1932

Abstract

Distributional semantics is a usage-based model of meaning, based on the assumption that the statistical distribution of linguistic items in context plays a key role in characterizing their semantic behavior. Distributional models build semantic representations by extracting co-occurrences from corpora and have become a mainstream research paradigm in computational linguistics. In this review, I present the state of the art in distributional semantics, focusing on its assets and limits as a model of meaning and as a method for semantic analysis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-linguistics-030514-125254
2018-01-14
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/linguistics/4/1/annurev-linguistics-030514-125254.html?itemId=/content/journals/10.1146/annurev-linguistics-030514-125254&mimeType=html&fmt=ahah

Literature Cited

  1. Agirre E, Alfonseca E, Hall K, Kravalova J, Paca M, Soroa A. 2009. A study on similarity and relatedness using distributional and WordNet-based approaches Presented at Conf. N. Am. Chapter Assoc. Comput. Linguist., Boulder, CO, May 31–June 5
  2. Anderson AJ, Kiela D, Clark S, Poesio M. 2017. Visually grounded and textual semantic models differentially decode brain activity associated with concrete and abstract nouns. Trans. ACL 5:17–30 [Google Scholar]
  3. Asher N. 2015. Types, meanings and coercions in lexical semantics. Lingua 157:66–82 [Google Scholar]
  4. Asher N, Van de Cruys T, Bride A, Abrusán M. 2016. Integrating type theory and distributional semantics: a case study on adjective–noun compositions. Comput. Linguist. 42:703–25 [Google Scholar]
  5. Baggio G, van Lambalgen M, Hagoort P. 2012. The processing consequences of compositionality. The Oxford Handbook of Compositionality M Werning, W Hinzen, E Machery 1–23 Oxford, UK: Oxford Univ. Press [Google Scholar]
  6. Baroni M, Bernardi R, Do NQ, Chieh Shan C. 2012. Entailment above the word level in distributional semantics. Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics23–32 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  7. Baroni M, Bernardi R, Zamparelli R. 2014a. Frege in space: a program of compositional distributional semantics. Linguist. Issues Lang. Technol. 9:5–110 [Google Scholar]
  8. Baroni M, Dinu G, Kruszewski G. 2014b. Don't count, predict! A systematic comparison of context-counting versus context-predicting semantic vectors. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics238–47 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  9. Baroni M, Lenci A. 2010. Distributional memory: a general framework for corpus-based semantics. Comput. Linguist. 36:673–721 [Google Scholar]
  10. Baroni M, Lenci A. 2011. How we BLESSed distributional semantic evaluation. In Proceedings of the GEMS 2011 Workshop on Geometrical Models of Natural Language Semantics1–10 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  11. Baroni M, Zamparelli R. 2010. Nouns are vectors, adjectives are matrices: representing adjective-noun constructions in semantic space. Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing1183–93 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  12. Beltagy I, Roller S, Cheng P, Erk K, Mooney RJ. 2016. Representing meaning with a combination of logical and distributional models. Comput. Linguist. 42:763–808 [Google Scholar]
  13. Bentivogli L, Bernardi R, Marelli M, Menini S, Baroni M, Zamparelli R. 2016. SICK through the SemEval glasses. Lesson learned from the evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment. Lang. Resour. Eval. 50:95–124 [Google Scholar]
  14. Blacoe W, Lapata M. 2012. A comparison of vector-based representations for semantic composition. Proceedings of the 2012 Joint Conference on Empirical Methods in Language Processing and Computational Natural Language Learning545–56 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  15. Blei D, Ng A, Jordan M. 2003. Latent Dirichlet allocation. J. Mach. Learn. Res. 3:993–1022 [Google Scholar]
  16. Boleda G, Erk K. 2015. Distributional semantic features as semantic primitives—or not. Proceedings of Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches. Papers from the 2015 AAAI Spring Symposium2–5 Palo Alto, CA: AAAI [Google Scholar]
