1932

Abstract

Among antibodies, IgA is unique because it has evolved to be secreted onto mucosal surfaces. The structure of IgA and the associated secretory component allow IgA to survive the highly proteolytic environment of mucosal surfaces but also substantially limit IgA's ability to activate effector functions on immune cells. Despite these characteristics, IgA is critical for both preventing enteric infections and shaping the local microbiome. IgA's function is determined by a distinct antigen-binding repertoire, composed of antibodies with a variety of specificities, from permissive polyspecificity to cross-reactivity to exquisite specificity to a single epitope, which act together to regulate intestinal bacteria. Development of the unique function and specificities of IgA is shaped by local cues provided by the gut-associated lymphoid tissue, driven by the constantly changing environment of the intestine and microbiota.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-102119-074236
2021-04-26
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-102119-074236.html?itemId=/content/journals/10.1146/annurev-immunol-102119-074236&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Brandtzaeg P. 2009. Mucosal immunity: induction, dissemination, and effector functions. Scand. J. Immunol. 70:6505–15
    [Google Scholar]
  2. 2. 
    Brandtzaeg P, Prydz H. 1984. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311:598171–73
    [Google Scholar]
  3. 3. 
    Woof JM, Russell MW. 2011. Structure and function relationships in IgA. Mucosal Immunol 4:6590–97
    [Google Scholar]
  4. 4. 
    Brandtzaeg P. 1975. Human secretory immunoglobulin M: an immunochemical and immunohistochemical study. Immunology 29:3559–70
    [Google Scholar]
  5. 5. 
    Magri G, Comerma L, Pybus M, Sintes J, Llige D et al. 2017. Human secretory IgM emerges from plasma cells clonally related to gut memory B cells and targets highly diverse commensals. Immunity 47:1118–34.e8
    [Google Scholar]
  6. 6. 
    Ghumra A, Shi J, Mcintosh RS, Rasmussen IB, Braathen R et al. 2009. Structural requirements for the interaction of human IgM and IgA with the human Fcα/μ receptor. Eur. J. Immunol. 39:41147–56
    [Google Scholar]
  7. 7. 
    Kumar N, Arthur CP, Ciferri C, Matsumoto ML. 2020. Structure of the secretory immunoglobulin A core. Science 261:eaaz5807
    [Google Scholar]
  8. 8. 
    de Sousa-Pereira P, Woof JM. 2019. IgA: structure, function, and developability. Antibodies 8:457
    [Google Scholar]
  9. 9. 
    Wilson TJ, Fuchs A, Colonna M. 2012. Cutting edge: Human FcRL4 and FcRL5 are receptors for IgA and IgG. J. Immunol. 188:104741–45
    [Google Scholar]
  10. 10. 
    Rifai A, Fadden K, Morrison SL, Chintalacharuvu KR. 2000. The N-glycans determine the differential blood clearance and hepatic uptake of human immunoglobulin (Ig)A1 and IgA2 isotypes. J. Exp. Med. 191:122171–82
    [Google Scholar]
  11. 11. 
    Molyneux K, Wimbury D, Pawluczyk I, Muto M, Bhachu J et al. 2017. Β1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells. Kidney Int 92:61458–68
    [Google Scholar]
  12. 12. 
    Rochereau N, Drocourt D, Perouzel E, Pavot V, Redelinghuys P et al. 2013. Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinal M cells. PLOS Biol 11:9e1001658
    [Google Scholar]
  13. 13. 
    Steffen U, Koeleman CA, Sokolova MV, Bang H, Kleyer A et al. 2020. IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat. Commun. 11:1120
    [Google Scholar]
  14. 14. 
    Toraño A, Tsuzukida Y, Liu YS, Putnam FW. 1977. Location and structural significance of the oligosaccharides in human Ig-A1 and IgA2 immunoglobulins. PNAS 74:62301–5
    [Google Scholar]
  15. 15. 
    Bondt A, Nicolardi S, Jansen BC, Stavenhagen K, Blank D et al. 2016. Longitudinal monitoring of immunoglobulin A glycosylation during pregnancy by simultaneous MALDI-FTICR-MS analysis of N- and O-glycopeptides. Sci. Rep. 6:127955
    [Google Scholar]
  16. 16. 
    Novak J, Julian BA, Mestecky J, Renfrow MB. 2012. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin. Immunopathol. 34:3365–82
    [Google Scholar]
  17. 17. 
    Blutt SE, Conner ME. 2013. The gastrointestinal frontier: IgA and viruses. Front. Immunol. 4:402
    [Google Scholar]
  18. 18. 
    Hjelt K, Grauballe PC, Paerregaard A, Nielsen OH, Krasilnikoff PA. 1987. Protective effect of preexisting rotavirus-specific immunoglobulin A against naturally acquired rotavirus infection in children. J. Med. Virol. 21:139–47
    [Google Scholar]
  19. 19. 
    Hutchings AB, Helander A, Silvey KJ, Chandran K, Lucas WT et al. 2004. Secretory immunoglobulin A antibodies against the σ1 outer capsid protein of reovirus type 1 Lang prevent infection of mouse Peyer's patches. J. Virol. 78:2947–57
    [Google Scholar]
  20. 20. 
