington JJ, Czajkowska BI, Melton AC, Travis MA. 2011. Intestinal dendritic cells specialize to activate transforming growth factor-β and induce Foxp3+ regulatory T cells via integrin αvβ8. Gastroenterology 141:1802–12
    [Google Scholar]
  263. 263. 
    Paidassi H, Acharya M, Zhang A, Mukhopadhyay S, Kwon M et al. 2011. Preferential expression of integrin αvβ8 promotes generation of regulatory T cells by mouse CD103+ dendritic cells. Gastroenterology 141:1813–20
    [Google Scholar]
  264. 264. 
    Travis MA, Reizis B, Melton AC, Masteller E, Tang Q et al. 2007. Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449:361–65
    [Google Scholar]
  265. 265. 
    Mazzini E, Massimiliano L, Penna G, Rescigno M. 2014. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity 40:248–61
    [Google Scholar]
  266. 266. 
    Shiokawa A, Kotaki R, Takano T, Nakajima-Adachi H, Hachimura S. 2017. Mesenteric lymph node CD11b CD103+ PD-L1High dendritic cells highly induce regulatory T cells. Immunology 152:52–64
    [Google Scholar]
  267. 267. 
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM et al. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism. J. Exp. Med. 204:1757–64
    [Google Scholar]
  268. 268. 
    Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M et al. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204:1775–85
    [Google Scholar]
  269. 269. 
    Boucard-Jourdin M, Kugler D, Endale Ahanda ML, This S, De Calisto J et al. 2016. β8 integrin expression and activation of TGF-β by intestinal dendritic cells are determined by both tissue microenvironment and cell lineage. J. Immunol. 197:1968–78
    [Google Scholar]
  270. 270. 
    Khare A, Krishnamoorthy N, Oriss TB, Fei M, Ray P, Ray A 2013. Cutting edge: Inhaled antigen upregulates retinaldehyde dehydrogenase in lung CD103+ but not plasmacytoid dendritic cells to induce Foxp3 de novo in CD4+ T cells and promote airway tolerance. J. Immunol. 191:25–29
    [Google Scholar]
  271. 271. 
    Yamazaki S, Dudziak D, Heidkamp GF, Fiorese C, Bonito AJ et al. 2008. CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J. Immunol. 181:6923–33
    [Google Scholar]
  272. 272. 
    Matteoli G, Mazzini E, Iliev ID, Mileti E, Fallarino F et al. 2010. Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59:595–604
    [Google Scholar]
  273. 273. 
    Munn DH, Mellor AL. 2016. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol 37:193–207
    [Google Scholar]
  274. 274. 
    Jones A, Bourque J, Kuehm L, Opejin A, Teague RM et al. 2016. Immunomodulatory functions of BTLA and HVEM govern induction of extrathymic regulatory T cells and tolerance by dendritic cells. Immunity 45:1066–77
    [Google Scholar]
  275. 275. 
    Fenton TM, Kelly A, Shuttleworth EE, Smedley C, Atakilit A et al. 2017. Inflammatory cues enhance TGFβ activation by distinct subsets of human intestinal dendritic cells via integrin αvβ8. Mucosal Immunol 10:624–34
    [Google Scholar]
  276. 276. 
    Tanaka Y, Nagashima H, Bando K, Lu L, Ozaki A et al. 2017. Oral CD103 CD11b+ classical dendritic cells present sublingual antigen and induce Foxp3+ regulatory T cells in draining lymph nodes. Mucosal Immunol 10:79–90
    [Google Scholar]
  277. 277. 
    Guilliams M, Crozat K, Henri S, Tamoutounour S, Grenot P et al. 2010. Skin-draining lymph nodes contain dermis-derived CD103 dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells. Blood 115:1958–68
    [Google Scholar]
  278. 278. 
    Liu Z, Gerner MY, Van Panhuys N, Levine AG, Rudensky AY, Germain RN. 2015. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528:225–30
    [Google Scholar]
  279. 279. 
    Leech JM, Dhariwala MO, Lowe MM, Chu K, Merana GR et al. 2019. Toxin-triggered interleukin-1 receptor signaling enables early-life discrimination of pathogenic versus commensal skin bacteria. Cell Host Microbe 26:795–809.e5
    [Google Scholar]
  280. 280. 
    Nutsch K, Chai JN, Ai TL, Russler-Germain E, Feehley T et al. 2016. Rapid and efficient generation of regulatory T cells to commensal antigens in the periphery. Cell Rep 17:206–20
    [Google Scholar]
  281. 281. 
    Gomez de Aguero M, Vocanson M, Hacini-Rachinel F, Taillardet M, Sparwasser T et al. 2012. Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8+ T cells and activating Foxp3+ regulatory T cells. J. Clin. Investig. 122:1700–11
    [Google Scholar]
  282. 282. 
    Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. 2012. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36:873–84
    [Google Scholar]
  283. 283. 
    de Heer HJ, Hammad H, Soullie T, Hijdra D, Vos N et al. 2004. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med. 200:89–98
    [Google Scholar]
  284. 284. 
    Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML et al. 2011. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat. Immunol. 12:870–78
    [Google Scholar]
  285. 285. 
    Chen W, Liang X, Peterson AJ, Munn DH, Blazar BR. 2008. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J. Immunol. 181:5396–404
    [Google Scholar]
  286. 286. 
    Ito T, Yang M, Wang YH, Lande R, Gregorio J et al. 2007. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J. Exp. Med. 204:105–15
    [Google Scholar]
  287. 287. 
    Faget J, Bendriss-Vermare N, Gobert M, Durand I, Olive D et al. 2012. ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells. Cancer Res 72:6130–41
    [Google Scholar]
  288. 288. 
    Conrad C, Gregorio J, Wang YH, Ito T, Meller S et al. 2012. Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3+ T-regulatory cells. Cancer Res 72:5240–49
    [Google Scholar]
  289. 289. 
    Iberg CA, Hawiger D. 2020. Natural and induced tolerogenic dendritic cells. J. Immunol. 204:733–44
    [Google Scholar]
  290. 290. 
    Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU et al. 2013. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342:447–53
    [Google Scholar]
  291. 291. 
    Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M et al. 2020. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581:475–79
    [Google Scholar]
  292. 292. 
    Esterhazy D, Canesso MCC, Mesin L, Muller PA, de Castro TBR et al. 2019. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature 569:126–30
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101819-025146
Loading
/content/journals/10.1146/annurev-immunol-101819-025146
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error