1932

Abstract

Programmed cell death (PCD) is a requisite feature of development and homeostasis but can also be indicative of infections, injuries, and pathologies. In concordance with these heterogeneous contexts, an array of disparate effector responses occur downstream of cell death and its clearance—spanning tissue morphogenesis, homeostatic turnover, host defense, active dampening of inflammation, and tissue repair. This raises a fundamental question of how a single contextually appropriate response ensues after an event of PCD. To explore how complex inputs may together tailor the specificity of the resulting effector response, here we consider () the varying contexts during which different cell death modalities are observed, () the nature of the information that can be passed on by cell corpses, and () the ways by which efferocyte populations synthesize signals from dying cells with those from the surrounding microenvironment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-102819-072601
2021-04-26
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-102819-072601.html?itemId=/content/journals/10.1146/annurev-immunol-102819-072601&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Cooper GM. 2019. The Cell: A Molecular Approach New York: Sinauer Assoc.
  2. 2. 
    Dean D, Powers VC. 2001. Persistent Chlamydia trachomatis infections resist apoptotic stimuli. Infect. Immun. 69:2442–47
    [Google Scholar]
  3. 3. 
    Brune W, Andoniou CE. 2017. Die another day: inhibition of cell death pathways by cytomegalovirus. Viruses 9:9249
    [Google Scholar]
  4. 4. 
    Asally M, Kittisopikul M, Rue P, Du Y, Hu Z et al. 2012. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. italicPNAS 109:18891–96
    [Google Scholar]
  5. 5. 
    Seed KD. 2015. Battling phages: how bacteria defend against viral attack. PLOS Pathog 11:e1004847
    [Google Scholar]
  6. 6. 
    Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8:317–27
    [Google Scholar]
  7. 7. 
    Reece SE, Pollitt LC, Colegrave N, Gardner A. 2011. The meaning of death: evolution and ecology of apoptosis in protozoan parasites. PLOS Pathog 7:e1002320
    [Google Scholar]
  8. 8. 
    Al-Olayan EM, Williams GT, Hurd H. 2002. Apoptosis in the malaria protozoan, Plasmodium berghei: a possible mechanism for limiting intensity of infection in the mosquito. Int. J. Parasitol. 32:1133–43
    [Google Scholar]
  9. 9. 
    Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P. 2002. Alice in caspase land: a phylogenetic analysis of caspases from worm to man. Cell Death Differ 9:358–61
    [Google Scholar]
  10. 10. 
    Ellis HM, Horvitz HR. 1986. Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–29
    [Google Scholar]
  11. 11. 
    Uren AG, O'Rourke K, Aravind LA, Pisabarro MT, Seshagiri S et al. 2000. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6:961–67
    [Google Scholar]
  12. 12. 
    Cullen SP, Kearney CJ, Clancy DM, Martin SJ. 2015. Diverse activators of the NLRP3 inflammasome promote IL-1β secretion by triggering necrosis. Cell Rep 11:1535–48
    [Google Scholar]
  13. 13. 
    Garrod KR, Moreau HD, Garcia Z, Lemaitre F, Bouvier I et al. 2012. Dissecting T cell contraction in vivo using a genetically encoded reporter of apoptosis. Cell Rep 2:1438–47
    [Google Scholar]
  14. 14. 
    Perez-Garijo A, Martin FA, Morata G. 2004. Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131:5591–98
    [Google Scholar]
  15. 15. 
    Ryoo HD, Gorenc T, Steller H. 2004. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev. Cell 7:491–501
    [Google Scholar]
  16. 16. 
    Bosurgi L, Cao YG, Cabeza-Cabrerizo M, Tucci A, Hughes LD et al. 2017. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 356:1072–76
    [Google Scholar]
  17. 17. 
    de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. 2014. Of macrophages and red blood cells: a complex love story. Front. Physiol. 5:9
    [Google Scholar]
  18. 18. 
    Jena MK, Jaswal S, Kumar S, Mohanty AK. 2019. Molecular mechanism of mammary gland involution: an update. Dev. Biol. 445:145–55
    [Google Scholar]
  19. 19. 
    Armstrong GM, Maybin JA, Murray AA, Nicol M, Walker C et al. 2017. Endometrial apoptosis and neutrophil infiltration during menstruation exhibits spatial and temporal dynamics that are recapitulated in a mouse model. Sci. Rep. 7:17416
    [Google Scholar]
  20. 20. 
    Thompson CK. 2011. Cell death and the song control system: a model for how sex steroid hormones regulate naturally-occurring neurodegeneration. Dev. Growth Differ. 53:213–24
    [Google Scholar]
  21. 21. 
    Morioka S, Maueroder C, Ravichandran KS. 2019. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50:1149–62
    [Google Scholar]
  22. 22. 
    Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA et al. 2008. Dynamics of fat cell turnover in humans. Nature 453:783–87
    [Google Scholar]
  23. 23. 
    Spalding KL, Bhardwaj RD, Buchholz BA, Druid H, Frisen J. 2005. Retrospective birth dating of cells in humans. Cell 122:133–43
    [Google Scholar]
  24. 24. 