    Johansen K, Svensson L. 1997. Neutralization of rotavirus and recognition of immunologically important epitopes on VP4 and VP7 by human IgA. Arch. Virol. 142:71491–98
    [Google Scholar]
  21. 21. 
    Savilahti E, Klemola T, Carlsson B, Mellander L, Stenvik M, Hovi T. 1988. Inadequacy of musocal IgM antibodies in selective IgA deficiency: Excretion of attenuated polio viruses is prolonged. J. Clin. Immunol. 8:289–94
    [Google Scholar]
  22. 22. 
    Keller R, Dwyer JE, Oh W, D'Amodio M. 1969. Intestinal IgA neutralizing antibodies in newborn infants following poliovirus immunization. Pediatrics 43:3330–38
    [Google Scholar]
  23. 23. 
    Wright PF, Wieland-Alter W, Ilyushina NA, Hoen AG, Arita M et al. 2014. Intestinal immunity is a determinant of clearance of poliovirus after oral vaccination. J. Infect. Dis. 209:101628–34
    [Google Scholar]
  24. 24. 
    Dey A, Molodecky NA, Verma H, Sharma P, Yang JS et al. 2016. Human circulating antibody-producing B cell as a predictive measure of mucosal immunity to poliovirus. PLOS ONE 11:1e0146010
    [Google Scholar]
  25. 25. 
    Hijano DR, Siefker DT, Shrestha B, Jaligama S, Vu LD et al. 2018. Type I interferon potentiates IgA immunity to respiratory syncytial virus infection during infancy. Sci. Rep. 8:111034
    [Google Scholar]
  26. 26. 
    Zuercher AW, Coffin SE, Thurnheer MC, Fundova P, Cebra JJ. 2002. Nasal-associated lymphoid tissue is a mucosal inductive site for virus-specific humoral and cellular immune responses. J. Immunol. 168:41796–803
    [Google Scholar]
  27. 27. 
    Lycke N, Bromander AK, Holmgren J. 1989. Role of local IgA antitoxin-producing cells for intestinal protection against cholera toxin challenge. Int. Arch. Allergy Appl. Immunol. 88:3273–79
    [Google Scholar]
  28. 28. 
    Clements JD, Norton EB. 2018. The mucosal vaccine adjuvant LT(R192G/L211A) or dmLT. mSphere 3:4e00215–18
    [Google Scholar]
  29. 29. 
    Moor K, Wotzka SY, Toska A, Diard M, Hapfelmeier S, Slack E. 2016. Peracetic acid treatment generates potent inactivated oral vaccines from a broad range of culturable bacterial species. Front. Immunol. 7:9520
    [Google Scholar]
  30. 30. 
    Mantis NJ, Rol N, Corthesy B. 2011. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4:6603–11
    [Google Scholar]
  31. 31. 
    Moor K, Diard M, Sellin ME, Felmy B, Wotzka SY et al. 2017. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 544:7651498–502
    [Google Scholar]
  32. 32. 
    Kadaoui KA, Corthësy B. 2007. Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer's patches with restriction to mucosal compartment. J. Immunol. 179:117751–57
    [Google Scholar]
  33. 33. 
    Fransen F, Zagato E, Mazzini E, Fosso B, Manzari C et al. 2015. BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 43:3527–40
    [Google Scholar]
  34. 34. 
    Peterson DA, McNulty NP, Guruge JL, Gordon JI. 2007. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2:5328–39
    [Google Scholar]
  35. 35. 
    Cullender TC, Chassaing B, Janzon A, Kumar K, Muller CE et al. 2013. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14:5571–81
    [Google Scholar]
  36. 36. 
    Reboldi A, Cyster JG. 2016. Peyer's patches: organizing B-cell responses at the intestinal frontier. Immunol. Rev. 271:1230–45
    [Google Scholar]
  37. 37. 
    Butcher EC, Rouse RV, Coffman RL, Nottenburg CN, Hardy RR, Weissman IL. 1982. Surface phenotype of Peyer's patch germinal center cells: implications for the role of germinal centers in B cell differentiation. J. Immunol. 129:62698–707
    [Google Scholar]
  38. 38. 
    Crossman LC, Chaudhuri RR, Beatson SA, Wells TJ, Desvaux M et al. 2010. A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic Escherichia coli strain H10407. J. Bacteriol. 192:215822–31
    [Google Scholar]
  39. 39. 
    Hapfelmeier S, Lawson MAE, Slack E, Kirundi JK, Stoel M et al. 2010. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328:59861705–9
    [Google Scholar]
  40. 40. 
    Fadlallah J, El-Kafsi H, Sterlin D, Juste C, Parizot C et al. 2018. Microbial ecology perturbation in human IgA deficiency. Sci. Transl. Med. 10:439eaan1217
    [Google Scholar]
  41. 41. 
    Catanzaro JR, Strauss JD, Bielecka A, Porto AF, Lobo FM et al. 2019. IgA-deficient humans exhibit gut microbiota dysbiosis despite secretion of compensatory IgM. Sci. Rep. 9:113574
    [Google Scholar]
  42. 42. 
    Ludvigsson JF, Neovius M, Hammarström L. 2014. Association between IgA deficiency and other autoimmune conditions: a population-based matched cohort study. J. Clin. Immunol. 34:4444–51
    [Google Scholar]
  43. 43. 
    Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V et al. 2013. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339:6120708–11
    [Google Scholar]
  44. 44. 
    Winter SE, Bäumler AJ. 2014. Dysbiosis in the inflamed intestine: Chance favors the prepared microbe. Gut Microbes 5:171–73
    [Google Scholar]
  45. 45. 
    Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL et al. 2007. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2:2119–29
    [Google Scholar]
  46. 46. 
    Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J et al. 2014. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158:51000–10
    [Google Scholar]
  47. 47. 
    Viladomiu M, Kivolowitz C, Abdulhamid A, Dogan B, Victorio D et al. 2017. IgA-coated E. coli enriched in Crohn's disease spondyloarthritis promote TH17-dependent inflammation. Sci. Transl. Med. 9:376eaaf9655
    [Google Scholar]
  48. 48. 
    Mathias A, Corthësy B. 2011. Recognition of gram-positive intestinal bacteria by hybridoma- and colostrum-derived secretory immunoglobulin A is mediated by carbohydrates. J. Biol. Chem. 286:1917239–47
    [Google Scholar]
  49. 49. 
    Phalipon A, Cardona A, Kraehenbuhl J-P, Edelman L, Sansonetti PJ, Corthësy B. 2002. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17:1107–15
    [Google Scholar]
  50. 50. 
    Briliūtė J, Urbanowicz PA, Luis AS, Baslé A, Paterson N et al. 2019. Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat. Microbiol. 4:91571–81
    [Google Scholar]
  51. 51. 
    Nakajima A, Vogelzang A, Maruya M, Miyajima M, Murata M et al. 2018. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J. Exp. Med. 215:82019–34
    [Google Scholar]
  52. 52. 
    Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB et al. 2018. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360:6390795–800
    [Google Scholar]
  53. 53. 
    Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T et al. 2004. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. PNAS 101:71981–86
    [Google Scholar]
  54. 54. 
    Jiang HQ, Bos NA, Cebra JJ. 2001. Timing, localization, and persistence of colonization by segmented filamentous bacteria in the neonatal mouse gut depend on immune status of mothers and pups. Infect. Immunity 69:63611–17
    [Google Scholar]
  55. 55. 
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:3485–98
    [Google Scholar]
  56. 56. 
    Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A et al. 2009. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:4677–89
    [Google Scholar]
  57. 57. 
    Kumar P, Monin L, Castillo P, Elsegeiny W, Horne W et al. 2016. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 44:3659–71
    [Google Scholar]
  58. 58. 
    Round JL, Lee SM, Li J, Tran G, Jabri B et al. 2011. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332:6032974–77
    [Google Scholar]
  59. 59. 
    Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M et al. 2011. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. PNAS 108:Suppl. 14623–30
    [Google Scholar]
  60. 60. 
    Gopalakrishna KP, Hand TW. 2020. Influence of maternal milk on the neonatal intestinal microbiome. Nutrients 12:3823
    [Google Scholar]
  61. 61. 
    Rogier EW, Frantz AL, Bruno MEC, Wedlund L, Cohen DA et al. 2014. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. PNAS 111:83074–79
    [Google Scholar]
  62. 62. 
    Planer JD, Peng Y, Kau AL, Blanton LV, Ndao IM et al. 2016. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534:7606263–66
    [Google Scholar]
  63. 63. 
    Gopalakrishna KP, Macadangdang BR, Rogers MB, Tometich JT, Firek BA et al. 2019. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants. Nat. Med. 25:71110–15
    [Google Scholar]
  64. 64. 
    Rognum TO, Thrane S, Stoltenberg L, Vege A, Brandtzaeg P. 1992. Development of intestinal mucosal immunity in fetal life and the first postnatal months. Pediatr. Res. 32:2145–49
    [Google Scholar]
  65. 65. 
    Wilson E, Butcher EC 2004. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J. Exp. Med. 200:6805–9
    [Google Scholar]
  66. 66. 
    Lindner C, Thomsen I, Wahl B, Ugur M, Sethi MK et al. 2015. Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat. Immunol. 16:8880–88
    [Google Scholar]
  67. 67. 
    Ramanan D, Sefik E, Galván-Peña S, Wu M, Yang L et al. 2020. An immunologic mode of multigenerational transmission governs a gut Treg setpoint. Cell 181:61276–90.e13
    [Google Scholar]
  68. 68. 
    Pravieux JJ, Poulet H, Charreyre C, Juillard V. 2007. Protection of newborn animals through maternal immunization. J. Comp. Pathol. 137:Suppl. 1S32–34
    [Google Scholar]
  69. 69. 
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G et al. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS 107:2611971–75
    [Google Scholar]
  70. 70. 
    Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A et al. 2019. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574:7776117–21
    [Google Scholar]
  71. 71. 
    Mirpuri J, Raetz M, Sturge CR, Wilhelm CL, Benson A et al. 2014. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes 5:128–39
    [Google Scholar]
  72. 72. 
    Niño DF, Sodhi CP, Hackam DJ. 2016. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 13:10590–600
    [Google Scholar]
  73. 73. 
    Nolan LS, Parks OB, Good M. 2019. A review of the immunomodulating components of maternal breast milk and protection against necrotizing enterocolitis. Nutrients 12:114
    [Google Scholar]
  74. 74. 