  17. Boleda G, Herbelot A. 2016. Formal distributional semantics: introduction to the special issue. Comput. Linguist. 42:619–35 [Google Scholar]
  18. Bruni E, Tran NK, Baroni M. 2014. Multimodal distributional semantics. J. Artif. Intell. Res. 49:1–47 [Google Scholar]
  19. Budanitsky A, Hirst G. 2006. Evaluating WordNet-based measures of lexical semantic relatedness. Comput. Linguist. 32:13–47 [Google Scholar]
  20. Bullinaria J, Levy JP. 2007. Extracting semantic representations from word co-occurrence statistics: a computational study. Behav. Res. Methods 39:510–26 [Google Scholar]
  21. Bullinaria J, Levy JP. 2012. Extracting semantic representations from word co-occurrence statistics: stop-lists, stemming, and SVD. Behav. Res. Methods 44:890–907 [Google Scholar]
  22. Burgess C. 1998. From simple associations to the building blocks of language: modeling meaning in memory with the HAL model. Behav. Res. Methods Instrum. Comput. 30:188–98 [Google Scholar]
  23. Chersoni E, Blache P, Lenci A. 2016. Towards a distributional model of semantic complexity. Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity12–22 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  24. Chersoni E, Blache P, Lenci A. 2017. Logical metonymy in a distributional model of sentence comprehension. Proceedings of the 6th Joint Conference on Lexical and Computational Semantics168–77 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  25. Clark S. 2015. Vector space models of lexical meaning. Handbook of Contemporary Semantics S Lappin, C Fox 493–522 Oxford, UK: Wiley-Blackwell, 2nd ed.. [Google Scholar]
  26. Coecke B, Sadrzadeh M, Clark S. 2011. Mathematical foundations for a compositional distributional model of meaning. Linguist. Anal. 36:345–84 [Google Scholar]
  27. Collobert R, Weston J. 2008. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning160–67 New York: ACM [Google Scholar]
  28. Curran JR. 2003. From distributional to semantic similarity PhD thesis, Univ. Edinburgh Edinburgh, UK:
  29. Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R. 1990. Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41:391–407 [Google Scholar]
  30. Dove G. 2014. Thinking in words: language as an embodied medium of thought. Top. Cogn. Sci. 6:371–89 [Google Scholar]
  31. Elman JL. 1990. Finding structure in time. Cogn. Sci. 14:179–211 [Google Scholar]
  32. Erk K. 2012. Vector space models of word meaning and phrase meaning: a survey. Linguist. Lang. Compass 6:635–53 [Google Scholar]
  33. Erk K. 2016. What do you know about an alligator when you know the company it keeps?. Semant. Pragmat. 9:1–63 [Google Scholar]
  34. Erk K, Padó S. 2008. A structured vector space model for word meaning in context. Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing897–906 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  35. Erk K, Padó S, Padó U. 2010. A flexible, corpus-driven model of regular and inverse selectional preferences. Comput. Linguist. 36:723–63 [Google Scholar]
  36. Evert S. 2008. Corpora and collocations. Corpus Linguistics: An International Handbook A Lüdeling, M Kytö 1212–48 Berlin: de Gruyter [Google Scholar]
  37. Feng Y, Lapata M. 2010. Visual information in semantic representation. Proceedings of the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics91–99 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  38. Finkelstein L, Gabrilovich E, Matias Y, Rivlin E, Solan Z. et al. 2001. Placing search in context: the concept revisited. ACM Trans. Inf. Syst. 20:116–31 [Google Scholar]
  39. Firth JR. 1957. A synopsis of linguistic theory, 1930–1955. Studies in Linguistic Analysis1–32 Oxford, UK: Blackwell [Google Scholar]
  40. Garrette D, Erk K, Mooney RJ. 2014. A formal approach to linking logical form and vector-space lexical semantics. Computing Meaning H Bunt, J Bos, S Pulman 427–47 Dordrecht, Neth.: Springer [Google Scholar]
  41. Garvin PL. 1962. Computer participation in linguistic research. Language 38:385–89 [Google Scholar]