    Leblond CP, Stevens CE. 1948. The constant renewal of the intestinal epithelium in the albino rat. Anat. Rec. 100:357–77
    [Google Scholar]
  25. 25. 
    Zheng J, Edelman SW, Tharmarajah G, Walker DW, Pletcher SD, Seroude L 2005. Differential patterns of apoptosis in response to aging in Drosophila. PNAS 102:12083–88
    [Google Scholar]
  26. 26. 
    Dirks A, Leeuwenburgh C. 2002. Apoptosis in skeletal muscle with aging. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282:R519–27
    [Google Scholar]
  27. 27. 
    Yeo W, Gautier J. 2004. Early neural cell death: dying to become neurons. Dev. Biol. 274:233–44
    [Google Scholar]
  28. 28. 
    Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC et al. 2000. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6:1389–99
    [Google Scholar]
  29. 29. 
    Jordan D, Hindocha S, Dhital M, Saleh M, Khan W. 2012. The epidemiology, genetics and future management of syndactyly. Open Orthop. J. 6:14–27
    [Google Scholar]
  30. 30. 
    Avino TA, Barger N, Vargas MV, Carlson EL, Amaral DG et al. 2018. Neuron numbers increase in the human amygdala from birth to adulthood, but not in autism. PNAS 115:3710–15
    [Google Scholar]
  31. 31. 
    Tettamanti G, Casartelli M. 2019. Cell death during complete metamorphosis. Philos. Trans. R. Soc. Lond. B 374:20190065
    [Google Scholar]
  32. 32. 
    Nakajima K, Fujimoto K, Yaoita Y. 2005. Programmed cell death during amphibian metamorphosis. Semin. Cell Dev. Biol. 16:271–80
    [Google Scholar]
  33. 33. 
    Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D et al. 2018. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541
    [Google Scholar]
  34. 34. 
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y et al. 2004. Neutrophil extracellular traps kill bacteria. Science 303:1532–35
    [Google Scholar]
  35. 35. 
    Wiens M, Krasko A, Perovic S, Muller WE. 2003. Caspase-mediated apoptosis in sponges: cloning and function of the phylogenetic oldest apoptotic proteases from Metazoa. Biochim. Biophys. Acta Mol. Cell Res. 1593:179–89
    [Google Scholar]
  36. 36. 
    Maya-Ramos L, Mikawa T 2020. Programmed cell death along the midline axis patterns ipsilaterality in gastrulation. Science 367:197–200
    [Google Scholar]
  37. 37. 
    Hwang JS, Kobayashi C, Agata K, Ikeo K, Gojobori T 2004. Detection of apoptosis during planarian regeneration by the expression of apoptosis-related genes and TUNEL assay. Gene 333:15–25
    [Google Scholar]
  38. 38. 
    Huh JR, Guo M, Hay BA. 2004. Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr. Biol. 14:1262–66
    [Google Scholar]
  39. 39. 
    Kondo S, Senoo-Matsuda N, Hiromi Y, Miura M. 2006. DRONC coordinates cell death and compensatory proliferation. Mol. Cell Biol. 26:7258–68
    [Google Scholar]
  40. 40. 
    Wells BS, Yoshida E, Johnston LA. 2006. Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr. Biol. 16:1606–15
    [Google Scholar]
  41. 41. 
    Fogarty CE, Bergmann A. 2017. Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease. Cell Death Differ 24:1390–400
    [Google Scholar]
  42. 42. 
    Simader E, Beer L, Laggner M, Vorstandlechner V, Gugerell A et al. 2019. Tissue-regenerative potential of the secretome of γ-irradiated peripheral blood mononuclear cells is mediated via TNFRSF1B-induced necroptosis. Cell Death Dis 10:729
    [Google Scholar]
  43. 43. 
    Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P. 1998. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94:727–37
    [Google Scholar]
  44. 44. 
    Stern M, Savill J, Haslett C. 1996. Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis: mediation by αvβ3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. Am. J. Pathol. 149:911–21
    [Google Scholar]
  45. 45. 
    Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. 1997. Immunosuppressive effects of apoptotic cells. Nature 390:350–51
    [Google Scholar]
  46. 46. 
    Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. 1998. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Investig. 101:890–98
    [Google Scholar]
  47. 47. 
    Atkin-Smith GK, Duan M, Chen W, Poon IKH 2018. The induction and consequences of influenza A virus-induced cell death. Cell Death Dis 9:1002
    [Google Scholar]
  48. 48. 
    Blachere NE, Darnell RB, Albert ML. 2005. Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation. PLOS Biol 3:e185
    [Google Scholar]
  49. 49. 
    Lara-Tejero M, Sutterwala FS, Ogura Y, Grant EP, Bertin J et al. 2006. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J. Exp. Med. 203:1407–12
    [Google Scholar]
  50. 50. 
    Raupach B, Peuschel SK, Monack DM, Zychlinsky A. 2006. Caspase-1-mediated activation of interleukin-1β (IL-1β) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect. Immun. 74:4922–26
    [Google Scholar]
  51. 51. 
    Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M et al. 2010. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11:1136–42
    [Google Scholar]
  52. 52. 
    Mariathasan S, Weiss DS, Dixit VM, Monack DM. 2005. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J. Exp. Med. 202:1043–49
    [Google Scholar]
  53. 53. 
    Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE et al. 2010. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11:395–402
    [Google Scholar]
  54. 54. 
    Lammert CR, Frost EL, Bellinger CE, Bolte AC, McKee CA et al. 2020. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580:647–52
    [Google Scholar]
  55. 55. 
    Yuan J, Amin P, Ofengeim D. 2019. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 20:19–33
    [Google Scholar]
  56. 56. 
    Li J, Cao F, Yin HL, Huang ZJ, Lin ZT et al. 2020. Ferroptosis: past, present and future. Cell Death Dis 11:88
    [Google Scholar]
  57. 57. 
    Degterev A, Huang Z, Boyce M, Li Y, Jagtap P et al. 2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1:112–19
    [Google Scholar]
  58. 58. 
    Cho YS, Challa S, Moquin D, Genga R, Ray TD et al. 2009. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–23
    [Google Scholar]
  59. 59. 
    Zhang T, Zhang Y, Cui M, Jin L, Wang Y et al. 2016. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat. Med. 22:175–82
    [Google Scholar]
  60. 60. 
    Linkermann A, Brasen JH, Darding M, Jin MK, Sanz AB et al. 2013. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. PNAS 110:12024–29
    [Google Scholar]
  61. 61. 
    Amaral EP, Costa DL, Namasivayam S, Riteau N, Kamenyeva O et al. 2019. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J. Exp. Med. 216:556–70
    [Google Scholar]
  62. 62. 
    Hambright WS, Fonseca RS, Chen L, Na R, Ran Q. 2017. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12:8–17
    [Google Scholar]
  63. 63. 
    Fogarty CE, Diwanji N, Lindblad JL, Tare M, Amcheslavsky A et al. 2016. Extracellular reactive oxygen species drive apoptosis-induced proliferation via Drosophila macrophages. Curr. Biol. 26:575–84
    [Google Scholar]
  64. 64. 
    Razzell W, Evans IR, Martin P, Wood W 2013. Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr. Biol. 23:424–29
    [Google Scholar]
  65. 65. 
    Niethammer P, Grabher C, Look AT, Mitchison TJ. 2009. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459:996–99
    [Google Scholar]
  66. 66. 
    Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ et al. 2008. CXCL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112:5026–36
    [Google Scholar]
  67. 67. 
    Lauber K, Bohn E, Kröber SM, Xiao Y-J, Blumenthal SG et al. 2003. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717–30
    [Google Scholar]
  68. 68. 
    Elliot MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A et al. 2009. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–86
    [Google Scholar]
  69. 69. 
    Bavestrello G, Arillo A, Calcinai B, Cattaneo-Vietti R, Cerrano C et al. 2000. Parasitic diatoms inside Antarctic sponges. Biol. Bull. 198:29–33
    [Google Scholar]
  70. 70. 
    Grinnell F, Ho CH, Tuan TL. 1988. Cell adhesion and phagocytosis promoted by monoclonal antibodies not directed against fibronectin receptors. J. Cell Sci. 90:Part 2201–14
    [Google Scholar]
  71. 71. 
    Wimmel A, Glitz D, Kraus A, Roeder J, Schuermann M. 2001. Axl receptor tyrosine kinase expression in human lung cancer cell lines correlates with cellular adhesion. Eur. J. Cancer 37:2264–74
    [Google Scholar]
  72. 72. 
    Cichon MA, Szentpetery Z, Caley MP, Papadakis ES, Mackenzie IC et al. 2014. The receptor tyrosine kinase Axl regulates cell-cell adhesion and stemness in cutaneous squamous cell carcinoma. Oncogene 33:4185–92
    [Google Scholar]
  73. 73. 
    Defaye A, Evans I, Crozatier M, Wood W, Lemaitre B, Leulier F. 2009. Genetic ablation of Drosophila phagocytes reveals their contribution to both development and resistance to bacterial infection. J. Innate Immun. 1:322–34
    [Google Scholar]
  74. 74. 
    Sears HC, Kennedy CJ, Garrity PA. 2003. Macrophage-mediated corpse engulfment is required for normal Drosophila CNS morphogenesis. Development 130:3557–65
    [Google Scholar]
  75. 75. 
    Doherty J, Logan MA, Tasdemir OE, Freeman MR. 2009. Ensheathing glia function as phagocytes in the adult Drosophila brain. J. Neurosci. 29:4768–81
    [Google Scholar]
  76. 76. 
    Ziegenfuss JS, Doherty J, Freeman MR. 2012. Distinct molecular pathways mediate glial activation and engulfment of axonal debris after axotomy. Nat. Neurosci. 15:979–87
    [Google Scholar]
  77. 77. 
    Boada-Romero E, Martinez J, Heckmann BL, Green DR. 2020. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol. 21:398–414
    [Google Scholar]
  78. 78. 