    Schack-Nielsen L, Michaelsen KF. 2006. Breast feeding and future health. Curr. Opin. Clin. Nutr. Metab. Care 9:3289–96
    [Google Scholar]
  75. 75. 
    Torow N, Yu K, Hassani K, Freitag J, Schulz O et al. 2015. Active suppression of intestinal CD4+TCRαβ+ T-lymphocyte maturation during the postnatal period. Nat. Commun. 6:17725
    [Google Scholar]
  76. 76. 
    Koch MA, Reiner GL, Lugo KA, Kreuk LSM, Stanbery AG et al. 2016. Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life. Cell 165:4827–41
    [Google Scholar]
  77. 77. 
    Ohnmacht C, Park J-H, Cording S, Wing JB, Atarashi K et al. 2015. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349:6251989–93
    [Google Scholar]
  78. 78. 
    Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D et al. 2015. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349:6251993–97
    [Google Scholar]
  79. 79. 
    Bunker JJ, Flynn TM, Koval JC, Shaw DG, Meisel M et al. 2015. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43:3541–53
    [Google Scholar]
  80. 80. 
    Sterlin D, Fadlallah J, Adams O, Fieschi C, Parizot C et al. 2019. Human IgA binds a diverse array of commensal bacteria. J. Exp. Med. 217:3e20181635
    [Google Scholar]
  81. 81. 
    Pabst O, Slack E. 2019. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol 3:6361108–10
    [Google Scholar]
  82. 82. 
    Bunker JJ, Erickson SA, Flynn TM, Henry C, Koval JC et al. 2017. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358:6361eaan6619
    [Google Scholar]
  83. 83. 
    Wei M, Shinkura R, Doi Y, Maruya M, Fagarasan S, Honjo T. 2011. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat. Immunol. 12:3264–70
    [Google Scholar]
  84. 84. 
    Boursier L, Dunn-Walters DK, Spencer J 1999. Characteristics of IgVH genes used by human intestinal plasma cells from childhood. Immunology 97:4558–64
    [Google Scholar]
  85. 85. 
    Lindner C, Wahl B, Föhse L, Suerbaum S, Macpherson AJ et al. 2012. Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. J. Exp. Med. 209:2365–77
    [Google Scholar]
  86. 86. 
    Kabbert J, Benckert J, Rollenske T, Hitch TCA, Clavel T et al. 2020. High microbiota reactivity of adult human intestinal IgA requires somatic mutations. J. Exp. Med. 217:11e20200275
    [Google Scholar]
  87. 87. 
    Roth DB. 2014. V(D)J recombination: mechanism, errors, and fidelity. Microbiol. Spectr. 2:6 https://doi.org/10.1128/microbiolspec.MDNA3-0041-2014
    [Crossref] [Google Scholar]
  88. 88. 
    Casola S, Otipoby KL, Alimzhanov M, Humme S, Uyttersprot N et al. 2004. B cell receptor signal strength determines B cell fate. Nat. Immunol. 5:3317–27
    [Google Scholar]
  89. 89. 
    Bemark M, Sale JE, Kim HJ, Berek C, Cosgrove RA, Neuberger MS. 2000. Somatic hypermutation in the absence of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) or recombination-activating gene (Rag)1 activity. J. Exp. Med. 192:101509–14
    [Google Scholar]
  90. 90. 
    Yeap L-S, Hwang JK, Du Z, Meyers RM, Meng F-L et al. 2015. Sequence-intrinsic mechanisms that target AID mutational outcomes on antibody genes. Cell 163:51124–37
    [Google Scholar]
  91. 91. 
    Kubinak JL, Round JL. 2012. Toll-like receptors promote mutually beneficial commensal-host interactions. PLOS Pathog 8:7e1002785
    [Google Scholar]
  92. 92. 
    Lutzker S, Rothman P, Pollock R, Coffman R, Alt FW. 1988. Mitogen- and IL-4-regulated expression of germ-line Ig γ2b transcripts: evidence for directed heavy chain class switching. Cell 53:2177–84
    [Google Scholar]
  93. 93. 
    Bekeredjian-Ding I, Jego G. 2009. Toll-like receptors—sentries in the B-cell response. Immunology 128:3311–23
    [Google Scholar]
  94. 94. 
    Bernasconi NL, Onai N, Lanzavecchia A. 2003. A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 101:114500–4
    [Google Scholar]
  95. 95. 
    Berin MC, Wang W. 2012. Reduced severity of peanut-induced anaphylaxis in TLR9-deficient mice is associated with selective defects in humoral immunity. Mucosal Immunol 6:1114–21
    [Google Scholar]
  96. 96. 
    Günaydın G, Nordgren J, Svensson L, Hammarström L. 2014. Mutations in toll-like receptor 3 are associated with elevated levels of rotavirus-specific IgG antibodies in IgA-deficient but not IgA-sufficient individuals. Clin. Vaccine Immunol. 21:3298–301
    [Google Scholar]
  97. 97. 
    Hou B, Saudan P, Ott G, Wheeler ML, Ji M et al. 2011. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity 34:3375–84
    [Google Scholar]
  98. 98. 
    Kubinak JL, Petersen C, Stephens WZ, Soto R, Bake E et al. 2015. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17:2153–63
    [Google Scholar]
  99. 99. 