  42. Gerz D, Vuli I, Hill F, Reichart R, Korhonen A. 2016. SimVerb-3500: a large-scale evaluation set of verb similarity. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing2173–82 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  43. Goldberg AE. 2006. Constructions at Work: The Nature of Generalization in Language Oxford, UK: Oxford Univ. Press
  44. Grefenstette E, Sadrzadeh M. 2015. Concrete models and empirical evaluations for the categorical compositional distributional model of meaning. Comput. Linguist. 41:71–118 [Google Scholar]
  45. Griffiths T, Tenenbaum J, Steyvers M. 2007. Topics in semantic representation. Psychol. Rev. 114:211–44 [Google Scholar]
  46. Hamilton WL, Leskovec J, Jurafsky D. 2016. Diachronic word embeddings reveal statistical laws of semantic change. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics1489–510 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  47. Harris ZS. 1954. Distributional structure. Word 10:146–62 [Google Scholar]
  48. Heylen K, Wielfaert T, Speelman D, Geeraerts D. 2015. Monitoring polysemy: word space models as a tool for large-scale lexical semantic analysis. Lingua 157:153–72 [Google Scholar]
  49. Hill F, Reichart R, Korhonen A. 2015. SimLex-999: Evaluating semantic models with (genuine) similarity estimation. Comput. Linguist. 41:665–95 [Google Scholar]
  50. Jones MN, Kintsch W, Mewhort DJK. 2006. High-dimensional semantic space accounts of priming. J. Mem. Lang. 55:534–52 [Google Scholar]
  51. Jones MN, Mewhort DJK. 2007. Representing word meaning and order information in a composite holographic lexicon. Psychol. Rev. 22:701–8 [Google Scholar]
  52. Jones MN, Willits JA, Dennis S. 2015. Models of semantic memory. Oxford Handbook of Mathematical and Computational Psychology JR Busemeyer, Z Wang, JT Townsend, A Eidels 232–54 Oxford, UK: Oxford Univ. Press [Google Scholar]
  53. Jurafsky D, Martin JA. 2008. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition Upper Saddle River, NJ: Prentice Hall, 2nd ed..
  54. Kamp H, Reyle U. 1993. From Discourse to Logic: Introduction to Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory Dordrecht, Neth.: Kluwer
  55. Kanerva P, Kristofersson J, Holst A. 2000. Random indexing of text samples for latent semantic analysis. Proceedings of the 22nd Annual Meeting of the Cognitive Science Society1036 Mahwah, NJ: Erlbaum [Google Scholar]
  56. Keuleers E, Balota DA. 2015. Megastudies, crowdsourcing, and large datasets in psycholinguistics: an overview of recent developments. Q. J. Exp. Psychol. 68:1457–68 [Google Scholar]
  57. Kiela D, Clark S. 2014. A systematic study of semantic vector space model parameters. Proceedings of the 2nd Workshop on Continuous Vector Space Models and Their Compositionality21–30 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  58. Kintsch W. 2001. Predication. Cogn. Sci. 25:173–202 [Google Scholar]
  59. Kotlerman L, Dagan I, Szpektor I, Zhitomirsky-Geffet M. 2010. Directional distributional similarity for lexical inference. Nat. Lang. Eng. 16:359–89 [Google Scholar]
  60. Landauer TK, Dumais S. 1997. A solution to Plato's problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104:211–40 [Google Scholar]
  61. Lapesa G, Evert S. 2014. A large scale evaluation of distributional semantic models: parameters, interactions and model selection. Trans. ACL 2:531–45 [Google Scholar]
  62. Lapesa G, Evert S. 2017. Large-scale evaluation of dependency-based DSMs: Are they worth the effort?. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics394–400 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  63. Lebani GE, Lenci A. 2017. Modelling the meaning of argument constructions with distributional semantics. Proceedings of the AAAI 2017 Spring Symposium on Computational Construction Grammar and Natural Language Understanding197–204 Palo Alto, CA: AAAI [Google Scholar]
  64. Lenci A. 2008. Distributional approaches in linguistic and cognitive research. Ital. J. Linguist. 20:1–31 [Google Scholar]