    Arandjelovic S, Ravichandran KS. 2015. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16:907–17
    [Google Scholar]
  79. 79. 
    Uderhardt S, Martins AJ, Tsang JS, Lammermann T, Germain RN. 2019. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell 177:541–55.e17
    [Google Scholar]
  80. 80. 
    Bok D. 1993. The retinal pigment epithelium: a versatile partner in vision. J. Cell Sci. Suppl. 17:189–95
    [Google Scholar]
  81. 81. 
    Young RW, Bok D 1969. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J. Cell Biol. 42:392–403
    [Google Scholar]
  82. 82. 
    Penberthy KK, Lysiak JJ, Ravichandran KS. 2018. Rethinking phagocytes: clues from the retina and testes. Trends Cell Biol 28:317–27
    [Google Scholar]
  83. 83. 
    Luo C, Koyama R, Ikegaya Y. 2016. Microglia engulf viable newborn cells in the epileptic dentate gyrus. Glia 64:1508–17
    [Google Scholar]
  84. 84. 
    Mullen RJ, LaVail MM. 1976. Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras. Science 192:799–801
    [Google Scholar]
  85. 85. 
    Dowling JE, Sidman RL. 1962. Inherited retinal dystrophy in the rat. J. Cell Biol. 14:73–109
    [Google Scholar]
  86. 86. 
    Dawson CA, Pal B, Vaillant F, Gandolfo LC, Liu Z et al. 2020. Tissue-resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling. Nat. Cell Biol. 22:546–58
    [Google Scholar]
  87. 87. 
    Lu Q, Gore M, Zhang Q, Camenisch T, Boast S et al. 1999. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398:723–28
    [Google Scholar]
  88. 88. 
    Penberthy KK, Rival C, Shankman LS, Raymond MH, Zhang J et al. 2017. Context-dependent compensation among phosphatidylserine-recognition receptors. Sci. Rep. 7:14623
    [Google Scholar]
  89. 89. 
    Bratosin D, Mazurier J, Tissier JP, Estaquier J, Huart JJ et al. 1998. Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages: a review. Biochimie 80:173–95
    [Google Scholar]
  90. 90. 
    De Domenico I, McVey Ward D, Kaplan J 2008. Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat. Rev. Mol. Cell Biol. 9:72–81
    [Google Scholar]
  91. 91. 
    Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K et al. 2009. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457:318–21
    [Google Scholar]
  92. 92. 
    Brock CK, Wallin ST, Ruiz OE, Samms KM, Mandal A et al. 2019. Stem cell proliferation is induced by apoptotic bodies from dying cells during epithelial tissue maintenance. Nat. Commun. 10:1044
    [Google Scholar]
  93. 93. 
    Cummings RJ, Barbet G, Bongers G, Hartmann BM, Gettler K et al. 2016. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature 539:565–69
    [Google Scholar]
  94. 94. 
    Hackam DJ, Rotstein OD, Zhang W, Gruenheid S, Gros P, Grinstein S. 1998. Host resistance to intracellular infection: Mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J. Exp. Med. 188:351–64
    [Google Scholar]
  95. 95. 
    Yates RM, Russell DG. 2005. Phagosome maturation proceeds independently of stimulation of Toll-like receptors 2 and 4. Immunity 23:409–17
    [Google Scholar]
  96. 96. 
    Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I. 2003. Activation of lysosomal function during dendritic cell maturation. Science 299:1400–3
    [Google Scholar]
  97. 97. 
    Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P et al. 2006. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126:205–18
    [Google Scholar]
  98. 98. 
    Torchinsky MB, Garaude J, Martin AP, Blander JM. 2009. Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation. Nature 458:78–82
    [Google Scholar]
  99. 99. 
    Hopkinson-Woolley J, Hughes D, Gordon S, Martin P 1994. Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J. Cell Sci. 107:Part 51159–67
    [Google Scholar]
  100. 100. 
    Wood W, Turmaine M, Weber R, Camp V, Maki RA et al. 2000. Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development 127:5245–52
    [Google Scholar]
  101. 101. 
    Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. 2011. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLOS ONE 6:e26317
    [Google Scholar]
  102. 102. 
    Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE et al. 2014. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–97
    [Google Scholar]
  103. 103. 
    Rojo R, Raper A, Ozdemir DD, Lefevre L, Grabert K et al. 2019. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat. Commun. 10:3215
    [Google Scholar]
  104. 104. 
    Gong YN, Guy C, Olauson H, Becker JU, Yang M et al. 2017. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169:286–300.e16
    [Google Scholar]
  105. 105. 
    Zargarian S, Shlomovitz I, Erlich Z, Hourizadeh A, Ofir-Birin Y et al. 2017. Phosphatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis. PLOS Biol 15:e2002711
    [Google Scholar]
  106. 106. 
    Wang Q, Imamura R, Motani K, Kushiyama H, Nagata S, Suda T. 2013. Pyroptotic cells externalize eat-me and release find-me signals and are efficiently engulfed by macrophages. Int. Immunol. 25:363–72
    [Google Scholar]
  107. 107. 