    Price AE, Shamardani K, Lugo KA, Deguine J, Roberts AW et al. 2018. A map of Toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity 49:3560–66
    [Google Scholar]
  100. 100. 
    Nowosad CR, Mesin L, Castro TBR, Wichmann C, Donaldson GP et al. 2020. Tunable dynamics of B cell selection in gut germinal centres. Nature 588:7837321–26
    [Google Scholar]
  101. 101. 
    Crabbé PA, Nash DR, Bazin H, Eyssen DV, Heremans JF. 1969. Antibodies of the IgA type in intestinal plasma cells of germfree mice after oral or parenteral immunization with ferritin. J. Exp. Med. 130:4723–44
    [Google Scholar]
  102. 102. 
    Butterton JR, Ryan ET, Shahin RA, Calderwood SB. 1996. Development of a germfree mouse model of Vibrio cholerae infection. Infect. Immunity 64:104373–77
    [Google Scholar]
  103. 103. 
    Reboldi A, Arnon TI, Rodda LB, Atakilit A, Sheppard D, Cyster JG. 2016. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches. Science 352:6287aaf4822
    [Google Scholar]
  104. 104. 
    Berland R, Wortis HH. 2002. Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol. 20:253–300
    [Google Scholar]
  105. 105. 
    Kroese FG, Butcher EC, Stall AM, Lalor PA, Adams S, Herzenberg LA 1989. Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int. Immunol. 1:175–84
    [Google Scholar]
  106. 106. 
    Macpherson AJ. 2000. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:54742222–26
    [Google Scholar]
  107. 107. 
    Savage HP, Yenson VM, Sawhney SS, Mousseau BJ, Lund FE, Baumgarth N. 2017. Blimp-1-dependent and -independent natural antibody production by B-1 and B-1-derived plasma cells. J. Exp. Med. 214:92777–94
    [Google Scholar]
  108. 108. 
    Kreuk LS, Koch MA, Slayden LC, Lind NA, Chu S et al. 2019. B cell receptor and Toll-like receptor signaling coordinate to control distinct B-1 responses to both self and the microbiota. eLife 8:e47015 https://doi.org/10.7554/eLife.47015
    [Crossref] [Google Scholar]
  109. 109. 
    Cyster JG, Allen CDC. 2019. B cell responses: cell interaction dynamics and decisions. Cell 177:3524–40
    [Google Scholar]
  110. 110. 
    Crotty S. 2014. T follicular helper cell differentiation, function, and roles in disease. Immunity 41:4529–42
    [Google Scholar]
  111. 111. 
    Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K. 2010. Adaptive immune regulation in the gut: T cell–dependent and T cell–independent IgA synthesis. Annu. Rev. Immunol. 28:243–73
    [Google Scholar]
  112. 112. 
    Tezuka H, Abe Y, Asano J, Sato T, Liu J et al. 2011. Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction. Immunity 34:2247–57
    [Google Scholar]
  113. 113. 
    Chen H, Zhang Y, Ye AY, Du Z, Xu M et al. 2020. BCR selection and affinity maturation in Peyer's patch germinal centres. Nature 152:417–15
    [Google Scholar]
  114. 114. 
    Tsuji M, Komatsu N, Kawamoto S, Suzuki K, Kanagawa O et al. 2009. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science 323:59201488–92
    [Google Scholar]
  115. 115. 
    Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO. 2009. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. PNAS 106:4619256–61
    [Google Scholar]
  116. 116. 
    Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K et al. 2014. Foxp3+ T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41:1152–65
    [Google Scholar]
  117. 117. 
    Hirota K, Turner J-E, Villa M, Duarte JH, Demengeot J et al. 2013. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 14:4372–79
    [Google Scholar]
  118. 118. 
    Dullaers M, Li D, Xue Y, Ni L, Gayet I et al. 2009. A T cell-dependent mechanism for the induction of human mucosal homing immunoglobulin A-secreting plasmablasts. Immunity 30:1120–29
    [Google Scholar]
  119. 119. 
    Xu J, Foy TM, Laman JD, Elliott EA, Dunn JJ et al. 1994. Mice deficient for the CD40 ligand. Immunity 1:5423–31
    [Google Scholar]
  120. 120. 
    Bergqvist P, Gardby E, Stensson A, Bemark M, Lycke NY. 2006. Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J. Immunol. 177:117772–83
    [Google Scholar]
  121. 121. 
    Zhang B, Liu E, Gertie JA, Joseph J, Xu L et al. 2020. Divergent T follicular helper cell requirement for IgA and IgE production to peanut during allergic sensitization. Sci. Immunol. 5:47eaay2754
    [Google Scholar]
  122. 122. 
    Facchetti F, Appiani C, Salvi L, Levy J, Notarangelo LD. 1995. Immunohistologic analysis of ineffective CD40-CD40 ligand interaction in lymphoid tissues from patients with X-linked immunodeficiency with hyper-IgM: abortive germinal center cell reaction and severe depletion of follicular dendritic cells. J. Immunol. 154:126624–33
    [Google Scholar]
  123. 123. 
    Tafuri A, Shahinian A, Bladt F, Yoshinaga SK, Jordana M et al. 2001. ICOS is essential for effective T-helper-cell responses. Nature 409:6816105–9
    [Google Scholar]
  124. 124. 