  65. Lenci A. 2011. Composing and updating verb argument expectations: a distributional semantic model. Proceedings of the 2nd Workshop on Cognitive Modeling and Computational Linguistics58–66 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  66. Lenci A, Benotto G. 2012. Identifying hypernyms in distributional semantic spaces. Proceedings of the 1st Joint Conference on Lexical and Computational Semantics75–79 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  67. Levy O, Goldberg Y. 2014a. Dependency-based word embeddings. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics302–8 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  68. Levy O, Goldberg Y. 2014b. Linguistic regularities in sparse and explicit word representations. Proceedings of the 18th Conference on Computational Language Learning171–80 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  69. Levy O, Goldberg Y, Dagan I. 2015a. Improving distributional similarity with lessons learned from word embeddings. Trans. ACL 3:211–25 [Google Scholar]
  70. Levy O, Remus S, Biemann C, Dagan I. 2015b. Do supervised distributional methods really learn lexical inference relations?. Proceedings of the 2015 Annual Conference of the North American Chapter of the Association for Computational Linguistics970–76 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  71. Lofi C. 2015. Measuring semantic similarity and relatedness with distributional and knowledge-based approaches. Inf. Media Technol. 10:493–501 [Google Scholar]
  72. Louwerse MM. 2011. Symbol interdependency in symbolic and embodied cognition. Top. Cogn. Sci. 3:273–302 [Google Scholar]
  73. Mandera P, Keuleers E, Brysbaert M. 2015. How useful are corpus-based methods for extrapolating psycholinguistic variables?. Q. J. Exp. Psychol. 68:1623–42 [Google Scholar]
  74. Mandera P, Keuleers E, Brysbaert M. 2017. Explaining human performance in psycholinguistic tasks with models of semantic similarity based on prediction and counting: a review and empirical validation. J. Mem. Lang. 92:57–78 [Google Scholar]
  75. Manning C, Schütze H. 1999. Foundations of Statistical Natural Language Processing. Cambridge, MA: MIT Press
  76. McNally L. 2017. Kinds, descriptions of kinds, concepts, and distributions. Bridging Formal and Conceptual Semantics: Selected Papers of BRIDGE-14 K Balogh, W Petersen 39–61 Düsseldorf, Ger.: Düsseldorf Univ. Press [Google Scholar]
  77. McRae K, Hare M, Elman JL, Ferretti TR. 2005. A basis for generating expectancies for verbs from nouns. Mem. Cogn. 33:1174–84 [Google Scholar]
  78. McRae K, Jones MN. 2013. Semantic memory. The Oxford Handbook of Cognitive Psychology D Reisberg 206–19 Oxford, UK: Oxford Univ. Press [Google Scholar]
  79. Mikolov T, Chen K, Corrado GS, Dean J. 2013a. Efficient estimation of word representations in vector space. arXiv:1301.3781 [cs.CL]
  80. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. 2013b. Distributed representations of words and phrases and their compositionality. Proceedings of the 26th Conference on Advances in Neural Information Processing Systems3111–19 https://papers.nips.cc/book/advances-in-neural-information-processing-systems-26-2013
  81. Mikolov T, Yih W-T, Zweig G. 2013c. Linguistic regularities in continuous space word representations. Proceedings of the 2013 Annual Conference of the North American Chapter of the Association for Computational Linguistics746–51 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  82. Miller G, Charles W. 1991. Contextual correlates of semantic similarity. Lang. Cogn. Process. 6:1–28 [Google Scholar]
  83. Miller GA. 1967. Empirical methods in the study of semantics. Journeys in Science: Small Steps—Great Strides Albuquerque: Univ. N. M. Press [Google Scholar]
  84. Mitchell J, Lapata M. 2010. Composition in distributional models of semantics. Cogn. Sci. 34:1388–429 [Google Scholar]
  85. Mitchell TM, Shinkareva SV, Carlson A, Chang K-M, Malave VL. et al. 2008. Predicting human brain activity associated with the meanings of nouns. Science 320:1191–95 [Google Scholar]
  86. Mohammad SM, Dorr BJ, Hirst G, Turney PD. 2013. Computing lexical contrast. Comput. Linguist. 39:1–60 [Google Scholar]