    Kloditz K, Fadeel B. 2019. Three cell deaths and a funeral: macrophage clearance of cells undergoing distinct modes of cell death. Cell Death Discov 5:65
    [Google Scholar]
  108. 108. 
    Medina CB, Mehrotra P, Arandjelovic S, Perry JSA, Guo Y et al. 2020. Metabolites released from apoptotic cells act as tissue messengers. Nature 580:130–35
    [Google Scholar]
  109. 109. 
    Tanzer MC, Frauenstein A, Stafford CA, Phulphagar K, Mann M, Meissner F. 2020. Quantitative and dynamic catalogs of proteins released during apoptotic and necroptotic cell death. Cell Rep 30:1260–70.e5
    [Google Scholar]
  110. 110. 
    Cai Z, Zhang A, Choksi S, Li W, Li T et al. 2016. Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration. Cell Res 26:886–900
    [Google Scholar]
  111. 111. 
    Lai JJ, Cruz FM, Rock KL. 2020. Immune sensing of cell death through recognition of histone sequences by C-type lectin-receptor-2d causes inflammation and tissue injury. Immunity 52:123–35.e6
    [Google Scholar]
  112. 112. 
    Miles K, Heaney J, Sibinska Z, Salter D, Savill J et al. 2012. A tolerogenic role for Toll-like receptor 9 is revealed by B-cell interaction with DNA complexes expressed on apoptotic cells. PNAS 109:887–92
    [Google Scholar]
  113. 113. 
    Zhang JG, Czabotar PE, Policheni AN, Caminschi I, Wan SS et al. 2012. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36:646–57
    [Google Scholar]
  114. 114. 
    Ahrens S, Zelenay S, Sancho D, Hanc P, Kjaer S et al. 2012. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36:635–45
    [Google Scholar]
  115. 115. 
    Damisah EC, Hill RA, Rai A, Chen F, Rothlin CV et al. 2020. Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo. Sci. Adv. 6:eaba3239
    [Google Scholar]
  116. 116. 
    Pickering MC, Fischer S, Lewis MR, Walport MJ, Botto M, Cook HT. 2001. Ultraviolet-radiation-induced keratinocyte apoptosis in C1q-deficient mice. J. Investig. Dermatol. 117:52–58
    [Google Scholar]
  117. 117. 
    Kang K, Hammerberg C, Meunier L, Cooper KD. 1994. CD11b+ macrophages that infiltrate human epidermis after in vivo ultraviolet exposure potently produce IL-10 and represent the major secretory source of epidermal IL-10 protein. J. Immunol. 153:5256–64
    [Google Scholar]
  118. 118. 
    Aprahamian T, Takemura Y, Goukassian D, Walsh K. 2008. Ageing is associated with diminished apoptotic cell clearance in vivo. Clin. Exp. Immunol. 152:448–55
    [Google Scholar]
  119. 119. 
    Frisch BJ, Hoffman CM, Latchney SE, LaMere MW, Myers J et al. 2019. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B. JCI Insight 5:10e124213
    [Google Scholar]
  120. 120. 
    Rymut N, Heinz J, Sadhu S, Hosseini Z, Riley CO et al. 2020. Resolvin D1 promotes efferocytosis in aging by limiting senescent cell-induced MerTK cleavage. FASEB J 34:597–609
    [Google Scholar]
  121. 121. 
    Weavers H, Evans IR, Martin P, Wood W 2016. Corpse engulfment generates a molecular memory that primes the macrophage inflammatory response. Cell 165:1658–71
    [Google Scholar]
  122. 122. 
    Shinde R, Hezaveh K, Halaby MJ, Kloetgen A, Chakravarthy A et al. 2018. Apoptotic cell-induced AhR activity is required for immunological tolerance and suppression of systemic lupus erythematosus in mice and humans. Nat. Immunol. 19:571–82
    [Google Scholar]
  123. 123. 
    A-Gonzalez N, Bensinger SJ, Hong C, Beceiro S, Bradley MN et al. 2009. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31:245–58
    [Google Scholar]
  124. 124. 
    Mukundan L, Odegaard JI, Morel CR, Heredia JE, Mwangi JW et al. 2009. PPAR-δ senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat. Med. 15:1266–72
    [Google Scholar]
  125. 125. 
    Majai G, Sarang Z, Csomos K, Zahuczky G, Fesus L. 2007. PPARγ-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur. J. Immunol. 37:1343–54
    [Google Scholar]
  126. 126. 
    Wang Y, Subramanian M, Yurdagul A Jr., Barbosa-Lorenzi VC, Cai B et al. 2017. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171:331–45.e22
    [Google Scholar]
  127. 127. 
    Yurdagul A Jr., Subramanian M, Wang X, Crown SB, Ilkayeva OR et al. 2020. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab 31:518–33.e10
    [Google Scholar]
  128. 128. 
    Morioka S, Perry JSA, Raymond MH, Medina CB, Zhu Y et al. 2018. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563:714–18
    [Google Scholar]
  129. 129. 
    A-Gonzalez N, Quintana JA, Garcia-Silva S, Mazariegos M, Gonzalez de la Aleja A et al. 2017. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J. Exp. Med. 214:1281–96
    [Google Scholar]
  130. 130. 