    Mak TW, Shahinian A, Yoshinaga SK, Wakeham A, Boucher L-M et al. 2003. Costimulation through the inducible costimulator ligand is essential for both T helper and B cell functions in T cell-dependent B cell responses. Nat. Immunol. 4:8765–72
    [Google Scholar]
  125. 125. 
    Proietti M, Cornacchione V, Jost TR, Romagnani A, Faliti CE et al. 2014. ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer's patches to promote host-microbiota mutualism. Immunity 41:5789–801
    [Google Scholar]
  126. 126. 
    Kawamoto S, Tran TH, Maruya M, Suzuki K, Doi Y et al. 2012. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336:6080485–89
    [Google Scholar]
  127. 127. 
    Xu Z, Zan H, Pone EJ, Mai T, Casali P. 2012. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat. Rev. Immunol. 12:7517–31
    [Google Scholar]
  128. 128. 
    Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:5553–63
    [Google Scholar]
  129. 129. 
    Dedeoglu F, Horwitz B, Chaudhuri J, Alt FW, Geha RS. 2004. Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFκB. Int. Immunol. 16:3395–404
    [Google Scholar]
  130. 130. 
    Hodgkin PD, Lee JH, Lyons AB. 1996. B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med. 184:1277–81
    [Google Scholar]
  131. 131. 
    Kinoshita K, Harigai M, Fagarasan S. 2001. A hallmark of active class switch recombination: transcripts directed by I promoters on looped-out circular DNAs. PNAS 98:2212620–23
    [Google Scholar]
  132. 132. 
    Mora JR, Iwata M, Eksteen B, Song S-Y, Junt T et al. 2006. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314:58021157–60
    [Google Scholar]
  133. 133. 
    Pantazi E, Marks E, Stolarczyk E, Lycke N, Noelle RJ, Elgueta R 2015. Retinoic acid signaling in B cells is essential for oral immunization and microflora composition. J. Immunol. 195:41368–71
    [Google Scholar]
  134. 134. 
    Massacand JC, Kaiser P, Ernst B, Tardivel A, Bürki K et al. 2008. Intestinal bacteria condition dendritic cells to promote IgA production. PLOS ONE 3:7e2588
    [Google Scholar]
  135. 135. 
    Hall JA, Cannons JL, Grainger JR, Dos Santos LM, Hand TW et al. 2011. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha. Immunity 34:3435–47
    [Google Scholar]
  136. 136. 
    Mucida D, Park Y, Kim G, Turovskaya O, Scott I et al. 2007. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:5835256–60
    [Google Scholar]
  137. 137. 
    Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV, Hall J, Sun C-M et al. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism. J. Exp. Med. 204:81757–64
    [Google Scholar]
  138. 138. 
    Shockett P, Stavnezer J. 1991. Effect of cytokines on switching to IgA and alpha germline transcripts in the B lymphoma I.29 mu: Transforming growth factor-beta activates transcription of the unrearranged C alpha gene. J. Immunol. 147:124374–83
    [Google Scholar]
  139. 139. 
    Lebman DA, Nomura DY, Coffman RL, Lee FD. 1990. Molecular characterization of germ-line immunoglobulin A transcripts produced during transforming growth factor type beta-induced isotype switching. PNAS 87:103962–66
    [Google Scholar]
  140. 140. 
    van Ginkel FW, Wahl SM, Kearney JF, Kweon M-N, Fujihashi K et al. 1999. Partial IgA-deficiency with increased Th2-type cytokines in TGF-β1 knockout mice. J. Immunol. 163:41951–57
    [Google Scholar]
  141. 141. 
    Cazac BB, Roes J. 2000. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13:4443–51
    [Google Scholar]
  142. 142. 
    Albright AR, Kabat J, Li M, Raso F, Reboldi A, Muppidi JR 2019. TGFβ signaling in germinal center B cells promotes the transition from light zone to dark zone. J. Exp. Med. 216:112531–45
    [Google Scholar]
  143. 143. 
    Tezuka H, Abe Y, Iwata M, Takeuchi H, Ishikawa H et al. 2007. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448:7156929–33
    [Google Scholar]
  144. 144. 
    Wu S, Majeed SR, Evans TM, Camus MD, Wong NML et al. 2016. Clathrin light chains’ role in selective endocytosis influences antibody isotype switching. PNAS 113:359816–21
    [Google Scholar]
  145. 145. 
    Hinck AP, Mueller TD, Springer TA. 2016. Structural biology and evolution of the TGF-β family. Cold Spring Harb. Perspect. Biol. 8:12a022103
    [Google Scholar]
  146. 146. 
    Suzuki K, Maruya M, Kawamoto S, Sitnik K, Kitamura H et al. 2010. The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut. Immunity 33:171–83
    [Google Scholar]
  147. 147. 
    Travis MA, Sheppard D. 2014. TGF-β activation and function in immunity. Annu. Rev. Immunol. 32:51–82
    [Google Scholar]
  148. 148. 
    Worthington JJ, Kelly A, Smedley C, Bauché D, Campbell S et al. 2015. Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential for suppression of T- cell-mediated inflammation. Immunity 42:5903–15
    [Google Scholar]
  149. 149. 
    Neumann C, Blume J, Roy U, Teh PP, Vasanthakumar A et al. 2019. c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host-microbiota homeostasis. Nat. Immunol. 20:4471–81
    [Google Scholar]
  150. 150. 