  87. Morris J, Hirst G. 2004. Non-classical lexical semantic relations. Proceedings of the HLT-NAACL Workshop on Computational Lexical Semantics46–51 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  88. Murphy ML. 2003. Semantic Relations and the Lexicon: Antonymy, Synonymy, and the Other Paradigms Cambridge, UK: Cambridge Univ. Press
  89. Osgood CE. 1952. The nature and measurement of meaning. Psychol. Bull. 49:197–237 [Google Scholar]
  90. Padó S, Lapata M. 2007. Dependency-based construction of semantic space models. Comput. Linguist. 33:161–99 [Google Scholar]
  91. Paperno D, Pham NT, Baroni M. 2014. A practical and linguistically-motivated approach to compositional distributional semantics. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics90–99 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  92. Pennington J, Socher R, Manning CD. 2014. GloVe: global vectors for word representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing1532–43 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  93. Perek F. 2016. Using distributional semantics to study syntactic productivity in diachrony: a case study. Linguistics 54:149–88 [Google Scholar]
  94. Pustejovsky J. 1995. The Generative Lexicon Cambridge, MA: MIT Press
  95. Recchia G, Jones MN, Sahlgren M, Kanerva P. 2015. Encoding sequential information in vector space models of semantics: comparing holographic reduced representation and random permutation. Comput. Intell. Neurosci. 2015:986574 [Google Scholar]
  96. Rimell L. 2014. Distributional lexical entailment by topic coherence. Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics511–19 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  97. Rimell L, Maillard J, Polajnar T, Clark S. 2016. RELPRON: a relative clause evaluation data set for compositional distributional semantics. Comput. Linguist. 42:661–701 [Google Scholar]
  98. Riordan B, Jones MN. 2011. Redundancy in perceptual and linguistic experience: comparing feature-based and distributional models of semantic representation. Top. Cogn. Sci. 3:303–45 [Google Scholar]
  99. Rodda M, Senaldi MSG, Lenci A. 2017. Panta rei: tracking semantic change with distributional semantics in Ancient Greek. Ital. J. Comput. Linguist. 3:11–24 [Google Scholar]
  100. Roller S, Erk K, Boleda G. 2014. Inclusive yet selective: supervised distributional hypernymy detection. Proceedings of the 25th International Conference on Computational Linguistics1025–36 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  101. Rubenstein H, Goodenough JB. 1965. Contextual correlates of synonymy. Commun. ACM 8:627–33 [Google Scholar]
  102. Sahlgren M. 2006. The word-space model. Using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces. PhD thesis, Stockholm Univ., Stockholm, Swed.
  103. Sahlgren M, Lenci A. 2016. The effects of data size and frequency range on distributional semantic models. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing975–80 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  104. Salton G, Wong A, Yang CS. 1975. A vector space model for automatic indexing. Commun. ACM 18:613–20 [Google Scholar]
  105. Santus E, Lenci A, Lu Q, Schulte im Walde S. 2014a. Chasing hypernyms in vector spaces with entropy. Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics38–42 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  106. Santus E, Lu Q, Lenci A, Huang CR. 2014b. Taking antonymy mask off in vector space. Proceedings of the 28th Pacific Asia Conference on Language, Information and Computing135–44 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  107. Santus E, Yung F, Lenci A, Huang CR. 2015. EVALution 1.0: an evolving semantic dataset for training and evaluation of distributional semantic models. Proceedings of the 4th Workshop on Linked Data in Linguistics: Resources and Applications64–69 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  108. Sayeed A, Greenberg C, Demberg V. 2016. Thematic fit evaluation: an aspect of selectional preferences. Proceedings of the 1st Workshop on Evaluating Vector-Space Representations for Natural Language Processing99–105 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  109. Schütze H. 1997. Ambiguity Resolution in Language Learning: Computational and Cognitive Models Stanford, CA: Cent. Study Lang. Inf.