    Roberts AW, Lee BL, Deguine J, John S, Shlomchik MJ, Barton GM. 2017. Tissue-resident macrophages are locally programmed for silent clearance of apoptotic cells. Immunity 47:913–27.e6
    [Google Scholar]
  131. 131. 
    Lee CS, Penberthy KK, Wheeler KM, Juncadella IJ, Vandenabeele P et al. 2016. Boosting apoptotic cell clearance by colonic epithelial cells attenuates inflammation in vivo. Immunity 44:807–20
    [Google Scholar]
  132. 132. 
    Hsiao CC, van der Poel M, van Ham TJ, Hamann J. 2019. Macrophages do not express the phagocytic receptor BAI1/ADGRB1. Front. Immunol. 10:962
    [Google Scholar]
  133. 133. 
    Furze RC, Rankin SM. 2008. Neutrophil mobilization and clearance in the bone marrow. Immunology 125:281–88
    [Google Scholar]
  134. 134. 
    Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K. 2005. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22:285–94
    [Google Scholar]
  135. 135. 
    Marwick JA, Mills R, Kay O, Michail K, Stephen J et al. 2018. Neutrophils induce macrophage anti-inflammatory reprogramming by suppressing NF-κB activation. Cell Death Dis 9:665
    [Google Scholar]
  136. 136. 
    Xiao YQ, Freire-de-Lima CG, Schiemann WP, Bratton DL, Vandivier RW, Henson PM. 2008. Transcriptional and translational regulation of TGF-β production in response to apoptotic cells. J. Immunol. 181:3575–85
    [Google Scholar]
  137. 137. 
    Li S, Sun Y, Liang CP, Thorp EB, Han S et al. 2009. Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of ob/ob mice and reversal by a fish oil diet. Circ. Res. 105:1072–82
    [Google Scholar]
  138. 138. 
    Fernandez-Boyanapalli R, Goleva E, Kolakowski C, Min E, Day B et al. 2013. Obesity impairs apoptotic cell clearance in asthma. J. Allergy Clin. Immunol. 131:1041–47.e3
    [Google Scholar]
  139. 139. 
    Komegae EN, Fonseca MT, da Silveira Cruz-Machado S, Turato WM, Filgueiras LR et al. 2019. Site-specific reprogramming of macrophage responsiveness to bacterial lipopolysaccharide in obesity. Front. Immunol. 10:1496
    [Google Scholar]
  140. 140. 
    McDermott MF, Aksentijevich I. 2002. The autoinflammatory syndromes. Curr. Opin. Allergy Clin. Immunol. 2:511–16
    [Google Scholar]
  141. 141. 
    Lobito AA, Gabriel TL, Medema JP, Kimberley FC. 2011. Disease causing mutations in the TNF and TNFR superfamilies: focus on molecular mechanisms driving disease. Trends Mol. Med. 17:494–505
    [Google Scholar]
  142. 142. 
    Masters SL, Simon A, Aksentijevich I, Kastner DL. 2009. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27:621–68
    [Google Scholar]
  143. 143. 
    Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F et al. 2020. Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J. Clin. Immunol. 40:66–81
    [Google Scholar]
  144. 144. 
    Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. 2001. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet. 29:301–5
    [Google Scholar]
  145. 145. 
    Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT et al. 2002. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46:3340–48
    [Google Scholar]
  146. 146. 
    Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B et al. 2014. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46:1140–46
    [Google Scholar]
  147. 147. 
    Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E et al. 2014. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46:1135–39
    [Google Scholar]
  148. 148. 
    Baroja-Mazo A, Martin-Sanchez F, Gomez AI, Martinez CM, Amores-Iniesta J et al. 2014. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 15:738–48
    [Google Scholar]
  149. 149. 
    Alehashemi S, Goldback-Mansky R. 2020. Human autoinflammatory diseases mediated by NLRP3-, Pyrin-, NLRP1-, and NLRC4-inflammasome dysregulation updates on diagnosis, treatment, and the respective roles of IL-1 and IL-18. Front. Immunol. 11:1840
    [Google Scholar]
  150. 150. 
    Canna SW, Girard C, Malle L, de Jesus A, Romberg N et al. 2017. Life-threatening NLRC4-associated hyperinflammation successfully treated with interluekin-18 inhibition. J. Allergy Clin. Immunol. 139:1698–701
    [Google Scholar]
  151. 151. 
    Schnappauf O, Chae JJ, Kastner DL, Aksentijevich I. 2019. The pyrin inflammasome in health and disease. Front. Immunol. 10:1745
    [Google Scholar]
  152. 152. 
    Chae JJ, Komarow HD, Cheng J, Wood G, Raben N et al. 2003. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol. Cell 11:591–604
    [Google Scholar]
  153. 153. 
    Chae JJ, Wood G, Masters SL, Richard K, Park G et al. 2006. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. PNAS 103:9982–87
    [Google Scholar]
  154. 154. 