    Xu M, Pokrovskii M, Ding Y, Yi R, Au C et al. 2018. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554:7692373–77
    [Google Scholar]
  151. 151. 
    Gros MJ, Naquet P, Guinamard RR. 2008. Cell intrinsic TGF-β1 regulation of B cells. J. Immunol. 180:128153–58
    [Google Scholar]
  152. 152. 
    Dedobbeleer O, Stockis J, van der Woning B, Coulie PG, Lucas S. 2017. Active TGF-β1 released from GARP/TGF-β1 complexes on the surface of stimulated human B lymphocytes increases class-switch recombination and production of IgA. J. Immunol. 199:2391–96
    [Google Scholar]
  153. 153. 
    Nakamura K, Kitani A, Strober W. 2001. Cell contact–dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface–bound transforming growth factor β. J. Exp. Med. 194:5629–44
    [Google Scholar]
  154. 154. 
    Stockis J, Colau D, Coulie PG, Lucas S 2009. Membrane protein GARP is a receptor for latent TGF-β on the surface of activated human Treg. Eur. J. Immunol. 39:123315–22
    [Google Scholar]
  155. 155. 
    Sayin I, Radtke AJ, Vella LA, Jin W, Wherry EJ et al. 2018. Spatial distribution and function of T follicular regulatory cells in human lymph nodes. J. Exp. Med. 215:61531–42
    [Google Scholar]
  156. 156. 
    Gandhi R, DE Anderson, Weiner HL. 2007. Immature human dendritic cells express latency-associated peptide and inhibit T cell activation in a TGF-β-dependent manner. J. Immunol. 178:74017–21
    [Google Scholar]
  157. 157. 
    Castigli E, Scott S, Dedeoglu F, Bryce P, Jabara H et al. 2004. Impaired IgA class switching in APRIL-deficient mice. PNAS 101:113903–8
    [Google Scholar]
  158. 158. 
    Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F et al. 2005. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat. Genet. 37:8829–34
    [Google Scholar]
  159. 159. 
    He B, Xu W, Santini PA, Polydorides AD, Chiu A et al. 2007. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26:6812–26
    [Google Scholar]
  160. 160. 
    Castigli E, Wilson SA, Scott S, Dedeoglu F, Xu S et al. 2005. TACI and BAFF-R mediate isotype switching in B cells. J. Exp. Med. 201:135–39
    [Google Scholar]
  161. 161. 
    Warnatz K, Salzer U, Rizzi M, Fischer B, Gutenberger S et al. 2009. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. PNAS 106:3313945–50
    [Google Scholar]
  162. 162. 
    Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S et al. 2001. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293:55372111–14
    [Google Scholar]
  163. 163. 
    Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M. 2004. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J. Immunol. 173:42245–52
    [Google Scholar]
  164. 164. 
    Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A et al. 2002. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3:9822–29
    [Google Scholar]
  165. 165. 
    Craxton A, Magaletti D, Ryan EJ, Clark EA 2003. Macrophage- and dendritic cell–dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood 101:114464–71
    [Google Scholar]
  166. 166. 
    Parsa R, Lund H, Georgoudaki A-M, Zhang X-M, Ortlieb Guerreiro-Cacais A et al. 2016. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J. Exp. Med. 213:81537–53
    [Google Scholar]
  167. 167. 
    Craig SW, Cebra JJ. 1971. Peyer's patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J. Exp. Med. 134:1188–200
    [Google Scholar]
  168. 168. 
    Neutra MR, Pringault E, Kraehenbuhl J-P. 1996. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu. Rev. Immunol. 14:275–300
    [Google Scholar]
  169. 169. 
    Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S et al. 2009. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462:7270226–30
    [Google Scholar]
  170. 170. 
    Wang J, Gusti V, Saraswati A, Lo DD. 2011. Convergent and divergent development among M cell lineages in mouse mucosal epithelium. J. Immunol. 187:105277–85
    [Google Scholar]
  171. 171. 
    Kimura S, Kobayashi N, Nakamura Y, Kanaya T, Takahashi D et al. 2019. Sox8 is essential for M cell maturation to accelerate IgA response at the early stage after weaning in mice. J. Exp. Med. 216:4831–46
    [Google Scholar]
  172. 172. 
    Bergqvist P, Stensson A, Lycke NY, Bemark M. 2010. T cell-independent IgA class switch recombination is restricted to the GALT and occurs prior to manifest germinal center formation. J. Immunol. 184:73545–53
    [Google Scholar]
  173. 173. 
    Roco JA, Mesin L, Binder SC, Nefzger C, Gonzalez-Figueroa P et al. 2019. Class-switch recombination occurs infrequently in germinal centers. Immunity 51:2337–50.e7
    [Google Scholar]
  174. 174. 
    Esterházy D, Canesso MCC, Mesin L, Muller PA, de Castro TBR et al. 2019. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature 569:7754126–30
    [Google Scholar]
  175. 175. 
    Houston SA, Cerovic V, Thomson C, Brewer J, Mowat AM, Milling S. 2016. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol. 9:2468–78
    [Google Scholar]
  176. 176. 