  110. Schütze H. 1998. Automatic word sense discrimination. Comput. Linguist. 24:97–123 [Google Scholar]
  111. Shaoul C, Westbury CF. 2010. Exploring lexical co-occurrence space using HiDEx. Behav. Res. Methods 42:393–413 [Google Scholar]
  112. Shwartz V, Santus E, Schlechtweg D. 2017. Hypernyms under siege: linguistically-motivated artillery for hypernymy detection. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics65–75 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  113. Socher R, Huval B, Manning CD, Ng AY. 2012. Semantic compositionality through recursive matrix-vector spaces. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning1201–11 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  114. Tilk O, Demberg V, Sayeed AB, Klakow D, Thater S. 2016. Event participant modelling with neural networks. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing171–82 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  115. Turney PD. 2006. Similarity of semantic relations. Comput. Linguist. 32:379–416 [Google Scholar]
  116. Turney PD. 2008. A uniform approach to analogies, synonyms, antonyms, and associations. Proceedings of the 22nd International Conference on Computational Linguistics905–12 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  117. Turney PD, Pantel P. 2010. From frequency to meaning: vector space models of semantics. J. Artif. Intell. Res. 37:141–88 [Google Scholar]
  118. Van de Cruys T. 2008. A comparison of bag of words and syntax-based approaches for word categorization. Proceedings of the Lexical Semantics Workshop: Bridging the Gap Between Semantic Theory and Computational Simulations47–54 Amsterdam: Univ. Amsterdam [Google Scholar]
  119. Vecchi EM, Marelli M, Zamparelli R, Baroni M. 2016. Spicy adjectives and nominal donkeys: capturing semantic deviance using compositionality in distributional spaces. Cogn. Sci. 41:102–36 [Google Scholar]
  120. Veltman F. 1996. Defaults in update semantics. J. Philos. Logic 25:221–61 [Google Scholar]
  121. Vigliocco G, Meteyard L, Andrews M, Kousta ST. 2009. Toward a theory of semantic representation. Lang. Cogn. 1:219–47 [Google Scholar]
  122. Weeds J, Clarke D, Reffin J, Weir D, Keller B. 2014. Learning to distinguish hypernyms and co-hyponyms. Proceedings of the 25th International Conference on Computational Linguistics2249–59 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  123. Weeds J, Weir D, McCarthy D. 2004. Characterising measures of lexical distributional similarity. Proceedings of the 20th International Conference on Computational Linguistics1–7 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  124. Wittgenstein L. 1953. Philosophical Investigations transl. GEM Anscombe Oxford, UK: Blackwell
  125. Yee E, Thompson-Schill SL. 2016. Putting concepts into context. Psychon. Bull. Rev. 23:1015–27 [Google Scholar]
  126. Yih W, Zweig G, Platt JC. 2012. Polarity inducing latent semantic analysis. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning1212–22 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  127. Zanzotto FM, Korkontzelos I, Fallucchi F, Manandhar S. 2010. Estimating linear models for compositional distributional semantics. Proceedings of the 23rd International Conference on Computational Linguistics1263–71 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  128. Zarcone A, Lenci A, Padó S, Utt J. 2013. Fitting, not clashing! A distributional semantic model of logical metonymy. Proceedings of the 10th International Conference on Computational Semantics. 404–10 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  129. Zarcone A, Utt J, Padó S. 2012. Modeling covert event retrieval in logical metonymy: probabilistic and distributional accounts. Proceedings of the 3rd Workshop on Cognitive Modeling and Computational Linguistics70–79 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
/content/journals/10.1146/annurev-linguistics-030514-125254
Loading
/content/journals/10.1146/annurev-linguistics-030514-125254
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error