    D'Osualdo A, Ferlito F, Prigione I, Obici L, Meini A et al. 2006. Neutrophils from patients with TNFRSF1A mutations display resistance to tumor necrosis factor-induced apoptosis: pathogenetic and clinical implications. Arthritis Rheum 54:998–1008
    [Google Scholar]
  155. 155. 
    Siebert S, Amos N, Fielding CA, Wang EC, Aksentijevich I et al. 2005. Reduced tumor necrosis factor signaling in primary human fibroblasts containing a tumor necrosis factor receptor superfamily 1A mutant. Arthritis Rheum 52:1287–92
    [Google Scholar]
  156. 156. 
    Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. 1992. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–17
    [Google Scholar]
  157. 157. 
    Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG et al. 1994. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76:969–76
    [Google Scholar]
  158. 158. 
    Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA et al. 1995. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81:935–46
    [Google Scholar]
  159. 159. 
    Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM et al. 1995. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268:1347–49
    [Google Scholar]
  160. 160. 
    Del-Rey M, Ruiz-Contreras J, Bosque A, Calleja S, Gomez-Rial J et al. 2006. A homozygous Fas ligand gene mutation in a patient causes a new type of autoimmune lymphoproliferative syndrome. Blood 108:1306–12
    [Google Scholar]
  161. 161. 
    Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD. 1996. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J. Clin. Investig. 98:1107–13
    [Google Scholar]
  162. 162. 
    Bolze A, Byun M, McDonald D, Morgan NV, Abhyankar A et al. 2010. Whole-exome-sequencing-based discovery of human FADD deficiency. Am. J. Hum. Genet. 87:873–81
    [Google Scholar]
  163. 163. 
    Lehle AS, Farin HF, Marquardt B, Michels BE, Magg T et al. 2019. Intestinal inflammation and dysregulated immunity in patients with inherited caspase-8 deficiency. Gastroenterology 156:275–78
    [Google Scholar]
  164. 164. 
    Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK et al. 2002. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419:395–99
    [Google Scholar]
  165. 165. 
    Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS et al. 1998. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9:267–76
    [Google Scholar]
  166. 166. 
    Fernandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula SM, Wang L et al. 1996. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. PNAS 93:7464–69
    [Google Scholar]
  167. 167. 
    Grenet J, Teitz T, Wei T, Valentine V, Kidd VJ. 1999. Structure and chromosome localization of the human CASP8 gene. Gene 226:225–32
    [Google Scholar]
  168. 168. 
    Kischkel FC, Kioschis P, Weitz S, Poustka A, Lichter P, Krammer PH. 1998. Assignment of CASP8 to human chromosome band 2q33→q34 and Casp8 to the murine syntenic region on chromosome 1B-proximal C by in situ hybridization. Cytogenet. Cell Genet. 82:95–96
    [Google Scholar]
  169. 169. 
    Wang J, Zheng L, Lobito A, Chan FK, Dale J et al. 1999. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98:47–58
    [Google Scholar]
  170. 170. 
    Truedsson L, Bengtsson AA, Sturfelt G. 2007. Complement deficiencies and systemic lupus erythematosus. Autoimmunity 40:560–66
    [Google Scholar]
  171. 171. 
    Botto M, Dell'Agnola C, Bygrave AE, Thompson EM, Cook HT et al. 1998. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19:56–59
    [Google Scholar]
  172. 172. 
    Ramirez-Ortiz ZG, Pendergraft WF 3rd, Prasad A, Byrne MH, Iram T et al. 2013. The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. Nat. Immunol. 14:917–26
    [Google Scholar]
  173. 173. 
    Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M et al. 2004. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304:1147–50
    [Google Scholar]
  174. 174. 
    Baumann I, Kolowos W, Voll RE, Manger B, Gaipl U et al. 2002. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum 46:191–201
    [Google Scholar]
  175. 175. 
    Baek WY, Woo JM, Kim HA, Jung JY, Suh CH. 2019. Polymorphisms of MFGE8 are associated with susceptibility and clinical manifestations through gene expression modulation in Koreans with systemic lupus erythematosus. Sci. Rep. 9:18565
    [Google Scholar]
  176. 176. 
    Hu CY, Wu CS, Tsai HF, Chang SK, Tsai WI, Hsu PN. 2009. Genetic polymorphism in milk fat globule-EGF factor 8 (MFG-E8) is associated with systemic lupus erythematosus in human. Lupus 18:676–81
    [Google Scholar]
  177. 177. 
    Yamaguchi H, Takagi J, Miyamae T, Yokota S, Fujimoto T et al. 2008. Milk fat globule EGF factor 8 in the serum of human patients of systemic lupus erythematosus. J. Leukoc. Biol. 83:1300–7
    [Google Scholar]
  178. 178. 
    Gal A, Li Y, Thompson DA, Weir J, Orth U et al. 2000. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat. Genet. 26:270–71
    [Google Scholar]
  179. 179. 
    McHenry CL, Liu Y, Feng W, Nair AR, Feathers KL et al. 2004. MERTK arginine-844-cysteine in a patient with severe rod-cone dystrophy: loss of mutant protein function in transfected cells. Investig. Ophthalmol. Vis. Sci. 45:1456–63
    [Google Scholar]
  180. 180. 