    Hahn A, Thiessen N, Pabst R, Buettner M, Bode U. 2010. Mesenteric lymph nodes are not required for an intestinal immunoglobulin A response to oral cholera toxin. Immunology 129:3427–36
    [Google Scholar]
  177. 177. 
    Santiago AF, Fernandes RM, Santos BP, Assis FA, Oliveira RP et al. 2008. Role of mesenteric lymph nodes and aging in secretory IgA production in mice. Cell. Immunol. 253:1–25–10
    [Google Scholar]
  178. 178. 
    Rennert PD, Browning JL, Mebius R, Mackay F, Hochman PS. 1996. Surface lymphotoxin alpha/beta complex is required for the development of peripheral lymphoid organs. J. Exp. Med. 184:51999–2006
    [Google Scholar]
  179. 179. 
    Yamamoto M, Rennert P, McGhee JR, Kweon MN, Yamamoto S et al. 2000. Alternate mucosal immune system: Organized Peyer's patches are not required for IgA responses in the gastrointestinal tract. J. Immunol. 164:105184–91
    [Google Scholar]
  180. 180. 
    Macpherson AJ, Uhr T. 2004. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:56641662–65
    [Google Scholar]
  181. 181. 
    Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS et al. 2016. Gut microbiota–induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 44:3647–58
    [Google Scholar]
  182. 182. 
    Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD. 2003. Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin receptor, and TNF receptor I function. J. Immunol. 170:115475–82
    [Google Scholar]
  183. 183. 
    Tsuji M, Suzuki K, Kitamura H, Maruya M, Kinoshita K et al. 2008. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29:2261–71
    [Google Scholar]
  184. 184. 
    Bouskra D, Brézillon C, Bérard M, Werts C, Varona R et al. 2008. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456:7221507–10
    [Google Scholar]
  185. 185. 
    Gustafson CE, Higbee D, Yeckes AR, Wilson CC, De Zoeten EF et al. 2013. Limited expression of APRIL and its receptors prior to intestinal IgA plasma cell development during human infancy. Mucosal Immunol 7:3467–77
    [Google Scholar]
  186. 186. 
    Lochner M, Ohnmacht C, Presley L, Bruhns P, Si-Tahar M et al. 2011. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. J. Exp. Med. 208:1125–34
    [Google Scholar]
  187. 187. 
    Lécuyer E, Rakotobe S, Lengliné-Garnier H, Lebreton C, Picard M et al. 2014. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40:4608–20
    [Google Scholar]
  188. 188. 
    Koscsó B, Kurapati S, Rodrigues RR, Nedjic J, Gowda K et al. 2020. Gut-resident CX3CR1hi macrophages induce tertiary lymphoid structures and IgA response in situ. Sci. Immunol. 5:46eaax0062
    [Google Scholar]
  189. 189. 
    Crouch EE, Li Z, Takizawa M, Fichtner-Feigl S, Gourzi P et al. 2007. Regulation of AID expression in the immune response. J. Exp. Med. 204:51145–56
    [Google Scholar]
  190. 190. 
    Fagarasan S, Kinoshita K, Muramatsu M, Ikuta K, Honjo T. 2001. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413:6856639–43
    [Google Scholar]
  191. 191. 
    Shikina T, Hiroi T, Iwatani K, Jang MH, Fukuyama S et al. 2004. IgA class switch occurs in the organized nasopharynx- and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J. Immunol. 172:106259–64
    [Google Scholar]
  192. 192. 
    Weinstein PD, Cebra JJ. 1991. The preference for switching to IgA expression by Peyer's patch germinal center B cells is likely due to the intrinsic influence of their microenvironment. J. Immunol. 147:124126–35
    [Google Scholar]
  193. 193. 
    Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. 2014. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121:91–119
    [Google Scholar]
  194. 194. 
    Wu W, Sun M, Chen F, Cao AT, Liu H et al. 2017. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol 10:4946–56
    [Google Scholar]
  195. 195. 
    Martin-Gallausiaux C, Béguet-Crespel F, Marinelli L, Jamet A, Ledue F et al. 2018. Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci. Rep. 8:19742
    [Google Scholar]
  196. 196. 
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:7480451–55
    [Google Scholar]
  197. 197. 
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:6145569–73
    [Google Scholar]
  198. 198. 
    Boucard-Jourdin M, Kugler D, Endale Ahanda M-L, This S, de Calisto J et al. 2016. Β8 integrin expression and activation of TGF-β by intestinal dendritic cells are determined by both tissue microenvironment and cell lineage. J. Immunol. 197:51968–78
    [Google Scholar]
  199. 199. 
    Castillo-Dela Cruz P, Wanek AG, Kumar P, An X, Elsegeiny W et al. 2019. Intestinal IL-17R signaling constrains IL-18-driven liver inflammation by the regulation of microbiome-derived products. Cell Rep 29:82270–77
    [Google Scholar]
  200. 200. 
    Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y et al. 2015. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163:2367–80
    [Google Scholar]
  201. 201. 
    Yang C, Mogno I, Contijoch EJ, Borgerding JN, Aggarwala V et al. 2020. Fecal IgA levels are determined by strain-level differences in Bacteroides ovatus and are modifiable by gut microbiota manipulation. Cell Host Microbe 27:3467–75.e6
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-102119-074236
Loading
/content/journals/10.1146/annurev-immunol-102119-074236
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error