    Tschernutter M, Jenkins SA, Waseem NH, Saihan Z, Holder GE et al. 2006. Clinical characterisation of a family with retinal dystrophy caused by mutation in the Mertk gene. Br. J. Ophthalmol. 90:718–23
    [Google Scholar]
  181. 181. 
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E et al. 2013. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368:117–27
    [Google Scholar]
  182. 182. 
    Bellenguez C, Charbonnier C, Grenier-Boley B, Quenez O, Le Guennec K et al. 2017. Contribution to Alzheimer's disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiol. Aging 59:220.e9
    [Google Scholar]
  183. 183. 
    Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV et al. 2013. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med. 368:107–16
    [Google Scholar]
  184. 184. 
    Song W, Hooli B, Mullin K, Jin SC, Cella M et al. 2017. Alzheimer's disease-associated TREM2 variants exhibit either decreased or increased ligand-dependent activation. Alzheimer's Dement 13:381–87
    [Google Scholar]
  185. 185. 
    Song WM, Joshita S, Zhou Y, Ulland TK, Gilfillan S, Colonna M. 2018. Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J. Exp. Med. 215:745–60
    [Google Scholar]
  186. 186. 
    Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E et al. 2014. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 6:243ra86
    [Google Scholar]
  187. 187. 
    Deczkowska A, Weiner A, Amit I. 2020. The physiology, pathology, and potential therapeutic applications of the TREM2 signaling pathway. Cell 181:1207–17
    [Google Scholar]
  188. 188. 
    Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. 2018. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173:1073–81
    [Google Scholar]
  189. 189. 
    Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL et al. 2015. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160:1061–71
    [Google Scholar]
  190. 190. 
    Lago N, Kaufmann FN, Negro-Demontel ML, Ali-Ruiz D, Ghisleni G et al. 2020. CD300f immunoreceptor is associated with major depressive disorder and decreased microglial metabolic fitness. PNAS 117:6651–62
    [Google Scholar]
  191. 191. 
    Kelley TW, Graham MM, Doseff AI, Pomerantz RW, Lau SM et al. 1999. Macrophage colony-stimulating factor promotes cell survival through Akt/protein kinase B. J. Biol. Chem. 274:26393–98
    [Google Scholar]
  192. 192. 
    Yu W, Chen J, Xiong Y, Pixley FJ, Yeung YG, Stanley ER. 2012. Macrophage proliferation is regulated through CSF-1 receptor tyrosines 544, 559, and 807. J. Biol. Chem. 287:13694–704
    [Google Scholar]
  193. 193. 
    Pixley FJ, Stanley ER. 2004. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14:628–38
    [Google Scholar]
  194. 194. 
    Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG et al. 2002. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99:111–20
    [Google Scholar]
  195. 195. 
    Sehgal A, Donaldson DS, Pridans C, Sauter KA, Hume DA, Mabbott NA. 2018. The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat. Commun. 9:1272
    [Google Scholar]
  196. 196. 
    Oosterhof N, Chang IJ, Karimiani EG, Kuil LE, Jensen DM et al. 2019. Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am. J. Hum. Genet. 104:936–47
    [Google Scholar]
  197. 197. 
    Guo L, Bertola DR, Takanohashi A, Saito A, Segawa Y et al. 2019. Bi-allelic CSF1R mutations cause skeletal dysplasia of dysosteosclerosis-pyle disease spectrum and degenerative encephalopathy with brain malformation. Am. J. Hum. Genet. 104:925–35
    [Google Scholar]
  198. 198. 
    Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N et al. 2011. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 44:200–5
    [Google Scholar]
  199. 199. 
    Hume DA, Caruso M, Ferrari-Cestari M, Summers KM, Pridans C, Irvine KM. 2020. Phenotypic impacts of CSF1R deficiencies in humans and model organisms. J. Leukoc. Biol. 107:205–19
    [Google Scholar]
  200. 200. 
    Surh CD, Sprent J. 1994. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372:100–3
    [Google Scholar]
  201. 201. 
    Bouillet P, Purton JF, Godfrey DI, Zhang L-C, Coultas L et al. 2002. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415:922–26
    [Google Scholar]
  202. 202. 
    Günther C, Martini E, Wittkopf N, Amann K, Weigmann B et al. 2011. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477:335–39
    [Google Scholar]
  203. 203. 
    McKenzie BA, Mamik MK, Saito LB, Boghozian R, Monaco MC et al. 2018. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. PNAS 115:E6065–74
    [Google Scholar]
  204. 204. 
    Tabula Muris Consort. (Overall Coord., Logist. Coord., Organ Collect. Process., Libr. Prep. Seq., Comput. Data Anal., Cell Type Annot., Writ. Group, Suppl. Text Writ. Group), Barre BA, Beachy PA, Chan CKF, Clarke MF et al. 2018. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562:367–72
    [Google Scholar]
  205. 205. 
    Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36:411–20
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-102819-072601
Loading
/content/journals/10.1146/annurev-immunol-102819-072601
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error